829 research outputs found

    Energy chirp measurements by means of an RF deflector: a case study the gamma beam source LINAC at ELI-NP

    Get PDF
    RF Deflector (RFD) based measurements are widely used in high–brightness electron LINAC around the world in order to measure the ultra–short electron bunch length. The RFD provides a vertical kick to the particles of the electron bunch according to their longitudinal positions. In this paper, a measurement technique for the bunch length and other bunch proprieties, based on the usage of an RFD, is proposed. The basic idea is to obtain information about the bunch length, energy chirp, and energy spread from vertical spot size measurements varying the RFD phase, because they add contributions on this quantity. The case study is the Gamma Beam System (GBS), the Compton Source being built in the Extreme Light Infrastructure–Nuclear Physics (ELI–NP) facility. The ELEctron Generation ANd Tracking (ELEGANT) code is used for tracking the particles from RFD to the measurement screen

    Digital Integrator for Fast Accurate Measurement of Magnetic Flux by Rotating Coils

    Get PDF
    A fast digital integrator (FDI) with dynamic accuracy and a trigger frequency higher than those of a portable digital integrator (PDI), which is a state-of-the-art instrument for magnetic measurements based on rotating coils, was developed for analyzing superconducting magnets in particle accelerators. Results of static and dynamic metrological characterization show how the FDI prototype is already capable of overcoming the dynamic performance of PDI as well as covering operating regions that used to be inaccessibl

    A Wearable Brain-Computer Interface Instrument for Augmented Reality-Based Inspection in Industry 4.0

    Get PDF
    This paper proposes a wearable monitoring system for inspection in the framework of Industry 4.0. The instrument integrates augmented reality (AR) glasses with a noninvasive single-channel brain-computer interface (BCI), which replaces the classical input interface of AR platforms. Steady-state visually evoked potentials (SSVEP) are measured by a single-channel electroencephalography (EEG) and simple power spectral density analysis. The visual stimuli for SSVEP elicitation are provided by AR glasses while displaying the inspection information. The real-time metrological performance of the BCI is assessed by the receiver operating characteristic curve on the experimental data from 20 subjects. The characterization was carried out by considering stimulation times from 10.0 down to 2.0 s. The thresholds for the classification were found to be dependent on the subject and the obtained average accuracy goes from 98.9% at 10.0 s to 81.1% at 2.0 s. An inspection case study of the integrated AR-BCI device shows encouraging accuracy of about 80% of lab values

    Channel Selection for Optimal EEG Measurement in Motor Imagery-Based Brain-Computer Interfaces

    Get PDF
    A method for selecting electroencephalographic (EEG) signals in motor imagery-based brain-computer interfaces (MI-BCI) is proposed for enhancing the online interoperability and portability of BCI systems, as well as user comfort. The attempt is also to reduce variability and noise of MI-BCI, which could be affected by a large number of EEG channels. The relation between selected channels and MI-BCI performance is therefore analyzed. The proposed method is able to select acquisition channels common to all subjects, while achieving a performance compatible with the use of all the channels. Results are reported with reference to a standard benchmark dataset, the BCI competition IV dataset 2a. They prove that a performance compatible with the best state-of-the-art approaches can be achieved, while adopting a significantly smaller number of channels, both in two and in four tasks classification. In particular, classification accuracy is about 77-83% in binary classification with down to 6 EEG channels, and above 60% for the four-classes case when 10 channels are employed. This gives a contribution in optimizing the EEG measurement while developing non-invasive and wearable MI-based brain-computer interfaces

    Performance Analysis of a Fast Digital Integrator for Magnetic Field Measurements at CERN

    Get PDF
    A Fast Digital Integrator (FDI) has been designed at CERN for increasing performance of state-of-art instruments analyzing superconducting magnets in particle accelerators. In particular, in flux measurement, a bandwidth up to 50-100 kHz and an accuracy of 10 ppm has to be targeted. In this paper, basic concepts and architecture of the developed FDI are highlighted. Numerical metrological analysis of the instrument performance is shown, by focusing both on deterministic errors and on uncertainty in time and amplitude domains

    High-wearable EEG-based distraction detection in motor rehabilitation

    Get PDF
    A method for EEG-based distraction detection during motor-rehabilitation tasks is proposed. A wireless cap guarantees very high wearability with dry electrodes and a low number of channels. Experimental validation is performed on a dataset from 17 volunteers. Different feature extractions from spatial, temporal, and frequency domain and classification strategies were evaluated. The performances of five supervised classifiers in discriminating between attention on pure movement and with distractors were compared. A k-Nearest Neighbors classifier achieved an accuracy of 92.8 ± 1.6%. In this last case, the feature extraction is based on a custom 12 pass-band Filter-Bank (FB) and the Common Spatial Pattern (CSP) algorithm. In particular, the mean Recall of classification (percentage of true positive in distraction detection) is higher than 92% and allows the therapist or an automated system to know when to stimulate the patient’s attention for enhancing the therapy effectiveness

