602 research outputs found

    Parametric nonlinear lumped element model for circular CMUTs in collapsed mode

    Get PDF
    Cataloged from PDF version of article.We present a parametric equivalent circuit model for a circular CMUT in collapsed mode. First, we calculate the collapsed membrane deflection, utilizing the exact electrical force distribution in the analytical formulation of membrane deflection. Then we develop a lumped element model of collapsed membrane operation. The radiation impedance for collapsed mode is also included in the model. The model is merged with the uncollapsed mode model to obtain a simulation tool that handles all CMUT behavior, in transmit or receive. Large- and small-signal operation of a single CMUT can be fully simulated for any excitation regime. The results are in good agreement with FEM simulations

    ???????? ??????????????? ???????????????? ???????? ?? ????????? ??????????: ??????????????? ? ????????? ??????????]

    Get PDF
    The presence of organophosphorus compounds (OPs) in the environmental counterparts has become an important problem because of their toxicity. In this study, the photocatalytic degradation reactions of the three OPs with hydroxyl radical were investigated by both experimental and quantum chemical methods. Photocatalytic degradation kinetics of the examined organophosphorus compounds were investigated under UV-A irradiation using TiO2 as the photocatalyst. The effects of the initial concentrations on the degradation rate have been examined. There was an observable loss of OPs in the presence of TiO2 photocatalyst under UV-A at 0.2 g TiO2 per 100 mL. The quantum chemical calculations have been carried out by the density functional theory (DFT) at B3LYP/6-31g(d) level. The reaction pathways were modelled to find the most probable mechanism for OPs with the OH radical and to determine the primary intermediates. The rate constants of the eight reaction paths were calculated by the transition state theory. Conductor-like polarizable continuum model (CPCM) was used as the solvation model with the intention of understanding the water effect. The theoretical results were in agreement with experimental ones. © 2021 Serbian Chemical Society. All rights reserved.18,164Acknowledgement. The authors of this research has greatfully acknowledgemented to financially support of Tekirdag Namık Kemal University Research Project with the project number of NKUBAP.01.GA.18.164

    Bergmann-Thomson energy-momentum complex for solutions more general than the Kerr-Schild class

    Get PDF
    In a very well-known paper, Virbhadra's research group proved that the Weinberg, Papapetrou, Landau and Lifshitz, and Einstein energy-momentum complexes ``coincide'' for all metrics of Kerr-Schild class. A few years later, Virbhadra clarified that this ``coincidence'' in fact holds for metrics more general than the Kerr-Schild class. In the present paper, this study is extended for the Bergmann-Thomson complex and it is proved that this complex also ``coincides'' with those complexes for a more general than the Kerr-Schild class metric.Comment: RevTex, 12 page

    The effect of solvent and pressure on polycaprolactone solutions for particle and fibre formation

    Get PDF
    Polycaprolactone (PCL) is a widely used material in many applications to tackle health problems worldwide. Formed micro- or nanosized PCL particles and fibres benefit from a higher surface area to volume ratio and are valuable in those applications, thus there is always a push to achieve smaller diameters. Electrohydrodynamic (EHD) technologies have been at the forefront in the production of polymeric biomaterials, and pressurised gyration (PG) has also enhanced possibilities by its ability to spin comparable fibres at rapid speeds. In this work, PCL microparticles and fibres were separately produced by changing key operating parameters of EHD and PG systems and PCL solution properties. Initially, PCL microparticles were formed by electrospraying with different binary solvent systems, followed by pressurised gyration fibre production with various singular solvents and a pre-optimised binary solvent system. As anticipated, the use of binary systems altered particle morphologies and diameters, while increased pressure and the use of different solvents greatly affected the characteristics of resulting fibres. The morphology of PCL was found to be highly dependent on the solvents and operating parameters of the technology used

    Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes

    Full text link
    This paper is devoted to discuss the energy-momentum for static axially symmetric spacetimes in the framework of teleparallel theory of gravity. For this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz, Bergmann and Mo¨\ddot{o}ller prescriptions. A comparison of the results shows that the energy density is different but the momentum turns out to be constant in each prescription. This is exactly similar to the results available in literature using the framework of General Relativity. It is mentioned here that Mo¨\ddot{o}ller energy-momentum distribution is independent of the coupling constant λ\lambda. Finally, we calculate energy-momentum distribution for the Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.

