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ABSTRACT: Trimethylamine-N-oxide (TMAO) is a recently identified predictor of
cardiovascular and chronic kidney disease. TMAO is primarily generated through
gut-microbiome mediated conversion of dietary choline and carnitine to TMA, which
is converted to TMAO by hepatic flavin monooxygenase 3 (FMO3) and
subsequently undergoes renal elimination. We investigated the role of uptake and
efflux drug transporters in TMAO disposition in vitro and in vivo. After screening a
large array of uptake transporters, we show organic cation transporter 2 (OCT2) is
the key transporter for TMAO cellular uptake. In Oct1/2 knockout mice, we
observed increased plasma TMAO levels with reduced renal retention, suggesting the
importance of Oct2 in facilitating the uptake of TMAO into renal tubular cells in vivo. Multiple transporters of the ATP-binding
cassette (ABC) family, including ABCG2 (BCRP) and ABCB1 (MDR1), were capable of TMAO efflux. In human subjects,
clinical, dietary, and pharmacogenetic covariates were evaluated for contribution to TMAO levels in a cohort of dyslipidemic
patients (n = 405). Interestingly, genetic variation in ABCG2, but not other transporters, appeared to play a role in modulating
TMAO exposure.

KEYWORDS: transporters, TMAO, OCT2, BCRP

■ INTRODUCTION

The burden of cardiovascular disease (CVD) in Western
societies remains significant and steadfast despite the increasing
number of modifiable and treatable risk factors, including
dyslipidemia, hypertension, type 2 diabetes, and diet. Increased
systemic exposure of cholesterol contributes to the well-
established development of atherosclerosis, thus placing
patients at risk for CVD.1 While the use of pharmacological
inhibitors of cholesterol synthesis, primarily statins, has become
a common preventative therapy, residual risk of adverse
cardiovascular events remains, even with the optimal use of
such agents.2,3 Interestingly, a recent unbiased metabolomics
screen revealed the association of trimethylamine-N-oxide
(TMAO) as a significant independent predictor of CVD risk,
likely through promotion of atherogenesis.4 Further, elevated
circulating TMAO levels were associated with higher risk of
adverse cardiac events including myocardial infarction, stroke,
and death.5

Although TMAO can be ingested directly by eating fish, the
majority of TMAO is primarily formed through a two-step,
multiorganism metabolism pathway that is dependent on the
gut microbiome and the host liver.6 Dietary choline and L-
carnitine within lipid-rich foods such as eggs, high fat dairy, and
red meat are efficiently catabolized by intestinal bacteria to an
intermediate precursor trimethylamine (TMA), which is further
metabolized to TMAO in the liver.4,7 Hepatic oxidation of
TMA to TMAO is dependent on the flavin monooxygenase
(FMO) family, of which FMO3 has the greatest role.8−10 The
importance of FMO3 to TMAO metabolism is demonstrated
by a rare genetic condition known as trimethylaminuria, or fish-
(mal)odor syndrome, whereby patients harboring null FMO3
variants are unable to convert the odorous gas, TMA, to
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TMAO.9−11 Treatment of these patients often involves limiting
dietary choline intake suggesting diet as a key contributor of
TMAO formation.11

Mechanistically, TMAO appears to be more than a pro-
atherosclerotic biomarker of disease and acts to inhibit reverse
cholesterol transport (RCT) and upregulate macrophage
scavenger receptors leading to foam cell formation.4,7 TMAO
has further been shown to modulate proteins involved in bile
acid synthesis and transport as well as sterol metabolism
suggesting its impact on CVD pathogenesis may be multi-
factorial.7,12 In addition to its association with CVD risk,
circulating TMAO levels have been identified as a prognostic
marker of mortality in chronic kidney disease (CKD) patients
due to renal fibrosis and dysfunction.13 Further, we recently
demonstrated that elevated TMAO level is an independent risk
factor for ischemic CV events in a large cohort (n = 2529) of
CKD patients.14

