1,215 research outputs found
Suppression of Shot Noise in Quantum Point Contacts in the "0.7" Regime
Experimental investigations of current shot noise in quantum point contacts
show a reduction of the noise near the 0.7 anomaly. It is demonstrated that
such a reduction naturally arises in a model proposed recently to explain the
characteristics of the 0.7 anomaly in quantum point contacts in terms of a
quasi-bound state, due to the emergence of two conducting channels. We
calculate the shot noise as a function of temperature, applied voltage and
magnetic field, and demonstrate an excellent agreement with experiments. It is
predicted that with decreasing temperature, voltage and magnetic field, the dip
in the shot noise is suppressed due to the Kondo effect.Comment: 4 pages, 1 figur
Kondo effect in a double quantum-dot molecule under the effect of an electric and magnetic field
Electron tunneling through a double quantum dot molecule, in the Kondo
regime, under the effect of a magnetic field and an applied voltage, is
studied. This system possesses a complex response to the applied fields
characterized by a tristable solution for the conductance. The different nature
of the solutions are studied in and out thermodynamical equilibrium. It is
shown that the interdot coupling and the fields can be used to control the
region of multistability. The mean-field slave-boson formalism is used to
obtain the solution of the problem.Comment: 5 pages, 4 figures. To appear in Sol. State Com
Kondo effect and anti-ferromagnetic correlation in transport through tunneling-coupled double quantum dots
We propose to study the transport through tunneling-coupled double quantum
dots (DQDs) connected in series to leads, using the finite- slave-boson mean
field approach developed initially by Kotliar and Ruckenstein [Phys. Rev. Lett.
{\bf 57}, 1362 (1986)]. This approach treats the dot-lead coupling and the
inter-dot tunnelling nonperturbatively at arbitrary Coulomb correlation
, thus allows the anti-ferromagnetic exchange coupling parameter
to appear naturally. We find that, with increasing the inter-dot hopping, the
DQDs manifest three distinct physical scenarios: the Kondo singlet state of
each dot with its adjacent lead, the spin singlet state consisting of local
spins on each dot and the doubly occupied bonding orbital of the coupled dots.
The three states exhibit remarkably distinct behavior in transmission spectrum,
linear and differential conductance and their magnetic-field dependence.
Theoretical predictions agree with numerical renormalization group and Lanczos
calculations, and some of them have been observed in recent experiments.Comment: 5 pages, 5 figures. Physics Review B (Rapid Communication) (in press
Kondo effect in coupled quantum dots under magnetic fields
The Kondo effect in coupled quantum dots is investigated theoretically under
magnetic fields. We show that the magnetoconductance (MC) illustrates peak
structures of the Kondo resonant spectra. When the dot-dot tunneling coupling
is smaller than the dot-lead coupling (level broadening), the
Kondo resonant levels appear at the Fermi level (). The Zeeman splitting
of the levels weakens the Kondo effect, which results in a negative MC. When
is larger than , the Kondo resonances form bonding and
anti-bonding levels, located below and above , respectively. We observe a
positive MC since the Zeeman splitting increases the overlap between the levels
at . In the presence of the antiferromagnetic spin coupling between the
dots, the sign of MC can change as a function of the gate voltage.Comment: 6 pages, 3 figure
Effect of the Kondo correlation on thermopower in a Quantum Dot
In this paper we study the thermopower of a quantum dot connected to two
leads in the presence of Kondo correlation by employing a modified second-order
perturbation scheme at nonequilibrium. A simple scheme, Ng's ansatz [Phys. Rev.
Lett. {\bf 76}, 487 (1996)], is adopted to calculate nonequilibrium
distribution Green's function and its validity is further checked with regard
to the Onsager relation. Numerical results demonstrate that the sign of the
thermopower can be changed by tuning the energy level of the quantum dot,
leading to a oscillatory behavior with a suppressed magnitude due to the Kondo
effect. We also calculate the thermal conductance of the system, and find that
the Wiedemann-Franz law is obeyed at low temperature but violated with
increasing temperature, corresponding to emerging and quenching of the Kondo
effect.Comment: 6 pages, 4 figures; accepted for publication in J Phys.: Condensed
Matte
Entanglement and the Kondo effect in double quantum dots
We investigate entanglement between electrons in serially coupled double
quantum dots attached to non interacting leads. In addition to local repulsion
we consider the influence of capacitive inter-dot interaction. We show how the
competition between extended Kondo and local singlet phases determines the
ground state and thereby the entanglement.Comment: EPJ Special Topics 200
Spin-Polarized Transprot through Double Quantum Dots
We investigate spin-polarized transport phenomena through double quantum dots
coupled to ferromagnetic leads in series. By means of the slave-boson
mean-field approximation, we calculate the conductance in the Kondo regime for
two different configurations of the leads: spin-polarization of two
ferromagnetic leads is parallel or anti-parallel. It is found that transport
shows some remarkable properties depending on the tunneling strength between
two dots. These properties are explained in terms of the Kondo resonances in
the local density of states.Comment: 8 pages, 11 figure
Nonequilibrium Steady States and Fano-Kondo Resonances in an AB Ring with a Quantum Dot
Electron transport through a strongly correlated quantum dot (QD) embedded in
an Aharonov-Bohm (AB) ring is investigated with the aid of the finite-U
slave-boson mean-field (SBMF) approach extended to nonequilibrium regime. A
nonequilibrium steady state (NESS) of the mean-field Hamiltonian is constructed
with the aid of the C*-algebraic approach for studying infinitely extended
systems. In the linear response regime, the Fano-Kondo resonances and AB
oscillations of the conductance obtained from the SBMF approach are in good
agreement with those from the numerical renormalization group technique (NRG)
by Hofstetter et al. by using twice larger Coulomb interaction. At zero
temperature and finite bias voltage, the resonance peaks of the differential
conductance tend to split into two. At low bias voltage, the split of the
asymmetric resonance can be observed as an increase of the conductance plateau.
We also found that the differential conductance has zero-bias maximum or
minimum depending on the background transmission via direct tunneling between
the electrodes.Comment: 24 pages,17 figure
Tristability in a non-equilibrium double-quantum-dot in Kondo regime
Electron tunneling through a non-equilibrium double quantum dot in the Kondo
regime is studied. In the region of negative differential resistance, it is
shown that this system possesses a complex response to the applied potential
characterized by a tristable solution for the current. Increasing the applied
potential or reducing the inter-dot coupling, the system goes through a
transition from a coherent inter-dot regime to an incoherent one. The different
nature of the solutions are characterized and it is shown that the effects of
the asymmetry in the dot-lead coupling can be used to control the region of
multistability. The mean-field slave-boson formalism is used to obtain the
solution of the problem.Comment: 4 pages, 4 figures. To appear in Sol. State. Com
- …