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Abstract. Accurate water-related predictions and decision-making re-
quire a simulation of hydrological systems in high spatio-temporal reso-
lution. However, the simulation of such a large-scale dynamical system
is compute-intensive. One approach to circumvent this issue, is to use
landscape properties to reduce model redundancies and computation
complexities. In this paper, we extend this approach by applying ma-
chine learning methods to cluster functionally similar model units and
by running the model only on a small yet representative subset of each
cluster. Our proposed approach consists of several steps, in particular
the reduction of dimensionality of the hydrological time series, applica-
tion of clustering methods, choice of a cluster representative, and study
of the balance between the uncertainty of the simulation output of the
representative model unit and the computational effort. For this pur-
pose, three different clustering methods namely, K-Means, K-Medoids
and DBSCAN are applied to the data set. For our test application, the
K-means clustering achieved the best trade-off between decreasing com-
putation time and increasing simulation uncertainty.

Keywords: Clustering · Time series analysis · K-Means · K-Medoids ·

DBSCAN · Simulation optimization.

1 Introduction

The simulation of hydrological systems and their interactions needs an advanced
modeling of water-, energy- and mass cycles in high spatio-temporal resolution
[20]. This kind of modeling is used to support water-related predictions and
decision making. Such a high-resolution, distributed and physically based mod-
eling demands high performance computing (HPC) and parallel processing of the
model units to function fast and efficiently [10, 13, 14]. However, parallel running
of such models is challenging for domain scientists, since the interactions among
the model units are not strictly independent. Either one can run the processes
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parallel e.g by using a Message Passing Interface (MPI) for communication and
exchange of data between processes, or one can run processes of independent
model units in parallel and the processes of dependent model units sequentially.
Furthermore, development, testing, execution and update of such a model on
HPC Clusters involve potentially a large configuration overhead and require ad-
vanced programming expertise of domain scientists. The main aim of this work
is to reduce the computational effort of the model, and in addition, to discover
underlying patterns of the hydrological systems [5]. The remainder of this paper
is structured as follows: Section 2 provides further information about the study
background, Section 3 is a survey of related work, the proposed approach is ex-
plained in Section 4. In Section 5, the processing results are presented, Section
6 is about the implementation environment and the conclusions are drawn in
Section 7.

2 Background

2.1 Hydrological Model

In this paper we apply our methods on the CAOS (Catchment as Organized
Systems) model proposed by Zehe et al.[20]. This model simulates water related
dynamics in the lower mesoscale catchments (few tens to few hundreds of square
kilometers). The CAOS model provides a high-resolution and distributed process
based simulation of water- and energy fluxes in the near surface atmosphere, the
earth’s surface and subsurface. These simulations are generally applicable in the
field of hydrological research, agricultural water demand estimation and erosion
protection or flood forecasting. The landscape is represented by model elements
organized in three major hierarchy levels (Fig. 1). The smallest model elements
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Fig. 1: Simplified hierarchy of the CAOS model units (modified after [20]).

are soil columns referred to as Elementary Functional Units (EFUs). Each EFU is
composed of Soilsurface, Soillayers, Macropores (vertical cracks) and Vegetation.
In an EFU, all vertical water movements (infiltration, vertical soil water flow,



Clustering as Approximation Method to Optimize Hydrological Simulations 3

and evapotranspiration) are modelled. On the second hierarchy level, Hillslope
model elements contain and connect all EFUs along the downhill path from a
ridge line to a river. In a Hillslope, all lateral, downhill flow processes (surface
flow and groundwater flow) are modelled in network-like flow structures called
rills on the surface and pipes in the subsurface (blue lines in Fig. 1, middle and
right sketch). A catchment model element finally contains all Hillslopes, i.e. the
drainage area up to a point of interest at a river. In a catchment, all processes of
lateral water transport in a river are modelled. EFUs within the same Hillslope
may interact due to backwater effects. Hillslopes act completely independent of
each other. Before executing the hydrologic simulation, the catchment is divided
into Hillslopes based on the flow network derived from a Digital Elevation Model
(DEM). Hillslopes are then subdivided in laterally connected EFUs (Fig. 1). The
hierarchy of model elements can be abstracted into a network model [5] to profit
the advantages of such a representation of objects and their relationships.

2.2 Study Case

The study area used to develop and test the hydrological model is the Attert
catchment in the Grand Duchy of Luxembourg. Since the computation of the hy-
drological model is time consuming, a representative subset of the Attert catch-
ment, the Wollefsbach catchment, is used for the initial development (Fig. 2).
To give an insight into the required simulation time, we executed the CAOS
model of the Wollefsbach catchment for January 2014 in 5-minute resolution
on a single core system. The properties, main structure statistics, and execution
time are presented in Table 1. The simulation execution time of the whole Attert
catchment has not been determined yet.
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Table 1: Case study properties.