TMAO, a low molecular weight osmolyte, primarily
undergoes renal elimination.15−17 Because clearance of
TMAO is greater than what can be accounted for by glomerular
filtration, its elimination has long been thought to involve active
secretion by drug transporters.13,18,19 Additionally, TMAO
exists as a zwitterion at physiologic pH further suggesting it
requires transport to cross biological membranes.20 However,
the identification or the role of drug transporters in TMAO
disposition is currently unknown. Transporters are now widely
appreciated as a major determinant of interindividual variability
of circulating drug levels through both genetic and nongenetic
mechanisms (reviewed in refs 21 and 22). Therefore,
identification of transporters for TMAO may provide additional
molecular and mechanistic explanation of interindividual
TMAO variation and may represent a new pharmacologic
target for reducing TMAO-associated CVD risk. Here, we
carried out an extensive molecular transporter screening as well
as an in vivo assessment in mice to characterize the transporters
of relevance to TMAO disposition, as well as defined the
association between genetic variation in genes governing
TMAO transport and metabolism pathways and TMAO levels
in a cohort of dyslipidemic patients.

■ MATERIALS AND METHODS
In Vitro TMAO Transporter Screening. Radiolabeled

[3H] trimethylamine-N-oxide (80 Ci/mmol) was custom
synthesized by American Radiolabeled Chemicals, Inc. (Saint
Louis, MO, USA). Unlabeled trimethylamine-N-oxide was
obtained from Sigma-Aldrich (Oakville, Ontario, Canada).
Transporter plasmid construction packaged into the pEF6/V5-
His-TOPO vector has been previously described.23−25 OCT2
808T was introduced to the reference OCT2-pEF plasmid
using the Statagene site-directed mutagenesis kit (primers:
forward, TGGTTGCAGTTCACAGTTtCTCTGCCCAA-
CTTCTTCTTC; reverse, GAAGAAGAAGTTGGGC-
AGAGaAACTGTGAACTGCAACCA). Transient expression
of transporters was performed as described previously using a
recombinant vaccinia-based transfection system in HeLa
cells.23,26,27 Screening of MATE1 transporter was performed
as previously described in the uptake transport mode (pH
8.0).28 Radiolabeled [3H]-TMAO (∼3 × 105 dpm/well) in the
absence of unlabeled TMAO and in the presence of 5 μM
unlabeled TMAO was used for uptake and efflux transporter
screening experiments, respectively. Cellular uptake of radio-
labeled TMAO was measured in cell lysates using a liquid
scintillation counter (PerKinElmer, Shelton, CT, USA).

Transport activity was expressed in percent compared to
vector control (parental plasmid lacking insert). Experiments
were performed in duplicate on a minimum of 2−3
experimental days.

OCT2 Transport Kinetics of TMAO. To measure OCT2
transport kinetics of TMAO, [H3] TMAO uptake during the
linear phase (first 30 s) was determined in the presence of
increasing concentration of unlabeled TMAO (0.5 μM−200
mM). [H3] TMAO uptake in cells transfected with parental
plasmid was subtracted from uptake by OCT2-pEF transfected
cells. Maximal uptake rate (Vmax) and concentration needed to
achieve half-maximal uptake (Km) were estimated using
Michaelis−Menten nonlinear curve-fitting.

Transporter Knockout Mice Study. Wildtype FVB,
Oct1/2−/− and Mdr1a/b−/−-Bcrp−/− male mice were purchased
from Taconic (Hudson, NY, USA), n = 10−14 in each group.
Mice were housed at Western University under a 12 h-on/12 h-
off light cycle and fed a standard mouse diet available ad
libitum. Wildtype and KO mice (8−10 weeks old) were
sacrificed under isofluorane at the same time of day (morning)
to account for nocturnal food intake. Blood was collected and
centrifuged (14,000 rpm, 10 min, 4 °C), and plasma was
aliquoted and stored at −80 °C until analysis. Liver and kidneys
were extracted and flash frozen in liquid nitrogen and stored at
−80 °C until analysis. All study procedures were approved by
the Animal Care and Use Committee at the Western
University.

