6,230 research outputs found

    W physics at the ILC with polarized beams as a probe of the Littlest Higgs Model

    Full text link
    We study the possibility of using W pair production and leptonic decay of one of the W's at the ILC with polarized beams as a probe of the Littlest Higgs Model. We consider cross-sections, polarization fractions of the W's, leptonic decay energy and angular distributions, and left-right polarization asymmetry as probes of the model. With parameter values allowed by present experimental constraints detectable effects on these observables at typical ILC energies of 500 GeV and 800 GeV will be present. Beam polarization is further found to enhance the sensitivity.Comment: 17 pages, plain latex, 6 figures, replaced with version accepted by JHEP, typographical errors removed, notation and references improved, new references added, explanation added in appendix regarding beam polarization dependenc

    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules

    Full text link
    The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased, and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel's widely-used time-dependent density functional theory benchmark set [M. Schreiber et al. J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate GW step, and that with a judicious choice of starting mean-field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods. The quality of the triplet excitations is slightly less satisfactory

    Self-Breaking of the Standard Model Gauge Symmetry

    Get PDF
    If the gauge fields of the Standard Model propagate in TeV-size extra dimensions, they rapidly become strongly coupled and can form scalar bound states of quarks and leptons. If the quarks and leptons of the third generation propagate in 6 or 8 dimensions, we argue that the most tightly bound scalar is a composite of top quarks, having the quantum numbers of the Higgs doublet and a large coupling to the top quark. In the case where the gauge bosons propagate in a bulk of a certain volume, this composite Higgs doublet can successfully trigger electroweak symmetry breaking. The mass of the top quark is correctly predicted to within 20%, without the need to add a fundamental Yukawa interaction, and the Higgs boson mass is predicted to lie in the range 165 - 230 GeV. In addition to the Higgs boson, there may be a few other scalar composites sufficiently light to be observed at upcoming collider experiments.Comment: 26 pages, 4 figures, typos corrected, references adde

    Ghosts and Tachyons in the Fifth Dimension

    Full text link
    We present several solutions for the five dimensional gravity models in the presence of bulk ghosts and tachyons to argue that these "troublesome" fields can be a useful model-building tool. The ghost-like signature of the kinetic term for a bulk scalar creates a minimum in the scale factor, removing the necessity for a negative tension brane in models with the compactified fifth dimension. It is shown that the model with the positive tension branes and a ghost field in the bulk leads to the radion stabilization. The bulk scalar with the variable sign kinetic term can be used to model both positive and negative tension branes of a finite width in the compact dimension. Finally, we present several ghost and tachyon field configurations in the bulk that lead to the localization of gravity in four dimensions, including one solution with the Gaussian profile for the metric, g_{\mu\nu}(y)=\eta_{\mu\nu}\exp{-\alpha y^2}, which leads to a stronger localization of gravity than the Randall-Sundrum model.Comment: New references adde

    Fluctuating geometries, q-observables, and infrared growth in inflationary spacetimes

    Full text link
    Infrared growth of geometrical fluctuations in inflationary spacetimes is investigated. The problem of gauge-invariant characterization of growth of perturbations, which is of interest also in other spacetimes such as black holes, is addressed by studying evolution of the lengths of curves in the geometry. These may either connect freely falling "satellites," or wrap non-trivial cycles of geometries like the torus, and are also used in diffeomorphism- invariant constructions of two-point functions of field operators. For spacelike separations significantly exceeding the Hubble scale, no spacetime geodesic connects two events, but one may find geodesics constrained to lie within constant-time spatial slices. In inflationary geometries, metric perturbations produce significant and growing corrections to the lengths of such geodesics, as we show in both quantization on an inflating torus and in standard slow-roll inflation. These become large, signaling breakdown of a perturbative description of the geometry via such observables, and consistent with perturbative instability of de Sitter space. In particular, we show that the geodesic distance on constant time slices during inflation becomes non-perturbative a few e-folds after a given scale has left the horizon, by distances \sim 1/H^3 \sim RS, obstructing use of such geodesics in constructing IR-safe observables based on the spatial geometry. We briefly discuss other possible measures of such geometrical fluctuations.Comment: 33 pages, 2 figures, latex; v2: typos corrected, references improve

