130 research outputs found

    Reply to Aze et al.: Distinguishing speciation modes based on multiple lines of evidence

    Full text link

    Attenuation of bile acid-mediated FXR and PXR activation in patients with Crohn’s disease

    Get PDF
    Bile acids are endogenous ligands of nuclear receptors pregnane X (PXR) and farnesoid X (FXR). PXR and FXR regulate pathways that are impaired in inflammatory bowel disease (IBD). Decreases in PXR and FXR activity are documented in IBD; however reasons for this are unknown. We aimed to assess the effect of Crohn’s disease (CD) on the plasma bile acid composition in vivo and the resultant impact on PXR and FXR activation. A cross-sectional study evaluated the plasma concentrations of 12 bile acids in addition to 4β-hydroxycholesterol (4βOHC), an in vivo probe of the PXR target-gene cytochrome 3A4 (CYP3A4) and the FXR target-gene, fibroblast growth factor (FGF) 19 in individuals with (n = 74) and without (n = 71) CD. An in vitro model was used to assess the impact of CD-specific changes in the plasma bile acid composition on PXR and FXR activation. Decreases in glycochenodeoxycholic acid, taurocholic acid and lithocholic acid were seen in CD with increases in glycodeoxycholic acid and glycocholic acid relative to the total plasma bile acid profile. In vitro, increasing concentrations of bile acids applied in the same ratio as seen in the study cohorts resulted in decreased activation of both PXR and FXR in the CD model. In vivo, plasma 4βOHC (CD = 18.68 ng/ml ± 13.02 ng/ml, non-CD = 46.38 ng/ml ± 40.70 ng/ml, p ≤ 0.0001) and FGF19 (CD = 0.276 pg/L ± 0.189 pg/L, non-CD = 0.485 pg/L ± 0.42 pg/L, p = 0.0002) concentrations were lower in CD versus controls. Ultimately, CD-specific changes in the plasma bile acid composition lead to reduced activation of FXR and PXR target genes in vitro and in vivo

    Genetic variation in the farnesoid X-receptor predicts Crohn’s disease severity in female patients

    Get PDF
    The farnesoid X receptor (FXR) is implicated in Crohn\u27s disease (CD) pathogenesis. It is unclear how genetic variation in FXR impacts CD severity versus genetic variation in nuclear receptors such as pregnane X receptor (PXR) and the multi-drug resistance protein 1 (MDR1, ABCB1). To evaluate FXR-1G \u3e T as a genomic biomarker of severity in CD and propose a plausible molecular mechanism. A retrospective study (n = 542) was conducted in a Canadian cohort of CD patients. Genotypic analysis (FXR-1G \u3e T, MDR1 3435C \u3e T and PXR -25385C \u3e T) as well as determination of the FXR downstream product, fibroblast growth factor (FGF) 19 was performed. Primary outcomes included risk and time to first CD-related surgery. The effect of estrogen on wild type and variant FXR activity was assessed in HepG2 cells. The FXR-1GT genotype was associated with the risk of (odds ratio, OR = 3.34, 95% CI = 1.58–7.05, p = 0.002) and earlier progression to surgery (hazard ratio, HR = 3.00, 95% CI = 1.86–4.83, p \u3c 0.0001) in CD. Female carriers of the FXR-1GT genotype had the greatest risk of surgery (OR = 14.87 95% CI = 4.22–52.38, p \u3c 0.0001) and early progression to surgery (HR = 6.28, 95% CI = 3.62–10.90, p \u3c 0.0001). Women carriers of FXR-1GT polymorphism had a three-fold lower FGF19 plasma concentration versus women with FXR-1GG genotype (p \u3c 0.0001). In HepG2 cells cotransfected with estrogen receptor (ER) and FXR, presence of estradiol further attenuated variant FXR activity. MDR1 and PXR genotypes were not associated with surgical risk. Unlike MDR1 and PXR, FXR-1GT genetic variation is associated with earlier and more frequent surgery in women with CD. This may be through ER-mediated attenuation of FXR activation

    Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Get PDF
    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2–3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage

    Identification and Characterization of Trimethylamine-N-oxide Uptake and Efflux Transporters

    Get PDF
    Trimethylamine-N-oxide (TMAO) is a recently identified predictor of cardiovascular and chronic kidney disease. TMAO is primarily generated through gut-microbiome mediated conversion of dietary choline and carnitine to TMA, which is converted to TMAO by hepatic flavin monooxygenase 3 (FMO3) and subsequently undergoes renal elimination. We investigated the role of uptake and efflux drug transporters in TMAO disposition in vitro and in vivo. After screening a large array of uptake transporters, we show organic cation transporter 2 (OCT2) is the key transporter for TMAO cellular uptake. In Oct1/2 knockout mice, we observed increased plasma TMAO levels with reduced renal retention, suggesting the importance of Oct2 in facilitating the uptake of TMAO into renal tubular cells in vivo. Multiple transporters of the ATP-binding cassette (ABC) family, including ABCG2 (BCRP) and ABCB1 (MDR1), were capable of TMAO efflux. In human subjects, clinical, dietary, and pharmacogenetic covariates were evaluated for contribution to TMAO levels in a cohort of dyslipidemic patients (n = 405). Interestingly, genetic variation in ABCG2, but not other transporters, appeared to play a role in modulating TMAO exposure

    Yield Measurements for ^7Be and ^<10>Be Productions from ^<nat>Cu, ^<nat>Ag and ^<197>Au by Bremsstrahlung Irradiation at E_0=200 MeV(II. Radiochemistry)

    Get PDF
    The yields of ^7Be and ^Be produced by bremsstrahlung having a maximum energy (E_0) of 200 MeV in ^Cu, ^Ag and ^Au targets were investigated by the AMS technique at MALT of the University of Tokyo. It was found that the yields at E_0 = 200 MeV were much lower than those at E_0 ≧250 MeV, obtained in our previous work. A change in the yields of the fragmentation component in the target-mass dependence was observed at E_0=200 MeV when compared with those at E_0≧250 MeV. However, the ratios of the fragmentation yield of ^Be to that of ^7Be remained unchanged throughout the concerned E_0

    Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences

    Get PDF
    Planktonic foraminifera are a major constituent of ocean floor sediments, and thus have one of the most complete fossil records of any organism. Expeditions to sample these sediments have produced large amounts of spatiotemporal occurrence records throughout the Cenozoic, but no single source exists to house these data. We have therefore created a comprehensive dataset that integrates numerous sources for spatiotemporal records of planktonic foraminifera. This new dataset, Triton, contains >500,000 records and is four times larger than the previous largest database, Neptune. To ensure comparability among data sources, we have cleaned all records using a unified set of taxonomic concepts and have converted age data to the GTS 2020 timescale. Where ages were not absolute (e.g. based on biostratigraphic or magnetostratigraphic zones), we have used generalised additive models to produce continuous estimates. This dataset is an excellent resource for macroecological and macroevolutionary studies, particularly for investigating how species responded to past climatic changes
    corecore