Study Population. The study population included 405
previously recruited outpatients from the London Health
Sciences Center Lipid Clinic from August 2009 to May 2011.29

All subjects provided written informed consent. Each subject
was on daily atorvastatin or rosuvastatin therapy at the time of
enrollment and provided one blood sample as previously
described.29 Data collected included sex, age, ethnicity, and
medication use. Creatinine clearance was determined with the
modification of diet in renal disease (MDRD) equation using
plasma creatinine concentrations measured from the provided
blood sample. The study protocol was approved by the
Research Ethics Board at Western University.

Genotyping. Genomic DNA was isolated from blood
samples as previously described.29 Genotypes were determined
by allelic discrimination TaqMan assays (Applied Biosystems,
Carlsbad, CA, USA). The following genotypes were deter-
mined: FMO3 E158K (g.21949G>A, rs2266782); FMO3
E308G (g.28225A>G, rs2266780); SLC22A2 c.808G>T
(rs316019), ABCB1 c.3435C>T (rs1045642), ABCC2
c.1249G>A (rs2273697), and ABCG2 c.421C>A (rs2231142).

Quantitation of TMAO, Choline, Carnitine, and
Creatinine in Human and Mouse Samples. Plasma and
tissue concentrations of TMAO, choline, carnitine, and
creatinine were measured simultaneously by ultra performance
liquid chromatography−tandem mass spectrometry (UPLC−
MS/MS) using a modified protocol.30 Two mass transitions
were monitored for each analyte to ensure lack of interference
from other endogenous biomarkers. Liver and kidney samples
were thawed on ice then homogenized 1:1 and 1:2,
respectively, in water. For plasma and tissue homogenate
samples (50 μL), proteins were precipitated by addition of 150
μL of acetonitrile containing internal standard (TMAO-d9,
choline-d9, and creatinine-d3). Standards made in water were
diluted similarly with internal standards in acetonitrile (all
standards were obtained from Toronto Research Chemicals,
Toronto, Ontario, Canada). Samples and standards were
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centrifuged for 30 min at 14,000 rpm, and 150 μL of
supernatant was used for analysis. Mobile phases included
95:5 and 5:95 water/acetonitrile both containing 0.05% formic
acid and 5 mM ammonium formate. Chromatographic
separation was performed using an Agilent Technologies
1290 Infinity LC injector HTS and a HILIC Plus silica column
(Agilent Technologies, Mississuaga, Ontario, Canada) with an
injection volume of 20 μL, and a gradient over 6 min: 0.5 min
of 90:10, from 90:10 to 30:70 over 4.5 min, back to 90:10 over
1 min. The mass spectrometer (Thermo Finnigan TSQ
Quantum Ultra) with heated electrospray ionization source
operated in positive mode, with a quantitative and qualitative
mass transition measured per analyte: TMAO (76 → 58, 76 →
59), choline (104 → 45, 104 → 60), and creatinine (114 → 44,
114 → 86). Values for each analyte were accepted if the
concentrations quantitated for the qualitative mass transition
were on average within 20% of that quantitated with the
quantitative mass transition. Recovery of each analyte was 90−
110% in all matrices. The lowest concentration quantitated for
each analyte are as follows: TMAO (0.05 μg/mL), choline
(0.01 μg/mL), and creatinine (0.05 μg/mL). The coefficient of
variation (%) for quality controls were as follows: low QC
(TMAO, 5.0%; choline, 6.9%; creatinine, 14.0%), medium QC
(TMAO, 4.8%; choline, 7.0%; creatinine, 6.4%), and high QC
(TMAO, 7.8%; choline, 1.5%; creatinine, 4.1%).
Statistical Analysis. Data was analyzed using GraphPad

Prism and the statistical software R. Transporter screening data
was analyzed using one-way ANOVA with Dunnett’s multiple
comparison test or Student’s unpaired t test. TMAO levels
measured in plasma and tissue from mice were analyzed using
one-way ANOVA with Bonferroni’s multiple comparison test.
Plasma TMAO levels stratified by genotype were compared
using Kruskal−Wallis with Dunn’s multiple comparison test or
Mann−Whitney U-test. Spearman correlations were used to
determine relationships between TMAO plasma concentrations
and clinical variables. Multiple linear regression analysis was
performed to determine significant covariates on the inter-
individual variability of log-transformed TAMO levels in
dyslipidemic patients. Covariates considered included: age,
sex, body mass index (BMI), choline level, carnitine
concentration, CrCl, FMO3, OCT2, ABCB1, ABCC2, and
ABCG2 genotype. Covariates were assessed individually and
were considered for the final model at a significance level of p <
0.2. Covariates meeting the criteria were entered into a multiple
linear regression model adjusting for age and sex and remained
in the final model if p ≤ 0.1.

