317 research outputs found
Thermal stability and aggregation of sulfolobus solfataricus b-glycosidase are dependent upon the N-e-methylation of specific lysyl residues: critical role of in vivo post-translational modifications.
Methylation in vivo is a post-translational modification observed in several organisms belonging to eucarya, bacteria, and archaea. Although important implications of this modification have been demonstrated in several eucaryotes, its biological role in hyperthermophilic archaea is far from being understood. The aim of this work is to clarify some effects of methylation on the properties of β-glycosidase from Sulfolobus solfataricus, by a structural comparison between the native, methylated protein and its unmethylated counterpart, recombinantly expressed in Escherichia coli. Analysis by Fourier transform infrared spectroscopy indicated similar secondary structure contents for the two forms of the protein. However, the study of temperature perturbation by Fourier transform infrared spectroscopy and turbidimetry evidenced denaturation and aggregation events more pronounced in recombinant than in native β-glycosidase. Red Nile fluorescence analysis revealed significant differences of surface hydrophobicity between the two forms of the protein. Unlike the native enzyme, which dissociated into SDS-resistant dimers upon exposure to the detergent, the recombinant enzyme partially dissociated into monomers. By electrospray mapping, the methylation sites of the native protein were identified. A computational analysis of β-glycosidase three-dimensional structure and comparisons with other proteins from S. solfataricus revealed analogies in the localization of methylation sites in terms of secondary structural elements and overall topology. These observations suggest a role for the methylation of lysyl residues, located in selected domains, in the thermal stabilization of β-glycosidase from S. solfataricu
MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines
MicroRNA (miR)-199b-5p has been shown to regulate Hes-1, a downstream effector of the canonical Notch and noncanonical SHH pathways, whereby it impairs medulloblastoma (MB) cancer stem cells (CSCs) through a decrease in the CD133+/CD15+ cell population. Here, we have developed stable nucleic acid lipid particles (SNALPs) that encapsulate miR-199b-5p. The efficacy of the miR- 199b-5p delivery by these SNALPs is demonstrated by significant impairment of Hes-1 levels and CSC markers in a range of different tumorigenic cell lines: colon (HT- 29, CaCo-2, and SW480), breast (MDA-MB231T and MCF-7), prostate (PC-3), glioblastoma (U-87), and MB(Daoy, ONS-76, and UW-228). After treatment with SNALP miR-199b-5p, there is also impairment of cell pro- liferation and no signs of apoptosis, as measured by cas- pases 3/7 activity and annexin V fluorescence cell sorter analyses. These data strengthen the importance of such carriers for miRNA delivery, which show no cytotoxic effects and provide optimal uptake into cells. Thus, efficient target downregulation in different tumorigenic cell lines will be the basis for future preclinical studies
The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin.
Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins
Precise pose estimation of the NASA Mars 2020 Perseverance rover through a stereo-vision-based approach
Visual Odometry (VO) is a fundamental technique to enhance the navigation capabilities of planetary exploration rovers. By processing the images acquired during the motion, VO methods provide estimates of the relative position and attitude between navigation steps with the detection and tracking of two-dimensional (2D) image keypoints. This method allows one to mitigate trajectory inconsistencies associated with slippage conditions resulting from dead-reckoning techniques. We present here an independent analysis of the high-resolution stereo images of the NASA Mars 2020 Perseverance rover to retrieve its accurate localization on sols 65, 66, 72, and 120. The stereo pairs are processed by using a 3D-to-3D stereo-VO approach that is based on consolidated techniques and accounts for the main nonlinear optical effects characterizing real cameras. The algorithm is first validated through the analysis of rectified stereo images acquired by the NASA Mars Exploration Rover Opportunity, and then applied to the determination of Perseverance's path. The results suggest that our reconstructed path is consistent with the telemetered trajectory, which was directly retrieved onboard the rover's system. The estimated pose is in full agreement with the archived rover's position and attitude after short navigation steps. Significant differences (~10–30 cm) between our reconstructed and telemetered trajectories are observed when Perseverance traveled distances larger than 1 m between the acquisition of stereo pairs
HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning.