    Adsorbate induced enhancement of electrostatic non-contact friction

    Get PDF
    We study the non-contact friction between an atomic force microscope tip and a metal substrate in the presence of bias voltage. The friction is due to energy losses in the sample created by the electromagnetic field from the oscillating charges induced on the tip surface by the bias voltage. We show that the friction can be enhanced by many orders of magnitude if the ads orbate layer can support acoustic vibrations. The theory predicts the magnitude and the distance dependence of friction in a good agreement with recent puzzling non-contact friction experiment \cite{Stipe}. We demonstrate that even an isolated adsorbate can produce high enough friction to be measured experimentally.Comment: Published in PR

    Boundary Contributions Using Fermion Pair Deformation

    Full text link
    Continuing the study of boundary BCFW recursion relation of tree level amplitudes initiated in \cite{Feng:2009ei}, we consider boundary contributions coming from fermion pair deformation. We present the general strategy for these boundary contributions and demonstrate calculations using two examples, i.e, the standard QCD and deformed QCD with anomalous magnetic momentum coupling. As a by-product, we have extended BCFW recursion relation to off-shell gluon current, where because off-shell gluon current is not gauge invariant, a new feature must be cooperated.Comment: 26 pages, 4 figure

    Pseudo-axions in Little Higgs models

    Full text link
    Little Higgs models have an enlarged global symmetry which makes the Higgs boson a pseudo-Goldstone boson. This symmetry typically contains spontaneously broken U(1) subgroups which provide light electroweak-singlet pseudoscalars. Unless such particles are absorbed as the longitudinal component of ZZ' states, they appear as pseudoscalars in the physical spectrum at the electroweak scale. We outline their significant impact on Little Higgs phenomenology and analyze a few possible signatures at the LHC and other future colliders in detail. In particular, their presence significantly affects the physics of the new heavy quark states predicted in Little Higgs models, and inclusive production at LHC may yield impressive diphoton resonances.Comment: 28 pages, 9 figs., accepted to PRD; footnote added, typos correcte

    BPS Saturated Vacua Interpolation along One Compact Dimension

    Get PDF
    A class of generalized Wess-Zumino models with distinct vacua is investigated. These models allow for BPS saturated vacua interpolation along one compact spatial dimension. The properties of these interpolations are studied.Comment: 8 pages, 4 figure

    Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems

    Get PDF
    . We consider the effect of an external bias voltage and the spatial variation of the surface potential, on the damping of cantilever vibrations. The electrostatic friction is due to energy losses in the sample created by the electromagnetic field from the oscillating charges induced on the surface of the tip by the bias voltage and spatial variation of the surface potential. A similar effect arises when the tip is oscillating in the electrostatic field created by charged defects in a dielectric substrate. The electrostatic friction is compared with the van der Waals friction originating from the fluctuating electromagnetic field due to quantum and thermal fluctuation of the current density inside the bodies. We show that the electrostatic and van der Waals friction can be greatly enhanced if on the surfaces of the sample and the tip there are two-dimension (2D) systems, e.g. a 2D-electron system or incommensurate layers of adsorbed ions exhibiting acoustic vibrations. We show that the damping of the cantilever vibrations due to the electrostatic friction may be of similar magnitude as the damping observed in recent experiments of Stipe \textit{et al} [B.C.Stipe, H.J.Mamin, T.D.Stowe, T.W.Kenny, and D.Rugar, Phys.Rev. Lett.% \textbf{87}, 0982001]. We also show that at short separation the van der Waals friction may be large enough to be measured experimentally.Comment: 11 pages, 2 figure
    corecore