■ RESULTS
TMAO Is a Substrate for Organic Cation Transporter 2

and for Multiple Efflux Transporters. To identify TMAO
drug transporters, we individually expressed a panel of
membrane uptake transporter expression plasmids in HeLa
cells using a heterologous gene expression system. Radiolabeled
TMAO was measured in cell lysates following 10 min
incubation. TMAO uptake was significantly greater in cells
expressing the organic cation transporter 2 (OCT2) (Figure
1A). Additional uptake transporters including organic anion
transporters (OATs), organic anion transporting polypeptides
(OATPs), multidrug and toxic compound extrusion transporter
(MATE), and bile acid transporters were screened and did not
exhibit TMAO uptake (Figure 1A).
Screening of TMAO transport by efflux transporters was

evaluated using HeLa cells that were dually transfected with

OCT2 and efflux transporter expression plasmids. Compared
with cells transfected with OCT2 alone, uptake was significantly
lower in cells also expressing MDR1(ABCB1), BCRP
(ABCG2), MRP2 (ABCC2), MRP4 (ABCC4), and OSTαβ
(Figure 1B), indicating TMAO to be a substrate of multiple
efflux transporters. TMAO transport was not observed in cells
expressing the bile salt export pump (BSEP).
To further characterize TMAO transport, kinetic and genetic

analysis of OCT2-mediated TMAO uptake was evaluated.
Pharmacokinetic parameters were assessed by measuring
radiolabeled TMAO uptake by OCT2-transfected cells in the
presence of increasing concentrations (0.5 μM−200 mM) of
unlabeled TMAO. Nonlinear curve fitting indicated this to be a
low-affinity, high-capacity system of TMAO transport (Km
73.67 mM, Vmax 2.99 μmol/mg/min) (Figure 2A). We
evaluated the effect of a common single nucleotide poly-
morphism (SNP) in the gene encoding OCT2 (SLC22A2
c.808G>T, rs316019), which has been shown to confer reduced
metformin renal clearance.31,32 Here, we did not observe
differences in [H3] TMAO uptake between cells expressing the
reference allele (OCT2 808G) and those expressing the
reduced function allele (OCT2 808T) (Figure 2B).

Knockout of Oct1/2 Increases TMAO Plasma Concen-
trations. The contribution of transporters to TMAO
disposition in vivo was examined using knockout (KO) mice.
Plasma TMAO levels were increased approximately 2-fold in

Figure 1. Uptake and efflux transport of TMAO. A panel of uptake
membrane transporters was screened for [H3] TMAO transport
activity above vector control at 10 min in the absence of unlabeled
TMAO (A). OCT2 was the only transporter assessed capable of
transporting TMAO in vitro. A panel of efflux membrane transporters
was screened for TMAO transport activity in the presence of OCT2
expression, and transport was determined by a significant decrease in
[H3] TMAO OCT2-mediated uptake (B). Efflux experiments were
performed in the presence of 5 μM unlabeled TMAO. Data are
expressed as mean ± SE **, p < 0.01; ***, p < 0.001.
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Oct1/2 KO mice compared to wildtype mice (Figure 3A). As
Oct1 is primarily expressed in the liver with limited expression
in the kidney and Oct2 is predominantly renally expressed we
determined the tissue to plasma TMAO ratio for these
organs.21 We observed no difference in the liver to plasma
TMAO ratio in Oct1/2 KO mice compared to wildtype (Figure
3B). However, a 2-fold decrease in the kidney to plasma
TMAO ratio was observed in Oct1/2 KO mice (Figure 2C),
suggesting that Oct2 plays a role in the renal clearance of
TMAO. To assess the relevance of MDR1 and BCRP to
TMAO disposition, triple KO mice lacking Mdr1a, Mdr1b, and
Bcrp were evaluated. No difference was detected in TMAO
plasma levels or liver and kidney partitioning in MDR1a/
1bBcrp KO mice compared with wildtype mice (Figure 3).
Transporter Polymorphisms Have Minimal Effect on

