361 research outputs found

    Thin-disk laser pump schemes for large number of passes and moderate pump source quality

    Full text link
    Novel thin-disk laser pump layouts are proposed yielding an increased number of passes for a given pump module size and pump source quality. These novel layouts result from a general scheme which bases on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard commercially available pump optics simply by intro ducing an additional mirror-pair. More pump passes yield better efficiency, opening the way for usage of active materials with low absorption. In a standard multi-pass pump design, scaling of the number of beam passes brings ab out an increase of the overall size of the optical arrangement or an increase of the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applicationsComment: 16 pages, 9 figure

    Spatial confinement of muonium atoms

    Full text link
    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into vacuum from mesoporous silica reflects between two SiO2_2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1S-2S transition frequency using continuous wave laser spectroscopy.Comment: 5 pages, 6 figure

    muCool: A novel low-energy muon beam for future precision experiments

    Full text link
    Experiments with muons (μ+\mu^{+}) and muonium atoms (μ+e\mu^{+}e^{-}) offer several promising possibilities for testing fundamental symmetries. Examples of such experiments include search for muon electric dipole moment, measurement of muon g2g-2 and experiments with muonium from laser spectroscopy to gravity experiments. These experiments require high quality muon beams with small transverse size and high intensity at low energy. At the Paul Scherrer Institute, Switzerland, we are developing a novel device that reduces the phase space of a standard μ+\mu^{+} beam by a factor of 101010^{10} with 10310^{-3} efficiency. The phase space compression is achieved by stopping a standard μ+\mu^{+} beam in a cryogenic helium gas. The stopped μ+\mu^{+} are manipulated into a small spot with complex electric and magnetic fields in combination with gas density gradients. From here, the muons are extracted into the vacuum and into a field-free region. Various aspects of this compression scheme have been demonstrated. In this article the current status will be reported.Comment: 8 pages, 5 figures, TCP 2018 conference proceeding

    Compact 20-pass thin-disk amplifier insensitive to thermal lensing

    Full text link
    We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M2^2 = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.Comment: 7 pages, 6 figure

    Muonic hydrogen cascade time and lifetime of the short-lived 2S2S state

    Get PDF
    Metastable 2S{2S} muonic-hydrogen atoms undergo collisional 2S{2S}-quenching, with rates which depend strongly on whether the μp\mu p kinetic energy is above or below the 2S2P{2S}\to {2P} energy threshold. Above threshold, collisional 2S2P{2S} \to {2P} excitation followed by fast radiative 2P1S{2P} \to {1S} deexcitation is allowed. The corresponding short-lived μp(2S)\mu p ({2S}) component was measured at 0.6 hPa H2\mathrm{H}_2 room temperature gas pressure, with lifetime τ2Sshort=16529+38\tau_{2S}^\mathrm{short} = 165 ^{+38}_{-29} ns (i.e., λ2Squench=7.91.6+1.8×1012s1\lambda_{2S}^\mathrm{quench} = 7.9 ^{+1.8}_{-1.6} \times 10^{12} \mathrm{s}^{-1} at liquid-hydrogen density) and population ϵ2Sshort=1.700.56+0.80\epsilon_{2S}^\mathrm{short} = 1.70^{+0.80}_{-0.56} % (per μp\mu p atom). In addition, a value of the μp\mu p cascade time, Tcasμp=(37±5)T_\mathrm{cas}^{\mu p} = (37\pm5) ns, was found.Comment: 4 pages, 3 figure

    Proton structure corrections to electronic and muonic hydrogen hyperfine splitting

    Full text link
    We present a precise determination of the polarizability and other proton structure dependent contributions to the hydrogen hyperfine splitting, based heavily on the most recent published data on proton spin dependent structure functions from the EG1 experiment at the Jefferson Laboratory. As a result, the total calculated hyperfine splitting now has a standard deviation slightly under 1 part-per-million, and is about 1 standard deviation away from the measured value. We also present results for muonic hydrogen hyperfine splitting, taking care to ensure the compatibility of the recoil and polarizability terms.Comment: 9 pages, 1 figur

    The proton radius puzzle

    Full text link
    High-precision measurements of the proton radius from laser spectroscopy of muonic hydrogen demonstrated up to six standard deviations smaller values than obtained from electron-proton scattering and hydrogen spectroscopy. The status of this discrepancy, which is known as the proton radius puzzle will be discussed in this paper, complemented with the new insights obtained from spectroscopy of muonic deuterium.Comment: Moriond 2017 conference, 8 pages, 4 figure
    corecore