White adipose tissue (WAT) can undergo a phenotypic switch, known as browning, in response to environmental stimuli such as cold. Post-translational modifications of histones have been shown to regulate cellular energy metabolism, but their role in white adipose tissue physiology remains incompletely understood. Here we show that histone deacetylase 3 (HDAC3) regulates WAT metabolism and function. Selective ablation of Hdac3 in fat switches the metabolic signature of WAT by activating a futile cycle of de novo fatty acid synthesis and β-oxidation that potentiates WAT oxidative capacity and ultimately supports browning. Specific ablation of Hdac3 in adipose tissue increases acetylation of enhancers in Pparg and Ucp1 genes, and of putative regulatory regions of the Ppara gene. Our results unveil HDAC3 as a regulator of WAT physiology, which acts as a molecular brake that inhibits fatty acid metabolism and WAT browning.Histone deacetylases, such as HDAC3, have been shown to alter cellular metabolism in various tissues. Here the authors show that HDAC3 regulates WAT metabolism by activating a futile cycle of fatty acid synthesis and oxidation, which supports WAT browning
Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms †
Structural design of the optical bench and enclosure for MAORY, adaptive optics module for the ELT
This paper outlines an overview of the mechanical design of the optical bench and the enclosure for MAORY (Multi-conjugate Adaptive Optics RelaY) for the Extremely Large Telescope. MAORY will enable high-angular resolution observations in the near infrared by employing real-time compensation of the wave-front distortions due to atmospheric turbulence and other disturbances on the telescope. The main purpose of the optical bench is to provide support to the opto-mechanical mountings and subsystems that will be integrated on it. The design philosophy behind the proposed architecture is a truss spatial structure with the aim of optimizing the mass of the Main Structure. The enclosure has to protect the optomechanical elements and to achieve a uniform temperature distribution in its internal environment. The mechanical design of the bench and the enclosure was supported by a set of structural FE analyses, to verify the design compliance with ESO (European Southern Observatory) requirements
Genomic analysis of the nomenclatural type strain of the nematode-associated entomopathogenic bacterium Providencia vermicola
Background: Enterobacteria of the genus Providencia are mainly known as opportunistic human pathogens but have been isolated from highly diverse natural environments. The species Providencia vermicola comprises insect pathogenic bacteria carried by entomoparasitic nematodes and is investigated as a possible insect biocontrol agent. The recent publication of several genome sequences from bacteria assigned to this species has given rise to inconsistent preliminary results. Results: The genome of the nematode-derived P. vermicola type strain DSM_17385 has been assembled into a 4.2 Mb sequence comprising 5 scaffolds and 13 contigs. A total of 3969 protein-encoding genes were identified. Multilocus sequence typing with different marker sets revealed that none of the previously published presumed P. vermicola genomes represents this taxonomic species. Comparative genomic analysis has confirmed a close phylogenetic relationship of P. vermicola to the P. rettgeri species complex. P. vermicola DSM_17385 carries a type III secretion system (T3SS-1) with probable function in host cell invasion or intracellular survival. Potentially antibiotic resistance-associated genes comprising numerous efflux pumps and point-mutated house-keeping genes, have been identified across the P. vermicola genome. A single small (3.7 kb) plasmid identified, pPVER1, structurally belongs to the qnrD-type family of fluoroquinolone resistance conferring plasmids that is prominent in Providencia and Proteus bacteria, but lacks the qnrD resistance gene. Conclusions: The sequence reported represents the first well-supported published genome for the taxonomic species P. vermicola to be used as reference in further comparative genomics studies on Providencia bacteria. Due to a striking difference in the type of injectisome encoded by the respective genomes, P. vermicola might operate a fundamentally different mechanism of entomopathogenicity when compared to insect-pathogenic Providencia sneebia or Providencia burhodogranariea. The complete absence of antibiotic resistance gene carrying plasmids or mobile genetic elements as those causing multi drug resistance phenomena in clinical Providencia strains, is consistent with the invertebrate pathogen P. vermicola being in its natural environment efficiently excluded from the propagation routes of multidrug resistance (MDR) carrying genetic elements operating between human pathogens. Susceptibility to MDR plasmid acquisition will likely become a major criterion in the evaluation of P. vermicola for potential applications in biological pest control
Accelerating tomato breeding by exploiting genomic selection approaches
Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures
A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution
With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes
- …