TMAO Level. To assess the contribution of transporters to
variation in TMAO exposure we analyzed a cohort of
dyslipidemic patients (n = 405) currently managed on statin
therapy that has been previously described.29 We observed a
nearly 2000-fold range in TMAO plasma concentrations upon
random sampling in this cohort. The transporters identified as
capable of TMAO uptake and efflux, with known poly-
morphisms, were correlated with TMAO levels. Mean plasma
levels stratified by genotype for each transporter are presented
in Table 1. In concordance with our in vitro data, univariate
analysis showed no effect of SLC22A2 c.808T, encoding OCT2
on TMAO plasma concentrations (Table 1). Similarly, no effect
was observed for ABCB1 c.3435T and ABCC2 c.1249A. An
increased trend of TMAO levels was observed in ABCG2
c.421A allele carriers (p = 0.116, Table 1). Together, this data

suggests that transporter polymorphisms likely do not play a
major role in TMAO disposition.
We further examined additional genetic and nongenetic

factors that have been suggested to contribute to TMAO
formation or elimination. Patient age was significantly
correlated with increased TMAO levels (r = 0.329, p <
0.0001, Figure 4A), while no effect was observed for sex (Table
2). An increase in TMAO levels was marginally correlated with
BMI (p = 0.05, Table 2). We observed a significant negative
correlation between creatinine clearance (CrCl) and TMAO
levels (r = −0.322, p < 0.0001, Figure 4B), which is not
unexpected as TMAO is renally excreted. Dietary factors,
including choline and carnitine, which are converted within the
gut to the TMAO precursor TMA,4,7,33 were evaluated. Plasma
choline levels were significantly associated with increased
TMAO level (r = 0.323, p < 0.0001, Figure 4C), while no
effect was observed for carnitine (Table 2). Two common
SNPs associated with decreased FMO3 enzyme activity were
examined. A decreased trend in TMAO was seen in FMO3

Figure 2. OCT2 kinetics of TMAO. TMAO kinetics was assessed for
OCT2-mediated transport and Michaelis−Menten-type nonlinear
curve-fitting performed (A). OCT2-mediated uptake transport of
TMAO was compared between OCT2 c.808G and T alleles (B).

Figure 3. TMAO disposition in transporter knockout mice. TMAO
levels were measured in plasma, liver, and kidney from wildtype
(FVB), Oct1/2 KO, and Mdr1a/1b/Bcrp KO mice. TMAO levels are
significantly increased in Oct1/2 KO mice (A). Tissue to plasma ratios
were calculated for liver (B) and kidney (C) showing a decreased
kidney to plasma ratio of TMAO in Oct1/2 KO mice compared to
wildtype. *p < 0.05, **p < 0.01.
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E158K A allele carriers (p = 0.07), while no association was
observed for FMO3 E308G (Table 2).
Multiple linear regression modeling for effect of covariates on

log-transformed TMAO levels was performed (Table 3). The

covariates considered in our model accounted for only 18.5% of
the variability in plasma TMAO levels (adjusted R squared:
0.185). Demographic variables including age, sex, and BMI
explained 10% of the variation in TMAO levels. Of the
individual covariates considered, CrCl explained the largest
percentage (5.6%) of variation while choline concentration
accounted for 2% of the variability. ABCG2 c.421C>A and
FMO3 E158K had minimal effect on TMAO concentration
explaining only 1% of the total observed variation (Table 3).
Together, this data suggests that genetic variation in trans-
porters has minimal effect on plasma concentrations of TMAO
in a dyslipidemic patient population.

