268 research outputs found

    On-Orbit Noise Characterization for MODIS Reflective Solar Bands

    Get PDF
    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre-launch calibration and characterization are also provided

    Effects of Time-Varying Relative Spectral Response on the Calibration of MODIS Reflective Solar Bands

    Get PDF
    Calibration of the on-orbit gain changes of the narrow bandwidth reflective solar bands (RSB) of Terra and Aqua MODIS is usually based on the band center wavelength. The relative spectral response (RSR) of each band is assumed to be constant on orbit and the time dependence of an overall gain factor is calculated. Any on-orbit changes to the RSR of the MODIS bands will introduce some error into the calibration and may also have an impact on the Earth scene radiance retrieval. We consider two different ways to track how the RSR of the MODIS RSB may be changing on orbit, and the effect that these changes will have on the calibration. First, we examine in-band RSR measurements from the spectro-radiometric calibration assembly (SRCA) carried on-board both MODIS instruments. Second, we study the broadband degradation of the MODIS scan mirror and how it may be changing the effective out-of-band response of the RSB. We find that RSR changes have a small effect on the radiance calibrated using the on-board solar diffuser, generally less than 0.5% in all cases at any time in the missions, with bands 1, 8, and 9 impacted the most

    The 2mrad horizontal crossing angle IR layout for a TeV ILC

    Full text link
    The current status of the 2mrad crossing angle layout for the ILC is reviewed. The scheme developed in the UK and France is described and the performance discussed for a TeV machine. Secondly, the scheme developed at SLAC and BNL is then studied and modified for a TeV machine. We find that both schemes can handle the higher energy beam with modifications, and share many common features.Comment: The proceedings of the 2005 International Linear Collider Workshop, March 2005. 4 pages, 5 figure

    Status report of the baseline collimation system of CLIC. Part II

    Get PDF
    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the optics design has been optimised to improve the collimation efficiency. This report presents the current status of the the post-linac collimation system of CLIC. Part II is mainly dedicated to the study of the betatron collimation system and collimator wakefield effects.Comment: 25 pages, 13 figure

    ATF2 spot size tuning using the rotation matrix

    Get PDF
    The Accelerator Test Facility (ATF2) at KEK aims to experimentally verify the local chromaticity correction scheme to achieve a vertical beam size of 37nm. The facility is a scaled down version of the final focus design proposed for the future linear colliders. In order to achieve this goal, high precision tuning methods are being developed. One of the methods proposed for ATF2 is a novel method known as the ‘rotation matrix’ method. Details of the development and testing of this method, including orthogonality optimisation and simulation methods, are presented

    Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    Get PDF
    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage

    Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    Get PDF
    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands

    Comparison of MODIS Solar Diffuser Stability Monitor Calibration Results for Different Operational Configurations

    Get PDF
    The MODIS instruments on the Terra and Aqua spacecraft use a sunlit solar diffuser (SD), with an optional SD attenuation screen (SDS), to calibrate the reflective solar bands. A solar diffuser stability monitor (SDSM) is used to track the SD reflectance degradation on orbit, by taking a ratio of the detector response when viewing the SD compared to the response when viewing the sun. The MODIS SDSMs have been operated both with and without the SDS in place. The SDSMs have also been operated in both a fixed and an alternating mode. In the alternating mode, the SDSM detectors view the SD, sun, and a dark background in an alternating pattern with the view changing on every MODIS scan within a single orbit. In the fixed mode, the SDSM detectors are fixed on the sun view for one orbit, and then are fixed on the SD view for the following orbit. This paper reviews the history of the SDSM operational configurations used throughout the MODIS missions and discusses the differences in the SD degradation results, which may be due to differences in sun-satellite geometry, SD signal level, and stray light effects. We highlight Aqua SDSM results from two recent dates in October 2017 and July 2019, where both the fixed and alternating mode calibrations were run on the same day, providing clear examples of the calibration differences. Additionally, we show how mixing the results from calibrations done with and without the SDS for Aqua MODIS can provide more stable results

    On-Orbit Characterization of the MODIS SDSM Screen for Solar Diffuser Degradation Estimation

    Get PDF
    MODIS reflective solar bands (RSB) are calibrated on-orbit using a solar diffuser (SD) with its degradation tracked by an on-board solar diffuser stability monitor (SDSM). The SDSM has nine detectors with wavelengths from 0.41 to 0.94 micrometers. It is operated during each scheduled SD calibration event, making alternate observations of the Sun and the SD. Due to erroneous design parameters, which led to misalignment of the key elements in the SDSM, there are significant ripples in the Sun view responses as the solar viewing angle changes. At the mission beginning, the effect of the ripples was eliminated by normalizing each SDSM detector response to the response of detector 9 (D9) at 0.94 micrometers, assuming that D9 had no degradation. However, D9 degradation increases over MODIS operation times. Degradation of up to 2% has been recently observed in D9 for Terra MODIS. A newly implemented approach reduces the Sun view ripples using a look-up table (LUT) constructed using SDSM data carefully selected from a short period early in the mission lifetime. In this paper, we provide an overview of different approaches that have been applied over the years by the MODIS Characterization Support Team (MCST) to track the on-orbit SD degradation. We evaluate the overall SD and SDSM on-orbit performance for both Terra and Aqua MODIS, as well as the impact on the MODIS RSB calibration uncertainty
    corecore