61,968 research outputs found
Vanishing of Gravitational Particle Production in the Formation of Cosmic Strings
We consider the gravitationally induced particle production from the quantum
vacuum which is defined by a free, massless and minimally coupled scalar field
during the formation of a gauge cosmic string. Previous discussions of this
topic estimate the power output per unit length along the string to be of the
order of ergs/sec/cm in the s-channel. We find that this production
may be completely suppressed. A similar result is also expected to hold for the
number of produced photons.Comment: 10 pages, Plain LaTex. Minor improvements. To appear in PR
Quenching of spectroscopic factors for proton removal in oxygen isotopes
We present microscopic coupled-cluster calculations of the spectroscopic
factors for proton removal from the closed-shell oxygen isotopes
O with the chiral nucleon-nucleon interaction at
next-to-next-to-next-to-leading order. We include coupling-to-continuum degrees
of freedom by using a Hartree-Fock basis built from a Woods-Saxon
single-particle basis. This basis treats bound and continuum states on an equal
footing. We find a significant quenching of spectroscopic factors in the
neutron-rich oxygen isotopes, pointing to enhanced many-body correlations
induced by strong coupling to the scattering continuum above the neutron
emission thresholds.Comment: 3 figure
A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice
We present a new and more efficient implementation of transfer-matrix methods
for exact enumerations of lattice objects. The new method is illustrated by an
application to the enumeration of self-avoiding polygons on the square lattice.
A detailed comparison with the previous best algorithm shows significant
improvement in the running time of the algorithm. The new algorithm is used to
extend the enumeration of polygons to length 130 from the previous record of
110.Comment: 17 pages, 8 figures, IoP style file
Phonon-induced quadrupolar ordering of the magnetic superconductor TmNiBC
We present synchrotron x-ray diffraction studies revealing that the lattice
of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q
increases and the amplitude of the displacements is drastically enhanced, by a
factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The
distortion occurs at the same wave vector as the antiferromagnetic ordering
induced by the a-axis field. A model is presented that accounts for the
properties of the quadrupolar phase and explains the peculiar behavior of the
antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR
Quantum Geometry and Diffusion
We study the diffusion equation in two-dimensional quantum gravity, and show
that the spectral dimension is two despite the fact that the intrinsic
Hausdorff dimension of the ensemble of two-dimensional geometries is very
different from two. We determine the scaling properties of the quantum gravity
averaged diffusion kernel.Comment: latex2e, 10 pages, 4 figure
Self-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series
expansion, to extend the enumeration of self-avoiding walks and polygons on the
triangular lattice to length 40 and 60, respectively. For self-avoiding walks
to length 40 we also calculate series for the metric properties of mean-square
end-to-end distance, mean-square radius of gyration and the mean-square
distance of a monomer from the end points. For self-avoiding polygons to length
58 we calculate series for the mean-square radius of gyration and the first 10
moments of the area. Analysis of the series yields accurate estimates for the
connective constant of triangular self-avoiding walks, ,
and confirms to a high degree of accuracy several theoretical predictions for
universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure
The Tully-Fisher relation of distant field galaxies
We examine the evolution of the Tully-Fisher relation (TFR) using a sample of
89 field spirals, with 0.1 < z < 1, for which we have measured confident
rotation velocities (Vrot). By plotting the residuals from the local TFR versus
redshift, or alternatively fitting the TFR to our data in several redshift
bins, we find evidence that luminous spiral galaxies are increasingly offset
from the local TFR with redshift, reaching a brightening of -1.0+-0.5 mag, for
a given Vrot, by approximately z = 1. Since selection effects would generally
increase the fraction of intrinsically-bright galaxies at higher redshifts, we
argue that the observed evolution is probably an upper limit.
Previous studies have used an observed correlation between the TFR residuals
and Vrot to argue that low mass galaxies have evolved significantly more than
those with higher mass. However, we demonstrate that such a correlation may
exist purely due to an intrinsic coupling between the Vrot scatter and TFR
residuals, acting in combination with the TFR scatter and restrictions on the
magnitude range of the data, and therefore it does not necessarily indicate a
physical difference in the evolution of galaxies with different Vrot.
Finally, if we interpret the luminosity evolution derived from the TFR as due
to the evolution of the star formation rate (SFR) in these luminous spiral
galaxies, we find that SFR(z) is proportional to (1+z)^(1.7+-1.1), slower than
commonly derived for the overall field galaxy population. This suggests that
the rapid evolution in the SFR density of the universe observed since
approximately z = 1 is not driven by the evolution of the SFR in individual
bright spiral galaxies. (Abridged.)Comment: 14 pages, 10 figures, accepted by MNRA
- …