■ DISCUSSION
Although circulating TMAO has been identified as a risk factor
for CVD, the molecular mechanisms that can adequately
account for the large observed interindividual variation are not
completely defined. Dietary factors including choline and
carnitine and the gut microbiota have been implicated as
contributory to variation in TMAO levels.4,5,7 More recently,
the importance of renal elimination as a factor affecting TMAO
levels has come to light as increased concentrations of TMAO
were observed in patients with end-stage renal disease or
CKD.13,16 Additionally, TMAO level was identified as an
independent risk factor for ischemic CV events in patients with
CKD suggesting the need to determine modifiable or targetable
determinants of TMAO levels.14 While TMAO can undergo
glomerular filtration, evidence of decreased TMAO renal

Table 1. Association of Genetic Variation in Transporters
with Plasma TMAO Concentration

genotype no. of patients TMAO, μM mean (SD) pa

OCT2 (SLC22A2) c.808G>T
G/G 337 5.74 (5.68) 0.582
G/T; T/T 70 5.77 (5.89)
ABCB1 c.3435C>T
C/C 76 5.97 (5.79) 0.854
C/T 226 5.62 (5.93)
T/T 105 5.86 (5.20)
ABCC2 c.1249G>A
G/G 248 5.87 (6.03) 0.216
G/A 138 5.71 (5.24)
A/A 21 4.54 (4.86)
ABCG2 c.421C>A
C/C 332 5.45 (4.80) 0.116
C/A; A/A 74 7.15 (8.62)

ap value calculated using Mann−Whitney U test or Kruskal−Wallis
test with Dunn’s Multiple Comparison test as appropriate.

Figure 4. Age, kidney function, and diet influence circulating TMAO
levels. Spearman correlations were evaluated and determined TMAO
levels were positively correlated with age (A) and plasma choline levels
(C). Plasma levels of TMAO were inversely correlated with creatinine
clearance (B).

Table 2. Univariate Analysis for Effect on Log-Transformed
TMAO Concentrationa

predictor variable estimate standard error p

age 0.009 0.001 <0.001
sex (female) −0.012 0.037 0.750
BMI 0.006 0.003 0.050
choline concentration 1.021 0.144 <0.001
carnitine concentration 0.087 0.094 0.352
CrCl −0.911 0.128 <0.001
FMO3 E158K (G/A, A/A) −0.072 0.039 0.070
FMO3 E308G (A/G, G/G) 0.005 0.387 0.901

aBMI, body mass index; CrCl, creatinine clearance.

Table 3. Multiple Linear Regression Model for Effect on
Log-Transformed TMAO Concentration (Adjusted R
Squared: 0.185)a

predictor variable estimate
standard
error p

adjusted
r2

intercept 0.570 0.397 0.152
age 0.006 0.001 <0.001
sex (female) −0.018 0.036 0.615
BMI 0.005 0.003 0.070 0.100
CrCl −0.512 0.145 <0.001 0.156
choline concentration 0.524 0.166 <0.010 0.176
ABCG2 (C/A, A/A) 0.083 0.043 0.051 0.181
FMO3 E158K (G/A ,A/A) −0.059 0.036 0.104 0.185
aBMI, body mass index; CrCl, creatinine clearance.
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clearance in conjunction with elevated systemic exposure upon
increasing doses of L-carnitine suggests saturation of an active
secretion process.18,34 As such, we investigated the role of
transporters to TMAO disposition providing the first report of
active TMAO uptake and efflux.
We identified TMAO as a substrate of the organic cation

transporter OCT2. OCT2 is highly expressed on the basolateral
membrane of renal tubule cells.21 Kinetic assessment of OCT2-
mediated TMAO uptake suggest that OCT2 is a high capacity
transport system for TMAO given the remarkably high Km
value (Figure 2). However, even at the lowest tested substrate
concentration (0.5 μM), overall uptake by OCT2 was far
greater than other uptake transporters (Figure 1). Therefore, it
is likely that OCT2 is physiologically relevant to TMAO renal
tubular uptake across all concentrations observed in humans
(Figure 4). In vivo confirmation of such a role is supported by
our data generated using Oct1/2 deficient mice, where we see
increased plasma TMAO levels and decreased kidney/plasma
TMAO ratio in the knockout mice. Although TMAO synthesis
via the FMO3 pathway is known to be reduced in adult male
mice, the goal of our study was to demonstrate the effect of
OCT2 transporter deficiency to TMAO renal clearance
regardless of absolute circulating amount of TMAO.8 Indeed,
given the high capacity nature of TMAO transport by OCT2,
we believe the kidney/plasma TMAO ratio would remain
similar even with higher FMO3 activity or dietary intake of
TMAO.
In human subjects, decreased OCT2 activity due to presence

