170 research outputs found

    The Updated GEO Population for ORDEM 3.1

    Get PDF
    The limited availability of data for satellite fragmentations and debris in the geosynchronous orbit (GEO) region creates challenges to building accurate models for the orbital debris environment at such altitudes. Updated methods to properly incorporate and extrapolate measurement data have become a cornerstone of the GEO component in the newest version of the NASA Orbital Debris Engineering Model (ORDEM), ORDEM 3.1. For the GEO region, the Space Surveillance Network (SSN) catalog provides coverage down to a limit of approximately 1 m. A more statistically complete representation of the GEO population for smaller objects, which can pose a high risk to operational spacecraft, is thus dependent on dedicated observations by instruments optimized to observe debris smaller than the SSN cataloging threshold. For ORDEM 3.1, optical data from the Michigan Orbital DEbris Survey Telescope (MODEST) provided the input for building the GEO population down to approximately 30 cm (converting absolute magnitude to size). For smaller sizes, the size distribution of debris in the MODEST dataset was extrapolated down to 10 cm, and orbital parameters were estimated based on the orbits of the larger objects. When compared to previous versions of the model, significant improvements were made to the process of building the GEO population in ORDEM 3.1, both in the assessment of fragmentation debris in the data and assignment of orbital elements within the model. A so-called debris ring filter, based on a range of angles between an orbits angular momentum vector and that of the stable Laplace plane, was applied to the data to reduce biases from non- GEO objects, such as objects in a GEO-transfer orbit. In addition, a new approach was implemented to assign noncircular mean motions and eccentricities to the fragmentation debris observed by MODEST because the short observation window (5 min) in GEO limits orbit resolution to a circular orbit assumption for assigning orbital parameters. For ORDEM 3.1, non-circular orbital elements were assigned using relationships that were identified between mean motion and the angle between the orbit plane and the stable Laplace plane, as well as between mean motion and eccentricity, based on breakup clouds modeled by the NASA Standard Breakup Model. This approach has yielded a high-fidelity GEO model that has been validated with data from more recent MODEST observation campaigns

    Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 2: Ejecta dynamics and enhanced lifetimes in the Earth's magnetosphere

    Get PDF
    Extensive studies were conducted concerning the indivdual mass, temporal and positional distribution of micron and submicron lunar ejecta existing in the Earth-Moon gravitational sphere of influence. Initial results show a direct correlation between the position of the Moon, relative to the Earth, and the percentage of lunar ejecta leaving the Moon and intercepting the magnetosphere of the Earth at the magnetopause surface. It is seen that the Lorentz Force dominates all other forces, thus suggesting that submicron dust particles might possibly be magnetically trapped in the well known radiation zones

    Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 1: Ejecta production and orbital dynamics in cislunar space

    Get PDF
    Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity

    The NASA Orbital Debris Engineering Model 3.1: Development, Verification, and Validation