Catchment Attert Wollefsbach

Area 247 km2 4.5 km2

# Hillslopes 9716 232

Run Time - 50.6 hours

Fig. 2: Digital Elevation Model of the Attert catchment (brown line) and the
Wollefsbach catchment (current study case, red dashed line).
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3 Related Work

Environmental scientists mostly use classification and clustering methods in or-
der to detect patterns in data sets, make decisions and extract the required in-
formation by using similarity measurements [3, 15, 18, 19]. [19] studied K-means,
Clara, HClust and Fuzzy clustering algorithms to analyze the uncertainty of
weather situations. The proposed method reduced the RMSE of point forecasts
by up to 10%. In order to predict the minimum and maximum of weather pa-
rameters like temperature and humidity, [17] compared the application of K-
means and Hierarchical clustering using internal validation measures. [18] used
spectral clustering to determine regions of coherent precipitation regime. They
obtained spatial patterns of the precipitation regions that provide a new hydro-
climatological insight to understand the hydrological systems. Furthermore, time
series is one of the main input data types in environmental science [6] and dealing
with these data requires additional preprocessing like dimensionality reduction
and distance measurement [1].

4 Methodology

In order to speed up the simulation, we introduce a two-step approach. The
first step is to apply an elementary parallelization on the independent model
elements level (Hillslopes) and execute the simulation on multi-core processors
[5]. The simulation has been run for the Wollefsbach catchment for the duration
of one month (January, 2014). The model time resolution of the Hillslope outputs
(flux drainage to River) is set to five minutes. Since the simulation code is
being developed in MathWorks Matlab, for the elementary parallelization, we
have used its parfor functionality. The average execution time of the parallel
simulation with a 16-cores processor is 5.4hours, which is a 9.4 times speedup
in comparison to the sequential run. The second step of our method can be
categorized into Model Order Reduction techniques [8] which is the focus of this
paper. Such techniques aim to reduce the computational costs by dimensionality
reduction and by computing an approximation of the original model. We exploit
the hydrological similarity [9] to reduce the model complexity and computation
efforts as a result. The underlying idea of our approach is that similar model
units function similarly if departing from similar initial states and being exposed
to similar forcing (rainfall or radiation). To realize that we apply clustering
algorithms to cluster functionally similar model units. The studied model units
are Hillslopes (the model units without exchange between individuals). Then we
run the simulation only on the representative of each cluster and map the output
to the other members of every cluster. The uncertainty of the approximation can
be controlled by the number of clusters and the corresponding computation time.

5 Processing Results

In this work, the initial clustering which defines the initial state of the simulation
model units is introduced. We use the time series of discharge from Hillslope
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model elements obtained from a drainage test (Fig. 3). In the drainage test, the
simulation model is executed for all of the Hillslopes initiated with full storage
of water. In other words, at the beginning of the test, the Hillslopes are full of
water up to their maximum capacity and drain over time. The test is applied
on the Wollefsbach catchment and starts from an arbitrary time (in this case,
January; Fig. 3) and lasts until the drainage of Hillslopes reaches a predefined
boundary (Equilibrium). This time duration is called Time to Equilibrium (TE)
of the Hillslopes. During the test no forcing factor is being applied. These time
series are integral signatures of Hillslope size, slope, soil (Hillslope structure)
and drainage properties, which we then express by two key features that are TE
and Active Storage (AS). The second feature, AS extracted from drainage test
is the accumulated volume of water flowing out of a Hillslope at each time step
normalized to the initial Total Storage of that Hillslope. The time series are used
as the input data of our approach (Fig. 4).
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Fig. 3: Time series of Total Storage (total water volume) of Hillslopes at each
time step; Each line represents a single Hillslope.

5.1 Dimensionality Reduction

Considering the input time series shown in Fig. 4, we extract the features de-
scribing their characteristics. The hydrologically meaningful features are AS of
each Hillslope at the TE and the gradient of the first time step of the time
series called 1st-Gradient, because the speed of drainage especially at the first
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Fig. 4: Time series of AS ; Each line represents a single Hillslope.

