8,689 research outputs found

    Non-diffracting Optical Beams in a Three-level Raman System

    Full text link
    Diffractionless propagation of optical beams through atomic vapors is investigated. The atoms in the vapor are operated in a three-level Raman configuration. A suitably chosen control beam couples to one of the transitions, and thereby creates a spatially varying index of refraction modulation in the warm atomic vapor for a probe beam which couples to the other transition in the atoms. We show that a Laguerre-Gaussian control beam allows to propagate single Gaussian probe field modes as well as multi-Gaussian modes and non-Gaussian modes over macroscopic distances without diffraction. This opens perspectives for the propagation of arbitrary images through warm atomic vapors.Comment: 8 pages, 7 figure

    Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein Condensates

    Full text link
    We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al. [Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics, and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.Comment: 8 pages, 8 figure

    The CHESS spectral survey of star forming regions: Peering into the protostellar shock L1157-B1 - II. Shock dynamics

    Get PDF
    Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims. We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods. The CO 5-4 and o-H2_O 1_(10)–1_(01) lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555–636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results. Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 10^5 cm^(-3)) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0–3.0) × 10^4 cm^(-3)), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10^(-7) up to 8 × 10^(-5). The properties of the high-velocity component agree well with the predictions of steady-state C-shock models

    Herschel observations of EXtra-Ordinary Sources (HEXOS): Methanol as a probe of physical conditions in Orion KL

    Get PDF
    We have examined methanol emission from Orion KL withthe Herschel/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated ΔJ = 0, K = −4 → −3, v_t = 0 Q branch, and includes 25 E-type and 2 A-type transitions. The 1061 GHz methanol band (observed in HIFI band 4b) is dominated by the ΔJ = 0, K = 7 → 6, v_t = 0 Q branch transitions which are mostly blended. We have used the isolated E-type v_t = 0 methanol transitions to explore the physical conditions in the molecular gas. With HIFI’s high velocity resolution, the methanol emission contributed by different spatial components along the line of sight toward Orion KL (hot core, low velocity flow, and compact ridge) can be distinguished and studied separately. The isolated transitions detected in these bands cover a broad energy range (upper state energy ranging from 80 K to 900 K), which provides a unique probe of the thermal structure in each spatial component. The observations further show that the compact ridge is externally heated. These observations demonstrate the power of methanol lines as probes of the physical conditions in warm regions in close proximity to young stars

    Herschel observations of EXtra-Ordinary Sources (HEXOS): The present and future of spectral surveys with Herschel/HIFI

    Get PDF
    We present initial results from the Herschel GT key program: Herschel observations of EXtra-Ordinary Sources (HEXOS) and outline the promise and potential of spectral surveys with Herschel/HIFI. The HIFI instrument offers unprecedented sensitivity, as well as continuous spectral coverage across the gaps imposed by the atmosphere, opening up a largely unexplored wavelength regime to high-resolution spectroscopy. We show the spectrum of Orion KL between 480 and 560 GHz and from 1.06 to 1.115 THz. From these data, we confirm that HIFI separately measures the dust continuum and spectrally resolves emission lines in Orion KL. Based on this capability we demonstrate that the line contribution to the broad-band continuum in this molecule-rich source is ~20−40% below 1 THz and declines to a few percent at higher frequencies. We also tentatively identify multiple transitions of HD^(18)O in the spectra. The first detection of this rare isotopologue in the interstellar medium suggests that HDO emission is optically thick in the Orion hot core with HDO/H_2O ~ 0.02. We discuss the implications of this detection for the water D/H ratio in hot cores

    Minimally invasive medial patellofemoral ligament reconstruction for patellar instability using an artificial ligament: A two year follow-up

    Get PDF
    Introduction: Recurrence of acute patellar dislocation affects approximately 30% of individuals, and up to 75% of those with grade IV instability. The medial patellofemoral ligament (MPFL) is considered to be critical for patella stabilisation. MPFL reconstruction with allografts has been proposed to reduce risk of recurrence, but there is limited evidence about the safety and effectiveness of techniques using synthetic allografts. Method: We present a retrospective case series of 29 individuals who underwent a MPFL reconstruction between 2009 and 2012, using an artificial ligament for patellar instability by a single surgeon. Clinical, radiological and functional outcomes were measured at a minimum of 24 months. Results: 31 knees (29 individuals) were followed up for a median of 43 (range: 24 – 68) months. Using the Crosby and Insall grading system, 21 (68%) were graded as excellent, 9 (29%) were good, 1 (3%) as fair and none as worse at 24 months. The mean improvement in Lysholm knee score for knee instability was 68 points (standard deviation 10). Ligamentous laxity was seen in 17 (55 %) of individuals. In this subset, 12 were graded as excellent, 4 as good and 1 as fair. The mean improvement in patellar height was 11 % at 3 months follow-up. All knees had a stable graft fixation with one re-dislocation following trauma. Conclusions: We propose a minimally invasive technique to reconstruct the MPFL using an artificial ligament allowing early mobilization without bracing. This study indicates the procedure is safe, with a low risk of re-dislocation in all grades of instability

    Nonsingular, big-bounce cosmology from spinor-torsion coupling

    Get PDF
    The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.Comment: 7 pages; published versio

    International Labor Standards, Soft Regulation, and National Government Roles

    Get PDF
    [Excerpt] In this article, we briefly describe the different approaches to the regulation of international labor standards, and then argue for a new role for national governments based on soft rather than hard regulation approaches. We argue that this new role shows potential for significantly enhancing progress in international labor standards, since it enables governments to articulate a position without having to deal with the enforcement issues that hard regulation mandates. We justify this new role for governments based on the increasing use of soft regulation in the international arena. Of course, this approach is not without its own problems, but given that existing approaches have all provided imperfect solutions to the problem of improving labor standards globally, re-visiting the role of national governments is in our view, highly important

    Detection of OH+ and H_2O+ towards Orion KL

    Get PDF
    We report observations of the reactive molecular ions OH+, H_(2)O+, and H_(3)O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H_(2)O+ 1_(11)–0_(00) transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H_(3)O+. OH+ and H_(2)O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s^(-1), and a broad blueshifted absorption similar to that reported recently for HF and para-H_(2)^(18)O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H_(2)O+ for the 9 km s^(-1) component of 9 ± 3 × 10^(12) cm^(-2) and 7 ± 2 × 10^(12) cm^(-2), and those in the outflow of 1.9 ± 0.7 × 10^(13) cm^(-2) and 1.0 ± 0.3 × 10^(13) cm^(-2). Upper limits of 2.4 × 10^(12) cm^(-2) and 8.7 × 10^(12) cm^(-2) were derived for the column densities of ortho and para-H_(3)O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate
    corecore