15 research outputs found

    Kinetic and thermodynamic aspects of Mg and Mg-Ti hydride nanomaterials

    No full text
    Reliable and affordable energy storage represents a bottleneck in a scenario where renewable energy sources become prominent on the energy market. With its high potential energy density and the natural abundance of the element, hydrogen gas is an attractive energy storage medium. But its gaseous nature, its high explosive potential and permeability of gaseous hydrogen through materials pose important limitations on its usability. In this thesis, Mg based nanomaterials with improved potential for applications as hydrogen stores are developed and analyzed. We have addressed the key issues of slow sorption kinetics, high stability and air sensitivity of MgH2 and provided viable solution directions to these challenges.Reactor Institute DelftApplied Science

    In-situ Hydrogen Sorption 2D-ACAR Facility for the Study of Metal Hydrides for Hydrogen Storage

    Get PDF
    We developed a dedicated hydrogen sorption setup coupled to a positron 2D-ACAR (two-dimensional Angular Correlation of Annihilation Radiation) setup employing a 22Na-source, which will enable to collect 2D-ACAR momentum distributions in-situ as a function of temperature, hydrogen pressure and hydrogen content. In parallel, a dedicated glovebox was constructed for handling air-sensitive metal and metal hydride samples, with a special entrance for the 2D-ACAR sample insert. The 2D-ACAR setup was tested in first measurements on a Pd0.75Ag0.25 foil and on a ball-milled MgH2 powder in both the hydrogen loaded and desorbed states. The hydrogen loaded Pd0.75Ag0.25Hx sample was kept under a 1 bar hydrogen pressure to prevent partial desorption during measurements at room temperature. The collected 2D-ACAR distributions of Pd0.75Ag0.25 and Pd0.75Ag0.25Hx showed similar features as observed in previous studies. The broadening of the ACAR distributions observed for the Mg to MgH2 metal-insulator transition was compared in a quantitative manner to ab-initio calculations reported in the literature.RST/Radiation, Science and TechnologyApplied Science

    Fractal disperse hydrogen sorption kinetics in spark discharge generated Mg/NbOx and Mg/Pd nanocomposites

    No full text
    Isothermal hydrogen desorption of spark discharge generated Mg/NbOx and Mg/Pd metal hydride nanocomposites is consistently described by a kinetic model based on multiple reaction rates, in contrast to the Johnson-Mehl-Avrami-Kolmogorov [M. Avrami, J. Phys. Chem. 9, 177 (1941); W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min., Metal. Eng. 135, 416 (1939); A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Mat. 3, 355 (1937); F. Liu, F. Sommer, C. Bos, and E. J. Mittemeijer, Int. Mat. Rev. 52, 193 (2007)] model which is commonly applied to explain the kinetics of metal hydride transformations. The broad range of reaction rates arises from the disperse character of the particle size and the dendritic morphology of the samples. The model is expected to be generally applicable for metal hydrides which show a significant variation in particle sizes, in configuration and/or chemical composition of local surroundings of the reacting nanoparticles.Applied Science

    Probing hydrogen spillover in Pd@MIL-101(Cr) with a focus on hydrogen chemisorption

    No full text
    Palladium nanoparticles can split the dihydrogen bond and produce atomic hydrogen. When the metal nanoparticles are in intimate contact with a hydrogen-atom host, chemisorption of H-atoms by the host has been suggested to occur via the hydrogen spillover mechanism. Metal–organic frameworks were predicted to be able to act as effective chemisorption sites, and increased ambient-temperature hydrogen adsorption was reported on several occasions. The intimate contact was supposedly ensured by the use of a carbon bridge. In this work, we show that it is possible to introduce catalyst palladium particles into MOF's pores and simultaneously ensuring good contact, making the employment of the carbon bridge redundant. The addition of Pd nanoparticles indeed increases the ambient-temperature hydrogen uptake of the framework, but this is found to be solely due to palladium hydride formation. In addition, we show that the hydrogen atoms do not chemisorb on the host framework, which excludes the possibility of hydrogen spillover