steps of the test, characterizes the Hillslopes. Other features describing the time
series are mathematical moments that express the shape of the distribution. We
extracted the four moments Mean, Variance, Skewness and Kurtosis. Thus ini-
tially, we have overall a seven-dimensional feature set. Then, each feature set of
all Hillslopes are normalized to standard deviation (σ) of that feature set. Dimen-
sionality reduction is an important method to reduce computation complexity.
For further dimensionality reduction, we filter highly correlated, i.e. redundant
features. Principally, highly correlated features carry similar information so we
can reduce them to only one feature. Here, the Pearson correlation coefficient
was calculated for each pair of the extracted features (Fig. 5). The Pearson value
ranges from −1 to 1 where 1 defines the total positive linear correlation, 0 is the
no linear correlation and −1 is for total negative linear correlation [16]. Our
extracted features are mostly non or positively correlated. Since AS and TE are
our hydrological key features, we filter the features that are highly correlated
with these two. Regarding Fig. 5, Mean, Variance and AS fit to our exclusion
criteria. Therefore, we filter Mean and Variance from our feature set and keep
AS. There is no pair of features with highly negative correlation. Finally, we have
a five-dimensional feature set consisting of Skewness, Kurtosis, 1st-Gradient, AS
and TE.
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Fig. 5: Pearson correlation coefficient of the features from AS time series.

5.2 Clustering

Having a feature set as input data, we continue our approach with the application
of popular conventional clustering methods namely K-means, K-medoid and
DBSCAN and present their efficiency in our use case.

Application of K-Means Clustering The only required parameter for the
K-means algorithm is the number of clusters (K). In order to determine K,
there exists the conventional elbow method to define the optimal number of
K using the total within-cluster sum of squares (WSS) or the average distance
to centroid [11]. This method is useful in cases where K should be determined
only based on the location of the points to be clustered. However, there might
be additional constraints suggesting K. In this work, we propose an approach
that considers the uncertainty of the simulation introduced by the clustering
approach. There is a balance between the number of clusters, K, and the hydro-
logical model uncertainty, based on the RMSE and the simulation computation
time of Hillslopes. We determine K with a small yet representative catchment
(Wollefsbach) to apply it to the bigger catchment (Attert). Thus, the K parame-
ter can be selected according to the criteria of the hydrologist. Initially, we apply
the K-means clustering with varying number of K. Then the RMSE is calcu-
lated within each cluster between the cluster members and the representative
of that cluster. We define the cluster representative as the Medoid data point
whose average dissimilarity to other points in the cluster is minimal. Formally,
the Medoid of x1, x2, · · · , xn as members of each cluster is defined as [12]:

xmedoid = argminy∈{x1,x2,··· ,xn}

n∑
i=1

d(y, xi), (1)
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where d(y, xi) is the distance function between y and the ist x. RMSE is the
standard deviation of the prediction errors. Formally, RMSE is [7]:

RMSE =

√√√√ N∑
i=1

(zfi − zoi)
2/N, (2)

where N is the sample size, zfi are the predicted values and zoi are the observed
values. According to this, the RMSE measure was calculated between the AS
time series of the cluster members and the representative of that cluster. Thus,
there is one RMSE measurement per Hillslope for each K variation. Finally, the
total RMSE measure of all Hillslopse is calculated and plotted in Fig. 6 using
the following equation:

σtotalRMSE =

√√√√ P∑
i=1

(RMSEi)2, (3)

where P is the number of data points in the feature set. In order to find the op-
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Fig. 6: RMSE and representative Hillslopes computation time for varying Ks
using K-means clustering. The gray markers show the original values and the
curves in red and green represent their smoothed trend.

timal number of K, we use the trade-off between the RMSE measurement and
sum of the computation time of representative Hillslopes of each cluster. Ac-
cording to our methodology, the simulation is applied only on the representative
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Hillslopes and sum of their computation time is calculated for each number of
K. The results of this experiment are shown in Fig. 6, where the horizontal axis
represents the number of clusters and the vertical axis, the RMSE measurement
and sum of the computation time of representative Hillslopes of each cluster nor-
malized by Min-Max normalization. Evidently, as the number of clusters raises,
the corresponding RMSE decreases while the computation time increases (Fig.
6). The main goal of our approach is to achieve the best trade-off between com-
putation time and simulation uncertainty. In Fig. 6, a range of the intended
compromise between RMSE and computation time is recognizable where the
curves intersect. As K-means places the initial centeroids randomly, the output
of its executions with the same number of K differs slightly. Thus, the intended
compromise occurs where 32 < K < 42, 11.8 % < RMSE < 14.2 % of the maxi-
mum RMSE = 39.2 and the computation time ranges from 10.3 % to 16.2 % of
total computation time (31.8 days). As an example, the spatial distribution of
the K-means clustering at K = 37 which corresponds to the best compromise
between RMSE and computation time in Wollefsbach catchment is shown in Fig.
7. Each color indicates a cluster and the number of its members can be found in
the legend of map. All the single member clusters are shown in blue, which are
single Hillslopes that do not fit into the other clusters. The map shows a valid
Hillslopes clustering, considering the hydrological parameters like the structure,
size and location of the Hillslopes. Generally, the overhead of running such a
clustering during the simulation is negligible.
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Fig. 7: Spatial distribution ofK-means clusters atK = 37 applied on Wollefsbach
catchment. All single member clusters are shown in dark blue.
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Application of K-Medoids Clustering Another variant of K-means is the
K-medoids algorithm that uses the actual data points as cluster centers. It re-
ceives the number of clusters (K) and the distance matrix of points as input
parameters. We have used the K-medoid source code available at [2]. The al-
gorithm was run for variable number of K and the results are shown in Fig.
8. The plot indicates that the intended compromise range between RMSE and
computation time occurs where 58 < K < 78, 16.8 % < RMSE < 34.7 % of the
maximum RMSE = 31.8 and the related computation time is between 22.7 %
and 33.8 % of the maximum computation time (31.8 days).
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Fig. 8: RMSE and representative Hillslopes computation time for varying Ks
using K-medoids clustering. The gray markers show the original values and the
curves in red and green represent the smoothed trend.

