2,140 research outputs found

    Traitements d'effluents issus de l'industrie de la pêche par un procédé de coagulation/floculation

    Get PDF
    La présente étude porte sur le traitement physico-chimique d'un effluent industriel chargé d'encre de seiche issu de l'industrie de conditionnement des produits de la pêche. Différentes combinaisons de coagulant -floculant ont été étudiées. Le sulfate d'aluminium (SA), divers polyélectrolytes et certains adjuvants pulvérulents ont été utilisés. L'efficacité du traitement par coagulation-floculation a été analysée en suivant l'évolution de la turbidité et de la DCO résiduelle du surnageant.Les résultats de cette étude ont révélé qu'à pH 6-7, l'addition de SA à une concentration supérieure à 1000 mg.l-1 entraîne la coagulation des particules d'encre de seiche. L'addition d'un polyélectrolyte en association avec le SA permet de réduire la concentration requise en SA à environ 300 mg.l-1, tout en améliorant l'efficacité du processus de coagulation-floculation. Le recours à un adjuvant pulvérulent en combinaison avec le SA et un polyélectrolyte accroît notablement les performances du traitement et permet d'obtenir un effluent ayant une turbidité résiduelle de 7 NTU.The aim of this work was to compare the efficiency of a coagulation-flocculation process using different systems individually or in combination. The waste water used was an industrial cuttlefish effluent principally composed of colloidal particles from the cuttlefish. The initial turbidity and chemical oxygen demand were approximately 700 NTU and 22,000 mg×L-1 respectively. Two parameters were used to assess the process efficiency: the residual turbidity and the chemical oxygen demand (COD) of the supernatant.Three systems were investigated: aluminium sulphate (SA), polyelectrolytes and a ternary combination of SA-polyelectrolyte and colloidal microparticle adjuvant. Results demonstrated that at pH 6-7, SA caused some coagulation of the suspension, but the dosage required (about 1000 mg×L-1) far exceeded those conventionally used in water treatment. As a consequence, an appreciable amount of SA, which was above the authorised limits, remained in the supernatant. Indeed, adsorption isotherm measurements revealed that at pH 6.5-7 the residual proportion of SA attained was about 20%. The addition of polyelectrolytes in combination with SA allowed reduction of the SA dosage to 150 mg×L-1. Amongst the polymers tested, the cationic polymer was the most efficient. The ability to bring about flocculation was positively related to the molecular weight, which is in agreement with a bridging flocculation mechanism. Starch, a natural, low-cost polymer was also an efficient flocculent even though it is a non-charged polymer. The ability of starch to bring about a flocculation action was explained by its relatively low solubility, which leads to some aggregation of macromolecular chains that act as anchoring sites for the coagulated ink particles. With this system, a double treatment in the presence of 150 mg×L-1 SA and 25 mg×L-1 polydiallyldimethylammonium chloride (PDMAC) or starch lead to a supernatant with a turbidity and COD of 150 NTU and 5500 mg×L-1 respectively.The third part of our study was concerned with the effect of the addition of an insoluble microparticle adjuvant in combination with SA and polyelectrolytes. Different components were investigated, but among them only colloidal silica and MgO bring about a significant enhancement of the flocculation process. This effect was explained by a bridging mechanism in which the adjuvant microparticles act as sites that favour the anchoring of the coagulated ink particles. Using a triple treatment in the presence of 150 mg×L-1 SA, 25 mg×L-1 PDMAC and 0.75 g×L-1 MgO removed about 95 % of the ink particles. The supernatant obtained was characterised by a low turbidity value (about 7 NTU) and a COD value about 2000 mg×L-1

    Observation of the Inverse Cotton-Mouton Effect

    Full text link
    We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a magnetization induced in a medium by non resonant linearly polarized light propagating in the presence of a transverse magnetic field. We present a detailed study of the ICME in a TGG crystal showing the dependence of the measured effect on the light intensity, the optical polarization, and on the external magnetic field. We derive a relation between the Cotton-Mouton and Inverse Cotton-Mouton effects that is roughly in agreement with existing experimental data. Our results open the way to applications of the ICME in optical devices