of SCL22A2 c.808T variant allele has been previously
associated with reduced renal clearance of metformin in certain
ethnicities, but its clinical relevance remains controversial as it
may be substrate and/or race-dependent.31,32,35 We evaluated
this common variant but failed to observe an association with
decreased transport in vitro (Figure 2B) or an effect on plasma
TMAO levels in vivo in our patient cohort (Table 1). While
pharmacogenomics may not play a large role in OCT2-
mediated TMAO transport other mechanisms including post-
transcriptional regulation and/or drug interactions may be of
greater relevance and provide novel targets for pharmacother-
apy. As renal elimination of TMAO is the primary route of
excretion, we were not surprised to observe a significant inverse
association between CrCl and TMAO levels suggesting that
TMAO clearance likely involves both filtration and active
secretion processes. The involvement of transport processes,
which can be modulated in the presence of exogenous drugs
particularly in the aging population where polypharmacy is
commonplace, may contribute to increased TMAO levels and
CVD risk. In fact, prolonged exposure to higher TMAO levels
resulting from a choline- or TMAO-rich diet has recently been
shown to lead to progressive renal fibrosis and dysfunction in
animal models.13

We determined that TMAO appears to be a substrate of
several efflux transporters, many of which are expressed in the
liver. As the liver is the primary site of conversion of TMA to
TMAO it is not surprising that TMAO may use multiple
transporters for hepatic clearance. In mice we observed a low
TMAO liver to plasma ratio suggesting hepatic efflux to be an
efficient process. In vivo, circulating levels of TMAO may
fluctuate directly as a result of basolateral efflux via MRP4 or
indirectly through biliary excretion, involving MDR1, MRP2,
and BCRP, expressed on the canalicular membrane, and
subsequent intestinal reabsorption.21 Using MDR1a/1bBcrp
KO mice we observed no difference in TMAO liver partitioning

compared to wildtype mice, suggesting the redundant function
of biliary efflux transporters or alternatively indicating baso-
lateral efflux to be the primary route of hepatic exit. Consistent
with this, the amount of TMAO excreted into the bile was
negligible (0.18%) in rats following intravenous dosing of
TMAO.36 However, TMAO can be detected in human bile
along with betaine, choline, and carnitine,37 suggesting species
specific differences in TMAO biliary efflux.
Many efflux transporters screened are also expressed on the

brush border membrane of the kidney.21 Therefore, it is likely
that a combined role of various efflux transporters may account
for the efflux transport of TMAO out of renal tubular cells. No
difference in kidney/plasma ratio was observed in MDR1a/
1bBcrp KO mice compared to wildtype mice, suggesting other
efflux transporters can compensate for their absence in mice.
Indeed, in addition to ABCB1 (MDR1) and ABCG2 (BCRP),
other ABC transporters such as ABCC2 (MRP2) and ABCC4
(MRP4) are also known to be expressed on the apical cell
membrane domain of renal tubular cells.21

Interestingly, while absence of Bcrp (Abcg2) did not affect
TMAO disposition in mice, we observed a trend toward
increased plasma concentrations in human subjects harboring
the ABCG2 c.421A allele, which approached significance (p =
0.051) in our multivariate analysis. In fact, the mean TMAO
concentration for ABCG2 variant carriers (7.15 μM) was above
the highest quartile level (>6.18 μM) that was documented to
be associated with significant risk for myocardial infarction,
stroke, and death.5 As ABCG2 is highly expressed on the apical
domain of multiple organs, including the intestine, liver, and
kidney, reduced ABCG2 expression or activity would be
predicted to result in higher circulating TMAO level.
It is becoming increasingly evident that TMAO, cholesterol,