Application of DBSCAN Clustering DBSCAN clustering requires two main
parameters as input, namely Eps and MinPts. In order to find a set of opti-
mal parameters, DBSCAN clustering is applied on a different range of Eps and
MinPts. The same method of determining and visualizing RMSE with the com-
putation time described in Section 5.2 is used with DBSCAN clustering. For each
set of parameters, the number of clusters is calculated. Noise clusters are con-
sidered as one cluster in the whole number of clusters. The results shown in
Fig. 9 indicate that the intended compromise range between RMSE and com-
putation time is achieved where the number of clusters ranges between 51 − 62,
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0.3 < Eps < 0.7, 1 < MinPts < 21, the RMSE is between 14.5% and 31.4%
of maximum RMSE (38.6) and the computation time is in range of 17.9% and
23% of the maximum computation time (31.8 days). The direct comparison of
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Fig. 9: RMSE and representative Hillslopes computation time for variable Eps
and MinPts using DBSCAN clustering. Some of the DBSCAN parameters’ com-
bination generate the same number of clusters.

the three applied methods is illustrated in Fig 10, which clearly shows that the
K-means clustering performs better for the studied case and features the lowest
RMSE for up to 18 days of computation. A summary of all results are available
in Table 2.

6 Implementation Environment

All the analysis methods are implemented in Python and executed on a computer
with Ubuntu 16.04.4 LTS operating system running the Linux kernel 4.4.0-127-
generic and a four-core 64-bit Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz
processor. The benchmarking of simulation model parallelization has been done
on a computer with Red Hat Enterprise Linux Server release 7.4 running the
linux kernel 3.10.0-693.11.6.el7.x86 64 and a 16-core Intel(R) Xeon(R) CPU E5-
2640 v2 @ 2.00GHz processor. All scripts, data files and requirements of the
analyses are available as a gitlab repository named “hyda”[4].
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Fig. 10: Comparison of the RMSE and computation time of all analyses.

Table 2: Parameters and achievements of different clustering methods

Parameters K-Means K-Medoids DBSCAN

K (# clusters) 32 - 42 58 - 78 51 - 62

Eps - - 0.3 - 0.7

MinPts - - 1 - 21

RMSE (%) 11.8 - 14.2 16.8 - 34.7 14.5 - 31.4

Max RMSE 39.2 31.8 38.6

Computation Time (%) 10.3 - 16.2 22.7 - 33.8 17.9 - 23

Max Computation Time (d) 31.8 31.8 31.8

7 Conclusions and Future Work

In this work we introduced an approach to make use of landscape properties
to reduce computational redundancies in hydrological model simulations. We
applied three different clustering methods namely, K-Means, K-Medoids and
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DBSCAN on the time series data from a study case in hydrology. Accord-
ing to the results, the K-means clustering functions better than the other ap-
plied clustering methods. It achieves the intended compromise between RMSE
and Hillslopes computation time in a range of 11.8 % < RMSE < 14.2 %
and 10.3 % < computation time < 16.2 %. The K-means clustering requires a
smaller number of clusters and consequently lower representative Hillslopes com-
putation time in comparison to the other studied clustering methods. Consider-
ing the 16.8 % < RMSE < 34.7 % and 22.7 % < computation time < 33.8 %,
K-medoids clustering shows worse performance than the other two methods.
DBSCAN clustering has promising results also not pleasing as the K-means
method. The main challenge of applying DBSCAN is to find an intended bal-
ance of both Eps and MinPts parameters. As a future work, the methods will
be applied on the whole Attert catchment simulations and as a forward step the
clustering approach will be extended to consider also forcing in the simulation
model.
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