61,968 research outputs found

    Vanishing of Gravitational Particle Production in the Formation of Cosmic Strings

    Get PDF
    We consider the gravitationally induced particle production from the quantum vacuum which is defined by a free, massless and minimally coupled scalar field during the formation of a gauge cosmic string. Previous discussions of this topic estimate the power output per unit length along the string to be of the order of 106810^{68} ergs/sec/cm in the s-channel. We find that this production may be completely suppressed. A similar result is also expected to hold for the number of produced photons.Comment: 10 pages, Plain LaTex. Minor improvements. To appear in PR

    Quenching of spectroscopic factors for proton removal in oxygen isotopes

    Full text link
    We present microscopic coupled-cluster calculations of the spectroscopic factors for proton removal from the closed-shell oxygen isotopes 14,16,22,24,28^{14,16,22,24,28}O with the chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order. We include coupling-to-continuum degrees of freedom by using a Hartree-Fock basis built from a Woods-Saxon single-particle basis. This basis treats bound and continuum states on an equal footing. We find a significant quenching of spectroscopic factors in the neutron-rich oxygen isotopes, pointing to enhanced many-body correlations induced by strong coupling to the scattering continuum above the neutron emission thresholds.Comment: 3 figure

    A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice

    Full text link
    We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend the enumeration of polygons to length 130 from the previous record of 110.Comment: 17 pages, 8 figures, IoP style file

    Phonon-induced quadrupolar ordering of the magnetic superconductor TmNi2_2B2_2C

    Get PDF
    We present synchrotron x-ray diffraction studies revealing that the lattice of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q increases and the amplitude of the displacements is drastically enhanced, by a factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The distortion occurs at the same wave vector as the antiferromagnetic ordering induced by the a-axis field. A model is presented that accounts for the properties of the quadrupolar phase and explains the peculiar behavior of the antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR

    Quantum Geometry and Diffusion

    Get PDF
    We study the diffusion equation in two-dimensional quantum gravity, and show that the spectral dimension is two despite the fact that the intrinsic Hausdorff dimension of the ensemble of two-dimensional geometries is very different from two. We determine the scaling properties of the quantum gravity averaged diffusion kernel.Comment: latex2e, 10 pages, 4 figure

    Self-avoiding walks and polygons on the triangular lattice

    Full text link
    We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monomer from the end points. For self-avoiding polygons to length 58 we calculate series for the mean-square radius of gyration and the first 10 moments of the area. Analysis of the series yields accurate estimates for the connective constant of triangular self-avoiding walks, μ=4.150797226(26)\mu=4.150797226(26), and confirms to a high degree of accuracy several theoretical predictions for universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure

    The Tully-Fisher relation of distant field galaxies

    Full text link
    We examine the evolution of the Tully-Fisher relation (TFR) using a sample of 89 field spirals, with 0.1 < z < 1, for which we have measured confident rotation velocities (Vrot). By plotting the residuals from the local TFR versus redshift, or alternatively fitting the TFR to our data in several redshift bins, we find evidence that luminous spiral galaxies are increasingly offset from the local TFR with redshift, reaching a brightening of -1.0+-0.5 mag, for a given Vrot, by approximately z = 1. Since selection effects would generally increase the fraction of intrinsically-bright galaxies at higher redshifts, we argue that the observed evolution is probably an upper limit. Previous studies have used an observed correlation between the TFR residuals and Vrot to argue that low mass galaxies have evolved significantly more than those with higher mass. However, we demonstrate that such a correlation may exist purely due to an intrinsic coupling between the Vrot scatter and TFR residuals, acting in combination with the TFR scatter and restrictions on the magnitude range of the data, and therefore it does not necessarily indicate a physical difference in the evolution of galaxies with different Vrot. Finally, if we interpret the luminosity evolution derived from the TFR as due to the evolution of the star formation rate (SFR) in these luminous spiral galaxies, we find that SFR(z) is proportional to (1+z)^(1.7+-1.1), slower than commonly derived for the overall field galaxy population. This suggests that the rapid evolution in the SFR density of the universe observed since approximately z = 1 is not driven by the evolution of the SFR in individual bright spiral galaxies. (Abridged.)Comment: 14 pages, 10 figures, accepted by MNRA
    corecore