    Traitement d'effluents de tannerie-mégisserie par microfiltration tangentielle

    Get PDF
    Dans ce travail un procédé de traitement des effluents issus de l'unité de préparation des peaux des animaux au tannage (travail en rivière) en tannerie-mégisserie a été étudié en utilisant la technique de microfiltration tangentielle sur membrane minérale en céramique. Les performances de ce procédé en terme de flux de filtration et de rendement épuratoire dépendent aussi bien des paramètres hydrodynamiques de filtration que de la qualité des effluents (collectés en été et en printemps) issus des différents bains de traitement et de rinçage des peaux dans l'atelier de rivière. Le flux de filtration varie entre 15 l/h.m2 pour l'effluent de printemps et 90 l/h.m2 pour l'effluent d'été. Les paramètres hydrodynamiques optimaux ont également été déterminés: la vitesse de circulation U=3 m/s, la pression transmembranaire Ptm=2 bar et la température T=43°C. L'étude de la microfiltration à concentration variable conduit à des facteurs de concentration volumique (FCV) de 6,5 pour l'effluent de l'été et de 2,4 pour l'effluent de printemps.The leather industry is responsible for the transformation of raw animal skin to a final form as shoes, bags, dresses, etc. This industry was known for centuries as a craft activity, and today with industrial development, environmental regulations and new emerging technologies, it has become necessary to include elaborate processes for its wastewater treatment. These industries consume a great amount of water. In Tunisia, more than 15000 tons of skin are treated per year, and about 600000 m3 per year of effluents are discharged. The waste water contains chemicals, fats, hair and protein, varying in composition depending on the season. Figure 1 represents the preparation of raw skin for the tanning operation and the amount of waste water produced. The amount of water used for the preparation of raw skin is about 70% of the total quantity of water used. This waste water has a significant polluting load (chemicals and organic matter), with 5000 - 7500 mg/l of COD and 100 to 150 mg/l of sulfur. Tunisian legislation and regulations concerning the standards for wastewater disposal are 1000 mg/l for COD, 3 mg/l for sulfur and a pH between 6.5-9. Different techniques for wastewater treatment such as: physico-chemical treatment, treatment by electrochemical oxidation and membrane technology were proposed. Wastewater treatment by microfiltration and ultrafiltration with mineral membranes is advantageous because no chemicals are used and it can be combined easily with other physico-chemical or biological pre-treatments. In this study, we have treated two types of effluents from the leather pre-treatment industry collected in the summer (effluent 1), and the spring (effluent 2) seasons. The physico-chemical characteristics of the two types effluents are given in Table 2. The filtration experiments were made on a test bench (Figure 2) equipped with a feed reservoir, a volumetric pump, a filtration module, flow meter, pressure transducers, a heat exchanger and control valves. Ceramic membranes of tubular geometry (7 channels), 0.08 m2 membrane surface area and of 0.1 µm (mean diameter) pores were used. During the microfiltration experiments, the following physico-chemical parameters were analysed in the permeate and retentate: turbidity, specific conductivity, pH, viscosity, chemical oxygen demand (COD), sulfur (volumetric method), fats (Standard JIS 0102.24.2), protein (using Kjeldahl nitrogen), and organic nitrogen. Hydrodynamic parameters such as temperature (25 < T < 50 °C), transmembrane pressure (1 < Ptm < 2.2 bar) and feed velocity (1 < U < 3 m/s) were fixed for experimentation. The COD concentration in the effluent was adjusted and kept constant at 5000 mg/l. The raw effluent was pre-filtered on a screen filter (150 µm pore size). For experiments with variable concentration, we regularly removed the filtrate and the concentration factor was represented by FCV=Vi / Vr, where Vi was the initial volume and Vr was the volume of the retentate. The performance of the microfiltration (J) was expressed in l/h×m2. The retention rate (TR) was defined by: TR=1 - (Cpermeate) / (Cfeed). The total hydraulic resistance (RT) was defined by Darcy's law: Jf=Ptm / µ RT. After each experiment, the membrane was regenerated following a standard protocol and it was verified by measuring water flux. Figure 3a represents the variation of the filtration flux with time for 4 different temperatures: 25 °C, 43 °C, 45 °C and 50 °C with effluent 1. The flux increased from 90 to 118 l/h×m2 when the temperature increased from 25 °C to 43 °C. After 90 min at 50 °C, the filtration flux was 123 l/h×m2. Table 3 shows that the viscosity of the effluent decreased with temperature, while the turbidity of the filtrate increased from 0.63 NTU at T=25 °C to 1.6 NTU for T=50 °C. The retention rate of COD was always superior to 50 %. On the basis of these results, we chose the optimum temperature of 43 °C for other experiments. Figure 4 summarises the variation of flux with transmembrane pressure at flow velocities of 1 m/s, 2 m/s and 3 m/s. The stabilized fluxes were practically the same for the flow velocities of 1 and 2 m/s (of the order of 80 l/h×m2), but were higher at 3 m/s (110 - 115 l/h×m2 at 2 bar). The physico-chemical characteristics of the raw effluent and the permeate obtained after 90 minutes of filtration are summarised in Table 4. Figure 7a shows the variation of filtration flux for 2 types of effluents. The filtration flux for the same conditions of experimentation and at stabilized conditions (at 90 min) was 118 l/h×m2 for effluent 1 and 20 l/h×m2 for effluent 2. The lower filtration flux for effluent 2 can be explained by high deposits of rejected matter on the membrane and in the pores. Table 5 gives a comparison of the characteristics of effluents 1 and 2 before and after microfiltration. At variable feed concentrations, FCV=6.5 for effluent 1 and FCV=2.4 for the effluent 2 and the stabilized flux was about 90 l/h×m2 for the effluent 1 and 15 l/h×m2 for the effluent 2. The time needed for treatment of effluent 1 was about 6 hours, while more that 16 hours was necessary for effluent 2. Table 6 provides physico-chemical characteristics for the two types of effluents. The contents of fat, protein, nitrogen and sulfur in the effluent were important factors for variation. These results indicate that microfiltration is very sensitive to the quantity of polluting matter present in the effluents, particularly sulfur and fat. Increased polluting matter in effluent 2 could be responsible for the membrane polarization and blocking of pores. The resistance model was used to verify this hypothesis. The irreversible resistance values for effluent 2 were greater, thus confirming the hypothesis that the increased adsorption on the membrane surface and passage of pores by the presence of sulfur and organic polluting matter. These experimental results confirm that the best performance can be obtained at the hydrodynamic conditions of: a temperature of 43 °C; a transmembrane pressure of 2 bar; and a flow velocity of 3 m/s. Seasonal variation changed the quality of effluents, which considerably affects the performances of the microfiltration. Effluent 2, which was obtained from the treatment of sheep skin during the spring season, led to more membrane pore blocking than effluent 1 for the same initial concentration in COD. The interactions of fats and sulfur with the membrane layer appear to play an important role in the formation of a cake layer