    Cry Toxins and Proteinase Inhibitors in Transgenic Plants do have Non-Zero Effects on Natural Enemies in the Laboratory: Rebuttal to Shelton et al. 2009

    Get PDF
    A main point of our recent paper (Lovei et al. 2009) is that there are non-neutral effects of Cry toxins and proteinase inhibitors (PIs) on natural enemies in the laboratory and that the pattern of responses is complex and needs additional analysis. Shelton et al. (2009) aggressively attacked this conclusion. They claimed that all negative effects of Cry toxins are caused by effects of sublethally affected hosts and prey. We suggested in Lovei et al. (2009) and reiterate here that the actual situation is not that simple when laboratory studies are considered. We made our point by using statistical meta-analysis to show that there are more nonzero effects of Cry toxins and PIs on natural enemies than expected under a statistical null hypothesis that all observed effects were zero. The interested reader may want to examine the longer history of some of these issues (Lovei and Arpaia 2005; Andow et al. 2006; Romeis et al. 2006a,b). In our rebuttal, we first address the deeper, fundamental questions raised by Shelton et al. (2009) about the value of meta-analysis and then proceed to rebut the core criticisms about our statistical methods. Although Shelton et al. (2009) raised many other issues, we limited our rebuttal to these central issues; our lack of comment does not imply agreement with their other complaints. Shelton et al. (2009) make two criticisms of our work that are, in actuality, more fundamental criticisms of meta-analysis. These criticisms are made, in part, to defend the methods used and conclusions reached in reviews by O'Callaghan et al. (2005) and Romeis et al. (2006b), neither of which are based on meta-analyses. First they argued that nonsignificant P values are "devoid of futher meaning and interpretation" (Shelton et al. 2009, p. 318), and second, they

    Transgenic Insecticidal Crops and Natural Enemies: A Detailed Review of Laboratory Studies

    Get PDF
    This review uses a data-driven, quantitative method to summarize the published, peer-reviewed literature about the impact of genetically modified (GM) plants on arthropod natural enemies in laboratory experiments. The method is similar to meta-analysis, and, in contrast to a simple author-vote counting method used by several earlier reviews, gives an objective, data-driven summary of existing knowledge about these effects. Significantly more non-neutral responses were observed than expected at random in 75% of the comparisons of natural enemy groups and response classes. These observations indicate that Cry toxins and proteinase inhibitors often have non-neutral effects on natural enemies. This synthesis identifies a continued bias toward studies on a few predator species, especially the green lacewing, Chrysoperla carnea Stephens, which may be more sensitive to GM insecticidal plants (16.8% of the quantified parameter responses were significantly negative) than predators in general (10.9% significantly negative effects without C. carnea). Parasitoids were more susceptible than predators to the effects of both Cry toxins and proteinase inhibitors, with fewer positive effects (18.0%, significant and nonsignificant positive effects combined) than negative ones (66.1%, significant and nonsignificant negative effects combined). GM plants can have a positive effect on natural enemies (4.8% of responses were significantly positive), although significant negative (21.2%) effects were more common. Although there are data on 48 natural enemy species, the database is still far from adequate to predict the effect of a Bt toxin or proteinase inhibitor on natural enemies

    Metrological Characterisation of a Fast Digital Integrator for Magnetic Measurements at CERN

    Get PDF
    A Fast Digital Integrator (FDI) was designed to satisfy new more demanding requirements of dynamic accuracy and trigger frequency in magnetic measurements based on rotating coil systems for analyzing superconducting magnets in particle accelerators. In particular, in flux measurement, a bandwidth up to 50-100 kHz and a dynamic accuracy of 10 ppm are targeted. In this paper, results of static and dynamic metrological characterization of the FDI prototype and of the Portable Digital Integrator (PDI), heavely used at CERN and in many sub-nuclear laboratories, are compared. Preliminary results show how the initial prototype of FDI is already capable of both overcoming dynamic performance of PDI and covering operating regions inaccessible before

    Measuring the magnetic axis alignment during solenoids working

    Get PDF
    A method for monitoring the misalignment of the magnetic axis in solenoids is proposed. This method requires only a few measurements of the magnetic field at fixed positions inside the magnet aperture, and thus overcomes the main drawback of sturdy moving mechanics of other Hall sensor-based methods. Conversely to state-of-the-art axis determination, the proposed method can be applied also during magnet operations, when the axis region and almost the whole remaining magnet aperture are not accessible. Moreover, only a few measurements of the magnetic field at fixed positions inside the magnet aperture are required: thus a slow process such as the mapping of the whole aperture of a magnet by means of moving stages is not necessary. The mathematical formulation of the method is explained, and a case study on a model of a multi–layer solenoid is presented. For this case study, the uncertainty is assessed and the optimal placement of the Hall transducers is derived
    • …
    corecore