    Destabilization of Mg Hydride by Self-Organized Nanoclusters in the Immiscible Mg-Ti System

    No full text
    Mg is an attractive hydrogen storage material not only because of its high gravimetric and volumetric hydrogen capacities but also because of it low material costs. However, the hydride of MgH2 is too stable to release hydrogen under moderate conditions. We demonstrate that the formation of nanometer-sized clusters of Mg reduces the stability of MgH2 by the interface energy effect in the immiscible Mg-Ti system. Ti-rich MgxTi1-x (x <0.5) thin films deposited by magnetron sputtering have a hexagonal close packed (HCP) structure, which forms a face-centered cubic (FCC) hydride phase upon hydrogenation. Positron Doppler broadening depth profiling demonstrates that after hydrogenation, nanometer-sized MgH2 clusters are formed which are coherently embedded in an FCC TiH2 matrix. The P (pressure)-T (optical transmission) isotherms measured by hydrogenography show that these MgH2 clusters are destabilized. This indicates that the formation of nanometer-sized Mg allows for the development of a lightweight and cheap hydrogen storage material with a lower desorption temperature. (Graph Presented)

    Continuous electrochemical oxidation of biomass derived 5-(hydroxymethyl)furfural into 2,5-furandicarboxylic acid

    No full text
    Abstract: A continuous electrochemical process with integrated product separation has been developed for production of 2,5-furandicarboxylic acid (FDCA) by oxidation of 5-(hydroxymethyl)furfural (HMF) in aqueous alkaline media on non-noble Ni/NiOOH foam electrodes at ambient conditions. Initially, voltammetry studies were performed in both, acid and alkaline media, on various catalyst materials: Au, Au3Pd2, Pt, PbO2, Ni/NiOOH and graphite. Preparative electrolysis was performed on Au, Au3Pd2, Pt, PbO2, Ni/NiOOH electrodes in a divided glass cell and Ni/NiOOH showed the best performance with an FDCA yield of ≈ 90% and a Faradaic efficiency of ≈ 80%. The electrolysis conditions were then optimized to industrially relevant conditions in a filter-press type flow reactor with Ni/NiOOH foam anode. HMF concentrations as high as 10 wt% were converted to FDCA at pH 12 in a buffer free 0.1 M Na2SO4 electrolyte with continuous addition of NaOH to maintain constant pH. An FDCA separation yield up to 95% was achieved via pH shift crystallization. The electrolysis and FDCA separation results were used for the design and construction of a bench-scale system where continuous FDCA production, including integrated product separation, was tested and reported in this work. This publication for the first time presents a continuous electrochemical FDCA production system with integrated product separation at industrially relevant product concentrations, 10 wt% HMF, and utilizing non-noble electrode materials. Graphical Abstract: [Figure not available: see fulltext.

    Thermal Stability of MgyTi1-y Thin Films Investigated by Positron Annihilation Spectroscopy

    Get PDF
    Mg-Ti compounds are attractive candidates as hydrogen storage materials for their fast sorption kinetics and high storage capacity. In this context, an investigation of their thermal stability is of great importance. The thermal stability of MgyTi1-y thin films was investigated using positron annihilation spectroscopy. Despite the positive enthalpy of mixing of Mg and Ti, positron Doppler Broadening of Annihilation Radiation (DBAR) depth profiling showed that Mg0.9Ti0.1 films are stable up to 300°C. However, for Mg0.7Ti0.3 films, segregation of Mg and Ti was observed at 300oC by the appearance of a clear Ti signature in the S-W diagrams and in the Doppler broadening depth profiles analyzed using VEPFIT. The thickness of the 250-300 nm thin films remained unchanged during the heating treatments. We further present ab-initio calculations of positron lifetimes of the corresponding metal and metal hydride phases for comparison to our previous positron annihilation lifetime spectroscopy (PALS) study.RST/Radiation, Science and TechnologyApplied Science
    corecore