    Impact of the underlying cause and co-morbid conditions on the outcome of hepatic encephalopathy

    Get PDF
    Background: Hepatic encephalopathy (HE) is a serious neuropsychiatric complication of acute and chronic liver diseases. This study aimed at identifying liver diseases and co-morbidity conditions associated with hepatic encephalopathy (HE) and their impact on patient`s mortality (the outcome).Methods: A hospital-based, prospective study enrolled 76 patients admitted with HE conducted at Ibn Sina specialized gastroenterology hospital, Sudan, from January 2010 to May 2011. Personal data, clinical presentation, underlying liver disease, precipitants, co-morbid conditions and the outcome of HE were obtained from the inpatients’ hospital records.Results: A total of 76 patients were included, 62 males (81.5%) and 14 females (18.5%) aged between 13 and 84 years old. Hepatitis B virus (HBV) was the most common cause of the liver disease (36.8%), followed by HCV (11.8%). Clinically, 53 patients (69%) had impaired level of consciousness. Infection was the most common risk factor for HE (54%) followed by electrolyte disturbance (42%). Overall mortality within one to three weeks following the admission was (50%). The higher percentage of mortality was seen inpatients with late stage autoimmune hepatitis, followed by HCC and in co-morbid conditions like renal impairment (58.8%).Conclusion: HE is associated with a high mortality despite proper management in specialized hospitals. The mortality tends to increase in the presence of comorbid condition.