    Get PDF
    The NASA Orbital Debris Program Office has developed the Orbital Debris Engineering Model (ORDEM) primarily as a tool for spacecraft designers and other users to understand the long-term risk of collisions with orbital debris. The newest version, ORDEM 3.1, incorporates the latest and highest fidelity datasets available to build and validate representative orbital debris populations encompassing low Earth orbit (LEO) to geosynchronous orbit (GEO) altitudes for the years 2016-2050. ORDEM 3.1 models fluxes for object sizes > 10 m within or transiting LEO and > 10 cm in GEO. The deterministic portion of the populations in ORDEM 3.1 is based on the U.S. Space Surveillance Network (SSN) catalog, which provides coverage down to approximately 10 cm in LEO and 1 m in GEO. Observational datasets from radar, in situ, and optical sources provide a foundation from which the model populations are statistically extrapolated to smaller sizes and orbit regions that are not well-covered by the SSN catalog, yet may pose the greatest threat to operational spacecraft. Objects in LEO ranging from approximately 5 mm to 10 cm are modeled using observational data from ground-based radar, namely the Haystack Ultrawideband Satellite Imaging Radar (HUSIR formerly known as Haystack). The LEO population smaller than approximately 3 mm in size is characterized based on a reanalysis of in situ data from impacts to the windows and radiators of the U.S. Space Transportation System orbiter vehicle, i.e., the Space Shuttle. Data from impacts on the Hubble Space Telescope are also used to validate the sub-millimeter model populations in LEO. Debris in GEO with sizes ranging from 10 cm to 1 m is modeled using optical measurement data from the Michigan Orbital DEbris Survey Telescope (MODEST). Specific, major debris-producing events, including the Fengyun-1C, Iridium 33, and Cosmos 2251 debris clouds, and unique populations, such as sodium-potassium droplets, have been re-examined and are modeled and added to the ORDEM environment separately. The debris environment greater than 1 mm is forecast using NASAs LEO-to- GEO ENvironment Debris model (LEGEND). Future explosions of intact objects and collisions involving objects greater than 10 cm are assessed statistically, and the NASA Standard Satellite Breakup Model is used to generate fragments from these events. Fragments smaller than 10 cm are further differentiated based on material density categories, i.e., high-, medium-, and low-density, to better characterize the potential debris risk posed to spacecraft. The future projection of the sub-millimeter environment is computed using a special small-particle degradation model where small particles are created from intact spacecraft and rocket bodies. This work discusses the development, features, and capabilities of the ORDEM 3.1 model; the ne new data analyses used to build the model populations; and sample verification and validation results

    ORDEM 3.1 Development Status

    Get PDF
    In this presentation we shall review NASA Orbital Debris Engineering Model (ORDEM) scope, intended use, and version history; development of the latest version, v. 3.1; provide a current development status; and discuss current deployment plans. We will also place ORDEM in context with other NASA and US models as well as the ESA MASTER model, ORDEMs closest analogue model

    The Space Debris Sensor Experiment

    Get PDF
    The Space Debris Sensor (SDS) is a NASA Class 1E technology demonstration external payload aboard the International Space Station (ISS). With approximately one square meter of detection area, the SDS is attached to the European Space Agency Columbus module facing the ISS velocity vector with minimal obstruction from ISS hardware. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) technology developed and matured over 10 years by the NASA Orbital Debris Program Office (ODPO), in concert with the DRAGONS consortium, to provide information on the sub-millimeter scale orbital debris environment. The SDS demonstrated the capacity to read 4 resistive grids at 1 Hz, 40 acoustic sensors at 500 kHz, and record and downlink impact data to the ground. Observable and derived data from the SDS could provide information to models that are critical to understanding risks the small debris environment poses to spacecraft in low Earth orbit. The technology demonstrated by the SDS is a major step forward in monitoring and characterizing the space debris environment. This paper will address the technical performance of the SDS during its operational lifetime and its realization of technical and scientific goals. The SDS was intended to operate for 3 years; however, the payload incurred multiple anomalies during its operational life. Subsequently termed Anomaly #1, the first was the symptomatic loss of low data rate 1553 channel command and telemetry. The second, Anomaly #2, was loss of all low- and medium-data rate (Ethernet) telemetry. Anomaly #2 proved to be unrecoverable, leading to loss of the payload after approximately 26 days on-board the ISS. Therefore, this paper also addresses the anomalies that occurred during operation of the SDS, their attribution, and their resolution. Lessons learned are described when relevant to anomaly identification, attribution, and resolution

    Characterizing GEO Titan IIIC Transtage Fragmentations using Ground-Based and Telescopic Measurements

    Get PDF
    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation

    NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0

    Get PDF
    The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements

    Solar Effects of Low-Earth Orbit objects in ORDEM 3.0

    Get PDF
    Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed

    Interleukin-1 receptor-associated kinase-M suppresses systemic lupus erythematosus

    Get PDF
    Interleukin-1 receptor-associated kinase (IRAK)-M suppresses Toll-like receptor (TLR)-mediated activation of innate immunity during infection. A similar role was hypothesised for IRAK-M in autoimmunity
    • …
    corecore