1,949 research outputs found
Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeriamonocytogenes in food
We present a new nucleic acid lateral flow immunoassay (NALFIA) for the assessment of listeria contamination. The detection procedure starts with enrichment of sample in Half Fraser broth (24 h). Following isolation of DNA, a duplex PCR is performed with two labelled primer sets, one generic and directed to a specific sequence of the gene encoding 16S rRNA from Listeria spp. and the other specific and directed to a part of the prfA gene encoding the central virulence gene regulator from the food pathogen Listeria monocytogenes (3.5 h). The PCR solution is directly added to the one-step assay device and the appearance of a grey/black line is indicative of the presence of specific amplicons (max 15 min). In all tests performed, the method correctly identified L. monocytogenes and strains of Listeria spp. PCR material of over 20 food samples was tested by NALFIA. The method proved to be useful for the detection of L. monocytogenes in different kinds of food sample
Snellere test voor ziekteverwekkers
Onderzoek naar snelle en betrouwbare testmethoden is zwaar, tijdrovend en absoluut niet hip, maar wel belangrijk. Artsen in Afrikaanse plattelandsziekenhuizen en Nederlandse inspecteurs die waken over de volksgezondheid zullen blij zijn met de vorderingen die Aart van Amerongen en zijn medewerkers bij van Food and Biobased Research (FBR) hebben geboekt
Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey
Lateral flow (immuno)assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food and environmental settings. We describe principles of current formats, applications, limitations and perspectives for quantitative monitoring. We illustrate the potentials and limitations of analysis with lateral flow (immuno)assays using a literature survey and a SWOT analysis (acronym for 'strengths, weaknesses, opportunities, threats'). Articles referred to in this survey were searched for on MEDLINE, Scopus and in references of reviewed papers. Search terms included 'immunochromatography', 'sol particle immunoassay', 'lateral flow immunoassay' and 'dipstick assay'
Excitation energy transfer: Study with non-Markovian dynamics
In this paper, we investigate the non-Markovian dynamics of a model to mimic
the excitation energy transfer (EET) between chromophores in photosynthesis
systems. The numerical path integral method is used. This method includes the
non-Markovian effects of the environmental affects and it does not need the
perturbation approximation in solving the dynamics of systems of interest. It
implies that the coherence helps the EET between chromophores through lasting
the transfer time rather than enhances the transfer rate of the EET. In
particular, the non-Markovian environment greatly increase the efficiency of
the EET in the photosynthesis systems.Comment: 5 pages, 5 figure
Probing quantum-mechanical level repulsion in disordered systems by means of time-resolved selectively-excited resonance fluorescence
We argue that the time-resolved spectrum of selectively-excited resonance
fluorescence at low temperature provides a tool for probing the
quantum-mechanical level repulsion in the Lifshits tail of the electronic
density of states in a wide variety of disordered materials. The technique,
based on detecting the fast growth of a fluorescence peak that is red-shifted
relative to the excitation frequency, is demonstrated explicitly by simulations
on linear Frenkel exciton chains.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Colloidal carbon particles as a new label for rapid immunochemical test methods: quantitative computer image analysis of results
Colloidal carbon particles can serve as label in sol particle immunoassays. The universal applicability of these particles in qualitative and (semi)quantitative immunoassays has been demonstrated. Sol particle and/or dipstick immunoassays, not yet optimized in terms of sensitivity, are discussed.\ud
\ud
The colloidal label has been used successfully in a mouse immunoglobulin isotyping kit. Human serum albumin spotted onto nitrocellulose in a concentration range of 7.8 to 1000 ng could be detected using anti-albumin antibody adsorbed onto colloidal carbon particles. It was also possible to perform a competitive assay with this conjugate for a concentration range of free human serum albumin varying from 0.25 to 6.75 ¿g. The Kunitz-type trypsin inhibitor from soybean was determined by a colloidal carbon based immunoassay in a range of 2.5 to 160 ng. In this assay, free and colloidal carbon-bound inhibitor competed for binding specific antibodies spotted onto a nitrocellulose membrane.\ud
\ud
An image- and data-processing procedure has been developed that enables a rapid and simple quantification of colloidal carbon sol particle immunoassays. The average grey level of a spot is taken as a measure for quantitative purposes. This so-called Sol-particle Image Processed ImmunoAssay (SIPIA) procedure is equally well applicable to assays using other colloidal particles
Picosecond fluorescence of intact and dissolved PSI-LHCI crystals
Over the last years many crystal structures of photosynthetic pigment-protein complexes have been determined, and used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here we studied picosecond fluorescence of Photosystem I-Light Harvesting Complex I (PSI-LHCI), a multisubunit pigment protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in literature. In contrast to most studies, the present data can be modeled quantitatively with only 2 compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5+/-2.5 ps) and rates of excitation energy transfer from LHCI to core (kLC) and vice versa (kCL). The ratio R=kCL/kLC between these rates appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. kLC depends slightly but non systematically on detection wavelength, averaging (9.4+/-4.9 ps)(-1). R ranges from 0.5 (below 690 nm) to around 1.3 above 720 nm
Yang-Yang thermodynamics on an atom chip
We investigate the behavior of a weakly interacting nearly one-dimensional
(1D) trapped Bose gas at finite temperature. We perform in situ measurements of
spatial density profiles and show that they are very well described by a model
based on exact solutions obtained using the Yang-Yang thermodynamic formalism,
in a regime where other, approximate theoretical approaches fail. We use
Bose-gas focusing [Shvarchuck etal., Phys. Rev. Lett. 89, 270404 (2002)] to
probe the axial momentum distribution of the gas, and find good agreement with
the in situ results.Comment: extended introduction and conclusions, and minor changes throughout;
accepted for publication in Phys. Rev. Let
Box traps on an atom chip for one-dimensional quantum gases
We present the implementation of tailored trapping potentials for ultracold
gases on an atom chip. We realize highly elongated traps with box-like
confinement along the long, axial direction combined with conventional harmonic
confinement along the two radial directions. The design, fabrication and
characterization of the atom chip and the box traps is described. We load
ultracold (K) clouds of Rb in a box trap, and demonstrate
Bose-gas focusing as a means to characterize these atomic clouds in arbitrarily
shaped potentials. Our results show that box-like axial potentials on atom
chips are very promising for studies of one-dimensional quantum gases.Comment: 9 pages 4 figure
Molecular Mechanics Simulations and Improved Tight-binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment
We present molecular mechanics {and spectroscopic} calculations on prototype
artificial light harvesting systems consisting of chromophores attached to a
tobacco mosaic virus (TMV) protein scaffold. These systems have been
synthesized and characterized spectroscopically, but information about the
microscopic configurations and geometry of these TMV-templated chromophore
assemblies is largely unknown. We use a Monte Carlo conformational search
algorithm to determine the preferred positions and orientations of two
chromophores, Coumarin 343 together with its linker, and Oregon Green 488, when
these are attached at two different sites (104 and 123) on the TMV protein. The
resulting geometric information shows that the extent of disorder and
aggregation properties, and therefore the optical properties of the
TMV-templated chromophore assembly, are highly dependent on the choice of
chromophores and protein site to which they are bound. We used the results of
the conformational search as geometric parameters together with an improved
tight-binding Hamiltonian to simulate the linear absorption spectra and compare
with experimental spectral measurements. The ideal dipole approximation to the
Hamiltonian is not valid since the distance between chromophores can be very
small. We found that using the geometries from the conformational search is
necessary to reproduce the features of the experimental spectral peaks
- …