    Fission of a multiphase membrane tube

    Get PDF
    A common mechanism for intracellular transport is the use of controlled deformations of the membrane to create spherical or tubular buds. While the basic physical properties of homogeneous membranes are relatively well-known, the effects of inhomogeneities within membranes are very much an active field of study. Membrane domains enriched in certain lipids in particular are attracting much attention, and in this Letter we investigate the effect of such domains on the shape and fate of membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can trigger tube fission, and we demonstrate how this can be understood purely from the difference in elastic constants between the domains. Moreover, the proposed model predicts timescales for fission that agree well with experimental findings

    Exact Results for a Three-Body Reaction-Diffusion System

    Full text link
    A system of particles hopping on a line, singly or as merged pairs, and annihilating in groups of three on encounters, is solved exactly for certain symmetrical initial conditions. The functional form of the density is nearly identical to that found in two-body annihilation, and both systems show non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for large times.Comment: 10 page

    Roughness of moving elastic lines - crack and wetting fronts

    Full text link
    We investigate propagating fronts in disordered media that belong to the universality class of wetting contact lines and planar tensile crack fronts. We derive from first principles their nonlinear equations of motion, using the generalized Griffith criterion for crack fronts and three standard mobility laws for contact lines. Then we study their roughness using the self-consistent expansion. When neglecting the irreversibility of fracture and wetting processes, we find a possible dynamic rough phase with a roughness exponent of ζ=1/2\zeta=1/2 and a dynamic exponent of z=2. When including the irreversibility, we conclude that the front propagation can become history dependent, and thus we consider the value ζ=1/2\zeta=1/2 as a lower bound for the roughness exponent. Interestingly, for propagating contact line in wetting, where irreversibility is weaker than in fracture, the experimental results are close to 0.5, while for fracture the reported values of 0.55--0.65 are higher.Comment: 15 pages, 6 figure

    Josephson charge-phase qubit with radio frequency readout: coupling and decoherence

    Full text link
    The charge-phase Josephson qubit based on a superconducting single charge transistor inserted in a low-inductance superconducting loop is considered. The loop is inductively coupled to a radio-frequency driven tank circuit enabling the readout of the qubit states by measuring the effective Josephson inductance of the transistor. The effect of qubit dephasing and relaxation due to electric and magnetic control lines as well as the measuring system is evaluated. Recommendations for operation of the qubit in magic points producing minimum decoherence are given.Comment: 11 pages incl. 6 fig

    Global Persistence Exponent for Critical Dynamics

    Full text link
    A `persistence exponent' θ\theta is defined for nonequilibrium critical phenomena. It describes the probability, p(t)tθp(t) \sim t^{-\theta}, that the global order parameter has not changed sign in the time interval tt following a quench to the critical point from a disordered state. This exponent is calculated in mean-field theory, in the n=n=\infty limit of the O(n)O(n) model, to first order in ϵ=4d\epsilon = 4-d, and for the 1-d Ising model. Numerical results are obtained for the 2-d Ising model. We argue that θ\theta is a new independent exponent.Comment: 4 pages, revtex, one figur

    Model of Cluster Growth and Phase Separation: Exact Results in One Dimension

    Full text link
    We present exact results for a lattice model of cluster growth in 1D. The growth mechanism involves interface hopping and pairwise annihilation supplemented by spontaneous creation of the stable-phase, +1, regions by overturning the unstable-phase, -1, spins with probability p. For cluster coarsening at phase coexistence, p=0, the conventional structure-factor scaling applies. In this limit our model falls in the class of diffusion-limited reactions A+A->inert. The +1 cluster size grows diffusively, ~t**(1/2), and the two-point correlation function obeys scaling. However, for p>0, i.e., for the dynamics of formation of stable phase from unstable phase, we find that structure-factor scaling breaks down; the length scale associated with the size of the growing +1 clusters reflects only the short-distance properties of the two-point correlations.Comment: 12 page
    corecore