and bile acid metabolism and transport are complex and likely
involve multiple levels of regulation.12 FMO3 is responsible for
the hepatic oxidation of TMA to TMAO, and null activity of
this enzyme results in the medical condition trimethylaminu-
ria.8,11,38 However, a lack of genetic association between FMO3
and TMAO levels previously and here suggests that FMO3
activity is not likely a driving factor in observed TMAO
variation.39 Mechanistically, TMAO has been shown to inhibit
RCT and upregulate scavenger receptors on macrophages
leading to inflammation and foam cell formation modulating
bile acid and sterol metabolism.4,7 However, FMO3 was also
recently identified as an integral factor in regulating cholesterol
balance by impacting lipid metabolism and inflammation in a
manner distinct from TMAO.40 Decreased drug transporter
mRNA expression, including MRP2 and other bile acid
transporters was also noted in mice supplemented with a
TMAO diet.7 The pathways leading to dysregulation of bile
acid synthesis and sterol metabolism directed by TMAO,
FMO3, or both likely involve the nuclear hormone receptors,
farnesoid X receptor (FXR) and liver X receptor (LXR),
leading to the transcriptional regulation of drug metabolizing
enzymes, transporters, and pro-inflammatory cytokines.8,40−42

Further work is needed to better understand the complex and
likely interweaving pathways leading to variation in TMAO
levels and its subsequent clinical manifestation as increased
CVD risk.
Evaluation of clinical, dietary, and genetic factors, including

FMO3 and drug transporter polymorphisms, explained a
relatively small portion (18.5%) of the observed variability in
TMAO levels. Together, patient age and kidney function as
measured by CrCl explained the majority of the variation in the
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model (15.6%) following adjustment for sex and BMI. The
contribution of dietary choline accounted for 2% of the
explained variation, while the effect of L-carnitine was negligible.
As blood sampling was random and not in fasted patients, it is
possible the effect of diet on TMAO levels is underestimated in
this study. Additionally, FMO3 and genetic variation in drug
transporters appear to have a relatively small effect on the
variation in TMAO exposure. Previous studies in mice and man
came to similar conclusions following genome-wide association
studies.39 However, given that patients with CVD risk factors
are typically older and on several medications, the potential for
drug−drug interactions at the level of transporters may add an
additional level of complexity to understanding variation in
TMAO level. The effect of concomitant use of drugs inhibiting
OCT2 and/or efflux transporters on TMAO plasma concen-
tration was not accounted for in this study and should be
examined in future studies.
We note that the gut microbiome was not assessed in this

study, whether in mice or in human subjects, thus limiting any
interpretation of its effect here on TMAO exposure. It has been
well established that TMAO levels are largely dependent on the
production of its precursor TMA by gut bacteria.4,6,7 Variation
in the bacterial phylum within the intestinal tract, which can be
modified acutely and chronically by diet (vegetarian, vegan, or
omnivore) and during disease states likely has the greatest
effect on circulating TMAO levels. We recently identified
TMAO as a potential biomarker of inflammatory bowel disease
(IBD)43 as IBD patients had significantly lower TMAO levels
compared to age and sex matched healthy controls. More
specifically, patients experiencing active ulcerative colitis (UC)
had lower TMAO levels compared to inactive UC, while no
difference was noted between active vs inactive Crohn’s
disease.43 These results further support the importance of the
gut microbiota and suggest that the colon, which has the largest
amount of bacteria, may be the prominent site of TMA
formation providing a therapeutic target. In fact, pharmaco-
logical inhibition of TMA formation through the use a choline
structural analogue was recently shown to decrease TMAO
levels and inhibit the development of atherosclerotic lesions in
mice, suggesting a potential new strategy for reducing CV
risk.44

■ CONCLUSIONS

We identified OCT2 as the key uptake transporter for TMAO.
In addition, it would appear a number of efflux transporters are
also capable of TMAO transport. In humans, genetic variation
of transporters did not appear to contribute significantly,
perhaps with the exception of ABCG2, to the observed variation
in circulating TMAO levels likely due to redundancy in TMAO
transport. Since elevated TMAO level is now widely accepted
as an independent risk factor for cardiovascular disease/events,
TMAO transporters should be considered as a new drug target
for reducing TMAO levels in humans.
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