38 research outputs found
Myoelectric feature extraction using temporal-spatial descriptors for multifunction prosthetic hand control.
We tackle the challenging problem of myoelectric prosthesis control with an improved feature extraction algorithm. The proposed algorithm correlates a set of spectral moments and their nonlinearly mapped version across the temporal and spatial domains to form accurate descriptors of muscular activity. The main processing step involves the extraction of the Electromyogram (EMG) signal power spectrum characteristics directly from the time-domain for each analysis window, a step to preserve the computational power required for the construction of spectral features. The subsequent analyses involve computing 1) the correlation between the time-domain descriptors extracted from each analysis window and a nonlinearly mapped version of it across the same EMG channel; representing the temporal evolution of the EMG signals, and 2) the correlation between the descriptors extracted from differences of all possible combinations of channels and a nonlinearly mapped version of them, focusing on how the EMG signals from different channels correlates with each other. The proposed Temporal-Spatial Descriptors (TSDs) are validated on EMG data collected from six transradial amputees performing 11 classes of finger movements. Classification results showed significant reductions (at least 8%) in classification error rates compared to other methods
Modern Myoelectric Control – Is it Time to Change the Algorithmic Focus?
This paper explores the evolving landscape of Electromyogram (EMG) signal analysis, focusing on the growing prominence of deep learning (DL) algorithms for hand, wrist, and finger movement recognition. Such algorithms often come with high computational costs, potentially limiting clinical translation on resource-limited devices, and igniting more research on reduced complexity models. This prompts the question: is it time to shift the algorithmic focus in EMG pattern recognition, given the reported performance of some light-weight traditional or hybrid methods emphasizing synergy between different EMG signals? A comparative study is implemented between state-of the-art deep learning extension for time series classification, denoted as Random Convolutional Kernel Transform (ROCKET), and simple, yet effective pattern recognition methods tailored to exploit basic forms of EMG signal synergies— Waveform Length Phasors (WLPHASOR), Root-Mean-Squared Phasor (RMSPHASOR), and the proposed novel Multi-Signal Waveform Length (MSWL). Tests are conducted on EMG data from 22 participants performing 11 hand and wrist movements using two EMG armbands (10 and 8 channels, respectively), utilizing the open-source LibEMG toolbox. Preliminary findings suggest that, while DL algorithms exhibit formidable capabilities, the performance gap with traditional EMG feature extraction methods may not be as substantial as anticipated. The observations of this study revealed no significant differences in average accuracies between ROCKET, WLPHASOR, and RMSPHASOR (87% average across participants). Furthermore, MSWL significantly enhances performance to 90%, and the combination of ROCKET+MSWL achieves 91% on average across all subjects. These findings challenge the narrative of DL dominance in EMG pattern recognition, urging a re-evaluation of the algorithmic focus and contributing valuable insights to the debate on effective approaches for extracting meaningful information from EMG signals
A Minimal and Multi-Source Recording Setup for Ankle Joint Kinematics Estimation During Walking Using Only Proximal Information From Lower Limb
In this study, a minimal setup for the ankle joint kinematics estimation is proposed relying only on proximal information of the lower-limb, i.e. thigh muscles activity and joint kinematics. To this purpose, myoelectric activity of Rectus Femoris (RF), Biceps Femoris (BF), and Vastus Medialis (VM) were recorded by surface electromyography (sEMG) from six healthy subjects during unconstrained walking task. For each subject, the angular kinematics of hip and ankle joints were synchronously recorded with sEMG signal for a total of 288 gait cycles. Two feature sets were extracted from sEMG signals, i.e. time domain (TD) and wavelet (WT) and compared to have a compromise between the reliability and computational capacity, they were used for feeding three regression models, i.e. Artificial Neural Networks, Random Forest, and Least Squares - Support Vector Machine (LS-SVM). BF together with LS-SVM provided the best ankle angle estimation in both TD and WT domains (RMSE < 5.6 deg). The inclusion of Hip joint trajectory significantly enhanced the regression performances of the model (RMSE < 4.5 deg). Results showed the feasibility of estimating the ankle trajectory using only proximal and limited information from the lower limb which would maximize a potential transfemoral amputee user's comfortability while facing the challenge of having a small amount of information thus requiring robust data-driven models. These findings represent a significant step towards the development of a minimal setup useful for the control design of ankle active prosthetics and rehabilitative solutions
Phasor-Based Myoelectric Synergy Features: A Fast Hand-Crafted Feature Extraction Scheme for Boosting Performance in Gait Phase Recognition
