19 research outputs found

    Contamination assessment of heavy metals in agricultural soil, in the liwa area (UAE)

    Get PDF
    The Liwa area is a primary food production area in the United Arab Emirates (UAE) and has intensively been used for agriculture. This study investigates the pollution levels with heavy metals in agricultural soils from the Liwa area. Thirty-two soil samples were analyzed for Mn, Zn, Cr, Ni, Cu, Pb, Cd, Co, and As. Results revealed that heavy metal levels varied in the ranges 220.02– 311.21, 42.39–66.92, 43.43–71.55, 32.86–52.12, 10.29–21.70, 2.83–8.84, 0.46–0.69, 0.03–0.37 mg/kg for Mn, Zn, Cr, Ni, Cu, Pb, Cd, Co, and As, respectively. All samples presented low As concentrations with an average of 0.01 mg/kg. The variations in bulk metal contents in the soil samples were related to multiple sources, including agrochemicals, atmospheric dust containing heavy metals, and traf-fic-related metals. Enrichment factor analysis indicates that Cd, Ni, Zn, and Cr were highly enriched in soils, and they could originate from non-crustal sources. Based on the geo-accumulation index (Igeo), the soil samples appeared uncontaminated with Mn, Cr, Zn, Pb, Co, As, Cu, uncontaminated to moderately contaminated with Ni and moderately contaminated with Cd. The contamination factors suggest low contamination, except for Ni, which showed moderate contamination. The average pollution load index (PLI) revealed unpolluted to low pollution of all soil samples. The ecological risk assessment (PERI) showed that all heavy metals posed a low risk, except for Cd which exhibited a high ecological risk

    Assessment of metals concentrations in soils of Abu Dhabi emirate using pollution indices and multivariate statistics

    Get PDF
    The aim of this study was twofold. Firstly, we performed a land capability class determination of the agricultural soils from the Abu Dhabi Emirate, the United Arab Emirates, based on the concentrations of 17 chemical elements determined in the soil samples collected from 84 locations. Secondly, we assess the soil pollution with different metals, using several pollution indices. The results of Principal Component Analysis (PCA) shows that four principal components (PCs) are responsible for describing the total metals concentrations’ variance, the highest contribution on PC1 being that of Mn, and Cr, on PC2 that of Fe, on PC3 that of Cu, and on PC4 that of Al. After determining the optimal number of clusters, we classified the sites into three clusters, while the studied metals were grouped function on their concentrations. Then, we used five indices to assess the pollution level of the soil at the study sites and in the clusters. The geo—accumulation index (I ) indicates uncontamination/moderately contamination with Cu in cluster 1, uncontaminated/moderately contaminate soils with Cd, Cu, and Ni in cluster 2, and uncontaminated/moderately contaminated soil with Cu and moderately contaminated with Pb, Zn, and Ni in cluster 3. By comparison, the enrichment factors overestimate the pollution of the studied sites. The pollution load index (PLI) indicates a baseline level of pollution at 14 sites and the deterioration of the soil quality at four sites. The Nemerow pollution index provides similar results as PLI. ge

    Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE)

    No full text
    The Liwa area is a primary food production area in the United Arab Emirates (UAE) and has intensively been used for agriculture. This study investigates the pollution levels with heavy metals in agricultural soils from the Liwa area. Thirty-two soil samples were analyzed for Mn, Zn, Cr, Ni, Cu, Pb, Cd, Co, and As. Results revealed that heavy metal levels varied in the ranges 220.02–311.21, 42.39–66.92, 43.43–71.55, 32.86–52.12, 10.29–21.70, 2.83–8.84, 0.46–0.69, 0.03–0.37 mg/kg for Mn, Zn, Cr, Ni, Cu, Pb, Cd, Co, and As, respectively. All samples presented low As concentrations with an average of 0.01 mg/kg. The variations in bulk metal contents in the soil samples were related to multiple sources, including agrochemicals, atmospheric dust containing heavy metals, and traffic-related metals. Enrichment factor analysis indicates that Cd, Ni, Zn, and Cr were highly enriched in soils, and they could originate from non-crustal sources. Based on the geo-accumulation index (Igeo), the soil samples appeared uncontaminated with Mn, Cr, Zn, Pb, Co, As, Cu, uncontaminated to moderately contaminated with Ni and moderately contaminated with Cd. The contamination factors suggest low contamination, except for Ni, which showed moderate contamination. The average pollution load index (PLI) revealed unpolluted to low pollution of all soil samples. The ecological risk assessment (PERI) showed that all heavy metals posed a low risk, except for Cd which exhibited a high ecological risk
    corecore