    Data assimilation using adaptive, non-conservative, moving mesh models

    Get PDF
    Numerical models solved on adaptive moving meshes have become increasingly prevalent in recent years. Motivating problems include the study of fluids in a Lagrangian frame and the presence of highly localized structures such as shock waves or interfaces. In the former case, Lagrangian solvers move the nodes of the mesh with the dynamical flow; in the latter, mesh resolution is increased in the proximity of the localized structure. Mesh adaptation can include remeshing, a procedure that adds or removes mesh nodes according to specific rules reflecting constraints in the numerical solver. In this case, the number of mesh nodes will change during the integration and, as a result, the dimension of the model's state vector will not be conserved. This work presents a novel approach to the formulation of ensemble data assimilation (DA) for models with this underlying computational structure. The challenge lies in the fact that remeshing entails a different state space dimension across members of the ensemble, thus impeding the usual computation of consistent ensemble-based statistics. Our methodology adds one forward and one backward mapping step before and after the ensemble Kalman filter (EnKF) analysis, respectively. This mapping takes all the ensemble members onto a fixed, uniform reference mesh where the EnKF analysis can be performed. We consider a high-resolution (HR) and a low-resolution (LR) fixed uniform reference mesh, whose resolutions are determined by the remeshing tolerances. This way the reference meshes embed the model numerical constraints and are also upper and lower uniform meshes bounding the resolutions of the individual ensemble meshes. Numerical experiments are carried out using 1-D prototypical models: Burgers and Kuramoto-Sivashinsky equations and both Eulerian and Lagrangian synthetic observations. While the HR strategy generally outperforms that of LR, their skill difference can be reduced substantially by an optimal tuning of the data assimilation parameters. The LR case is appealing in high dimensions because of its lower computational burden. Lagrangian observations are shown to be very effective in that fewer of them are able to keep the analysis error at a level comparable to the more numerous observers for the Eulerian case. This study is motivated by the development of suitable EnKF strategies for 2-D models of the sea ice that are numerically solved on a Lagrangian mesh with remeshing

    An improved lumped element nonlinear circuit model for a circular CMUT cell

    Get PDF
    Cataloged from PDF version of article.This paper describes a correction and an extension in the previously published large signal equivalent circuit model for a circular capacitive micromachined ultrasonic transducer (CMUT) cell. The force model is rederived so that the energy and power is preserved in the equivalent circuit model. The model is able to predict the entire behavior of CMUT until the membrane touches the substrate. Many intrinsic properties of the CMUT cell, such as the collapse condition, collapse voltage, the voltage-displacement interrelation and the force equilibrium before and after collapse voltage in the presence of external static force, are obtained as a direct consequence of the model. The small signal equivalent circuit for any bias condition is obtained from the large signal model. The model can be implemented in circuit simulation tools and model predictions are in excellent agreement with finite element method simulations. © 2012 IEEE

    Lumped element modeling of CMUT arrays in collapsed mode

    Get PDF
    This study focuses on modeling collapsed modeoperation of CMUT arrays, and obtaining a small signal lumped element model for collapsed mode operation. Having the large signal model for single CMUT from previous studies, the mutual radiation impedance is presented for the collapsed mode, and a large signal model for a CMUT array is obtained for simulating the operation in both uncollapsed and collapsed modes. For faster computation, a small signal model for a CMUT cell is derived by linearizing the collapsed mode operation at a given bias point, and the computation time is reduced significantly. Using this model we are able to simulate a large array of collapsed CMUT cells. © 2014 IEEE
    corecore