2,676 research outputs found
Comparing theories: the dynamics of changing vocabulary. A case-study in relativity theory
There are several first-order logic (FOL) axiomatizations of special
relativity theory in the literature, all looking essentially different but
claiming to axiomatize the same physical theory. In this paper, we elaborate a
comparison, in the framework of mathematical logic, between these FOL theories
for special relativity. For this comparison, we use a version of mathematical
definability theory in which new entities can also be defined besides new
relations over already available entities. In particular, we build an
interpretation of the reference-frame oriented theory SpecRel into the
observationally oriented Signalling theory of James Ax. This interpretation
provides SpecRel with an operational/experimental semantics. Then we make
precise, "quantitative" comparisons between these two theories via using the
notion of definitional equivalence. This is an application of logic to the
philosophy of science and physics in the spirit of Johan van Benthem's work.Comment: 27 pages, 8 figures. To appear in Springer Book series Trends in
Logi
Expansive actions on uniform spaces and surjunctive maps
We present a uniform version of a result of M. Gromov on the surjunctivity of
maps commuting with expansive group actions and discuss several applications.
We prove in particular that for any group and any field \K, the
space of -marked groups such that the group algebra \K[G] is
stably finite is compact.Comment: 21 page
Vienna Circle and Logical Analysis of Relativity Theory
In this paper we present some of our school's results in the area of building
up relativity theory (RT) as a hierarchy of theories in the sense of logic. We
use plain first-order logic (FOL) as in the foundation of mathematics (FOM) and
we build on experience gained in FOM.
The main aims of our school are the following: We want to base the theory on
simple, unambiguous axioms with clear meanings. It should be absolutely
understandable for any reader what the axioms say and the reader can decide
about each axiom whether he likes it. The theory should be built up from these
axioms in a straightforward, logical manner. We want to provide an analysis of
the logical structure of the theory. We investigate which axioms are needed for
which predictions of RT. We want to make RT more transparent logically, easier
to understand, easier to change, modular, and easier to teach. We want to
obtain deeper understanding of RT.
Our work can be considered as a case-study showing that the Vienna Circle's
(VC) approach to doing science is workable and fruitful when performed with
using the insights and tools of mathematical logic acquired since its formation
years at the very time of the VC activity. We think that logical positivism was
based on the insight and anticipation of what mathematical logic is capable
when elaborated to some depth. Logical positivism, in great part represented by
VC, influenced and took part in the birth of modern mathematical logic. The
members of VC were brave forerunners and pioneers.Comment: 25 pages, 1 firgure
Twin Paradox and the logical foundation of relativity theory
We study the foundation of space-time theory in the framework of first-order
logic (FOL). Since the foundation of mathematics has been successfully carried
through (via set theory) in FOL, it is not entirely impossible to do the same
for space-time theory (or relativity). First we recall a simple and streamlined
FOL-axiomatization SpecRel of special relativity from the literature. SpecRel
is complete with respect to questions about inertial motion. Then we ask
ourselves whether we can prove usual relativistic properties of accelerated
motion (e.g., clocks in acceleration) in SpecRel. As it turns out, this is
practically equivalent to asking whether SpecRel is strong enough to "handle"
(or treat) accelerated observers. We show that there is a mathematical
principle called induction (IND) coming from real analysis which needs to be
added to SpecRel in order to handle situations involving relativistic
acceleration. We present an extended version AccRel of SpecRel which is strong
enough to handle accelerated motion, in particular, accelerated observers.
Among others, we show that the Twin Paradox becomes provable in AccRel, but it
is not provable without IND.Comment: 24 pages, 6 figure
A Geometrical Characterization of the Twin Paradox and its Variants
The aim of this paper is to provide a logic-based conceptual analysis of the
twin paradox (TwP) theorem within a first-order logic framework. A geometrical
characterization of TwP and its variants is given. It is shown that TwP is not
logically equivalent to the assumption of the slowing down of moving clocks,
and the lack of TwP is not logically equivalent to the Newtonian assumption of
absolute time. The logical connection between TwP and a symmetry axiom of
special relativity is also studied.Comment: 22 pages, 3 figure
Predictions from Lattice QCD
In the past year, we calculated with lattice QCD three quantities that were
unknown or poorly known. They are the dependence of the form factor in
semileptonic decay, the decay constant of the meson, and the
mass of the meson. In this talk, we summarize these calculations, with
emphasis on their (subsequent) confirmation by experiments.Comment: v1: talk given at the International Conference on QCD and Hadronic
Physics, Beijing, June 16-20, 2005; v2: poster presented at the XXIIIrd
International Symposium on Lattice Field Theory, Dublin, July 25-3
Phase 2 study of combination SPI-1620 with docetaxel as second-line advanced biliary tract cancer treatment
System and process development for selection of high stress tolerance personnel
Process development of system for digital computer processing of psychophysiological data to obtain high stress tolerance personne
Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain
Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe
Experimental observation of the optical spin-orbit torque
Spin polarized carriers electrically injected into a magnet from an external
polarizer can exert a spin transfer torque (STT) on the magnetization. The phe-
nomenon belongs to the area of spintronics research focusing on manipulating
magnetic moments by electric fields and is the basis of the emerging
technologies for scalable magnetoresistive random access memories. In our
previous work we have reported experimental observation of the optical
counterpart of STT in which a circularly polarized pump laser pulse acts as the
external polarizer, allowing to study and utilize the phenomenon on several
orders of magnitude shorter timescales than in the electric current induced
STT. Recently it has been theoretically proposed and experimentally
demonstrated that in the absence of an external polarizer, carriers in a magnet
under applied electric field can develop a non-equilibrium spin polarization
due to the relativistic spin-orbit coupling, resulting in a current induced
spin-orbit torque (SOT) acting on the magnetization. In this paper we report
the observation of the optical counterpart of SOT. At picosecond time-scales,
we detect excitations of magnetization of a ferromagnetic semiconductor
(Ga,Mn)As which are independent of the polarization of the pump laser pulses
and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap
with arXiv:1101.104
- …
