40 research outputs found

    An analytical approach to integral resonant control of second-order systems

    Get PDF
    Peer reviewedPostprin

    A dual-loop tracking control approach to precise nanopositioning

    Get PDF
    The author(s) received no financial support for the research, authorship, and/or publication of this article.Peer reviewedPostprin

    Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326.

    No full text
    The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase

    The Counter Electrode Impact on Quantum Dot Solar Cell Efficiencies

    Get PDF
    The counter electrode (CE), despite being as relevant as the photoanode in a quantum dot solar cell (QDSC), has hard-ly received the scientific attention it deserves. In this study, nine CEs: single walled carbon nanotubes (SWCNTs), tungsten oxide (WO3), poly(3,4-ethylenedioxythiophene) (PEDOT), copper sulfide (Cu2S), candle soot, functionalized multiwalled carbon nanotubes ( F- MWCNTs), reduced tungsten oxide (WO3-x), carbon fabric (C-Fabric), and C-Fabric/WO3-x were prepared by using low cost components and facile procedures. QDSCs were fabricated with a TiO2/CdS film which served as a common photoanode for all CEs. The power conversion efficiencies (PCEs) were: 2.02, 2.1, 2.79, 2.88, 2.95, 3.78, 3.66, 3.96, and 4.6 % respectively, and the incident photon to current conversion efficiency re-sponse was also found to complement the PCE response. Among all CEs employed here, the C-Fabric/WO3-x outper-forms all the other CEs, for the synergy between C-Fabric and WO3-x comes to the fore during cell operation. The (i) low sheet resistance of C-Fabric, and its’ high surface area due to the mesh like morphology, enables high WO3-x load-ing during electrodeposition, and (ii) the good electrocatalytic activity of WO3-x, the very low overpotential and its high electrical conductivity that facilitate electron transfer to the electrolyte, are responsible for the superior PCE. WO3 based electrodes have not been used till date in QDSCs; the ease of fabrication of WO3 films, and their good chem-ical stability and scalability also favor their application to QDSCs. Futuristic possibilities for other novel composite CEs are also discussed. We anticipate this study to be useful for a well-rounded development of high performance QDSCs
    corecore