Gait phase recognition systems based on surface electromyographic signals (EMGs) are crucial for developing advanced myoelectric control schemes that enhance the interaction between humans and lower limb assistive devices. However, machine learning models used in this context, such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), typically experience performance degradation when modeling the gait cycle with more than just stance and swing phases. This study introduces a generalized phasor-based feature extraction approach (PHASOR) that captures spatial myoelectric features to improve the performance of LDA and SVM in gait phase recognition. A publicly available dataset of 40 subjects was used to evaluate PHASOR against state-of-the-art feature sets in a five-phase gait recognition problem. Additionally, fully data-driven deep learning architectures, such as Rocket and Mini-Rocket, were included for comparison. The separability index (SI) and mean semi-principal axis (MSA) analyses showed mean SI and MSA metrics of 7.7 and 0.5, respectively, indicating the proposed approach’s ability to effectively decode gait phases through EMG activity. The SVM classifier demonstrated the highest accuracy of 82% using a five-fold leave-one-trial-out testing approach, outperforming Rocket and Mini-Rocket. This study confirms that in gait phase recognition based on EMG signals, novel and efficient muscle synergy information feature extraction schemes, such as PHASOR, can compete with deep learning approaches that require greater processing time for feature extraction and classification
Dexterous hand gestures recognition based on low-density sEMG signals for upper-limb forearm amputees
Myoelectric Pattern Identification of Stroke Survivors Using Multivariate Empirical Mode Decomposition
Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements
Abstract Background Myoelectric pattern recognition systems can decode movement intention to drive upper-limb prostheses. Despite recent advances in academic research, the commercial adoption of such systems remains low. This limitation is mainly due to the lack of classification robustness and a simultaneous requirement for a large number of electromyogram (EMG) electrodes. We propose to address these two issues by using a multi-modal approach which combines surface electromyography (sEMG) with inertial measurements (IMs) and an appropriate training data collection paradigm. We demonstrate that this can significantly improve classification performance as compared to conventional techniques exclusively based on sEMG signals. Methods We collected and analyzed a large dataset comprising recordings with 20 able-bodied and two amputee participants executing 40 movements. Additionally, we conducted a novel real-time prosthetic hand control experiment with 11 able-bodied subjects and an amputee by using a state-of-the-art commercial prosthetic hand. A systematic performance comparison was carried out to investigate the potential benefit of incorporating IMs in prosthetic hand control. Results The inclusion of IM data improved performance significantly, by increasing classification accuracy (CA) in the offline analysis and improving completion rates (CRs) in the real-time experiment. Our findings were consistent across able-bodied and amputee subjects. Integrating the sEMG electrodes and IM sensors within a single sensor package enabled us to achieve high-level performance by using on average 4-6 sensors. Conclusions The results from our experiments suggest that IMs can form an excellent complimentary source signal for upper-limb myoelectric prostheses. We trust that multi-modal control solutions have the potential of improving the usability of upper-extremity prostheses in real-life applications
Proportional estimation of finger movements from high-density surface electromyography
A fusion of time-domain descriptors for improved myoelectric hand control
© 2016 IEEE. This paper presents a new feature extraction algorithm for the challenging problem of the classification of myoelectric signals for prostheses control. The algorithm employs the orientation between a set of descriptors of muscular activities and a nonlinearly mapped version of them. It incorporates information about the Electromyogram (EMG) signal power spectrum characteristics derived from each analysis window while correlating that with the descriptors of previous windows for robust activity recognition. The proposed idea can be summarized in the following three steps: 1) extract power spectrum moments from the current analysis window and its nonlinearly scaled version in time-domain through Fourier transform relations, 2) compute the orientation between the two sets of moments, and 3) apply data fusion on the resulting orientation features for the current and previous time windows and use the result as the final feature set. EMG data collected from nine transradial amputees performing six classes of movements with different force levels is used to validate the proposed features. When compared to other well-known EMG feature extraction methods, the proposed features produced an improvement of at least 4%
A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition
© 2001-2011 IEEE. The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only
