72 research outputs found

    Magnetic-field-dependent quasiparticle energy relaxation in mesoscopic wires

    Full text link
    In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals, we have measured the effect of a magnetic field B on the energy distribution function f(E) of quasiparticles in two silver wires driven out-of-equilibrium by a bias voltage U. In a sample showing sharp distributions at B=0, no magnetic field effect is found, whereas in the other sample, rounded distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated interactions taking into account Kondo physics.Comment: 4 pages, 3 figures, to be published in Physical Review Letter

    Influence of Magnetic Field on Effective Electron-Electron Interactions in a Copper Wire

    Full text link
    We have measured in a copper wire the energy exchange rate between quasiparticles as a function of the applied magnetic field. We find that the effective electron-electron interaction is strongly modified by the magnetic field, suggesting that magnetic impurities play a role on the interaction processes.Comment: latex anthore.tex, 8 files, 6 figures, 7 pages in: Proceedings of the XXXVIth Rencontres de Moriond `Electronic Correlations: From Meso- to Nano-physics' Les Arcs, France January 20-27, 2001 [SPEC-S01/027

    Conductance fluctuations in metallic nanogaps made by electromigration

    Full text link
    We report on low temperature conductance measurements of gold nanogaps fabricated by controlled electromigration. Fluctuations of the conductance due to quantum interferences and depending both on bias voltage and magnetic field are observed. By analyzing the voltage and magnetoconductance correlation functions we determine the type of electron trajectories generating the observed quantum interferences and the effective characteristic time of phase coherence in our device.Comment: 5 pages, 4 figures, to appear in J. Appl. Phy

    Cold electron Josephson transistor

    Get PDF
    A superconductor-normal metal-superconductor mesoscopic Josephson junction has been realized in which the critical current is tuned through normal current injection using a symmetric electron cooler directly connected to the weak link. Both enhancement of the critical current by more than a factor of two, and supercurrent suppression have been achieved by varying the cooler bias. Furthermore, this transistor-like device demonstrates large current gain \sim20) and low power dissipation

    Tomonaga-Luttinger physics in electronic quantum circuits

    Get PDF
    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids (TLL) is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade (DCB). Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to TLL physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal TLL curve, we demonstrate experimentally the predicted mapping between DCB and the transport across a TLL with an impurity.Comment: 9p,6fig+SI; to be published in nature comm; v2: mapping extended to finite range interactions, added discussion and SI material, added reference

    Primary thermometry triad at 6 mK in mesoscopic circuits

    Full text link
    Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behavior, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometer-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in-situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometer-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in-situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back-action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way toward the sub-millikelvin range with additional thermalization and refrigeration techniques.Comment: Article and Supplementar

    Strong back-action of a linear circuit on a single electronic quantum channel

    Full text link
    What are the quantum laws of electricity in mesoscopic circuits? This very fundamental question has also direct implications for the quantum engineering of nanoelectronic devices. Indeed, when a quantum coherent conductor is inserted into a circuit, its transport properties are modified. In particular, its conductance is reduced because of the circuit back-action. This phenomenon, called environmental Coulomb blockade, results from the granularity of charge transfers across the coherent conductor. Although extensively studied for a tunnel junction in a linear circuit, it is only fully understood for arbitrary short coherent conductors in the limit of small circuit impedances and small conductance reduction. Here, we investigate experimentally the strong back-action regime, with a conductance reduction of up to 90%. This is achieved by embedding a single quantum channel of tunable transmission in an adjustable on-chip circuit of impedance comparable to the resistance quantum RK=h/e2R_K=h/e^2 at microwave frequencies. The experiment reveals important deviations from calculations performed in the weak back-action framework, and matches with recent theoretical results. From these measurements, we propose a generalized expression for the conductance of an arbitrary quantum channel embedded in a linear circuit.Comment: 11 pages including supplementary information, to be published in Nature Physic

    Density of states in a superconductor carrying a supercurrent

    Full text link
    We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent, leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic field.Comment: To be published in Physical Review Letter
    corecore