34 research outputs found
Recommended from our members
Musculoskeletal injuries in real tennis.
Introduction: Real tennis is a growing, unique, and well-established sport. To date, there has been no epidemiological data on real tennis injuries. The primary aim of this retrospective study is to record the incidence and document any trends in real tennis musculoskeletal injuries, so as to improve injury awareness of common and possibly preventable injuries. Methods: A surveillance questionnaire e-mailed to 2,036 Tennis & Rackets Association members to retrospectively capture injuries sustained by amateur and professional real tennis players over their playing careers. Results: A total of 485 (438 males and 47 females) questionnaires were fully completed over 4 weeks. A total of 662 musculoskeletal injuries were recorded with a mean of 1.4 injuries per player (range 0-7). The incidence of sustaining an acute real tennis musculoskeletal injury is 0.4/1000 hrs. The three main anatomical locations reported injured were elbow 15.6% (103/662), knee 11.6% (77/662), and face 10.0% (66/662). The most common structures reported injured were muscle 24% (161/661), tendon 23.4% (155/661), ligament 7.0% (46/661), soft tissue bruising 6.5% (43/661), and eye 6.2% (41/661). The majority of the upper limb injuries were gradual onset (64.7%, 143/221), and the lower limb injuries were sudden onset (72.0%, 188/261). Conclusion: This study uniquely provides valuable preliminary data on the incidence and patterns of musculoskeletal injuries in real tennis players. In addition, it highlights a number of reported eye injuries. The study is also a benchmark for future prospective studies on academy and professional real tennis players
Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics
"Published online: 24 October 2017"PURPOSE:
Anterior cruciate ligament (ACL) reconstruction (ACLR) aims to restore normal knee joint function, stability and biomechanics and in the long term avoid joint degeneration. The purpose of this study is to present the anatomic single bundle (SB) ACLR that emphasizes intraoperative correction of tibiofemoral subluxation that occurs after ACL injury. It was hypothesized that this technique leads to optimal outcomes and better restoration of pathological tibiofemoral joint movement that results from ACL deficiency (ACLD).
METHODS:
Thirteen men with unilateral ACLD were prospectively evaluated before and at a mean follow-up of 14.9 (SD = 1.8) months after anatomic SB ACLR with bone patellar tendon bone autograft. The anatomic ACLR replicated the native ACL attachment site anatomy and graft orientation. Emphasis was placed on intraoperative correction of tibiofemoral subluxation by reducing anterior tibial translation (ATT) and internal tibial rotation. Function was measured with IKDC, Lysholm and the Tegner activity scale, ATT was measured with the KT-1000 arthrometer and tibial rotation (TR) kinematics were measured with 3Dmotion analysis during a high-demand pivoting task.
RESULTS:
The results showed significantly higher TR of the ACL-deficient knee when compared to the intact knee prior to surgery (12.2° ± 3.7° and 10.7° ± 2.6° respectively, P = 0.014). Postoperatively, the ACLR knee showed significantly lower TR as compared to the ACL-deficient knee (9.6°±3.1°, P = 0.001) but no difference as compared to the control knee (n.s.). All functional scores were significantly improved and ATT was restored within normal values (P < 0.001).
CONCLUSIONS:
Intraoperative correction of tibiofemoral subluxation that results after ACL injury is an important step during anatomic SB ACLR. The intraoperative correction of tibiofemoral subluxation along with the replication of native ACL anatomy results in restoration of rotational kinematics of ACLD patients to normal levels that are comparable to the control knee. These results indicate that the reestablishment of tibiofemoral alignment during ACLR may be an important step that facilitates normal knee kinematics postoperatively.
LEVEL OF EVIDENCE:
Level II, prospective cohort study.The authors gratefully acknowledge the funding support from the Hellenic Association of Orthopaedic Surgery and
Traumatology (HAOST-EEXOT)info:eu-repo/semantics/publishedVersio
Biomechanical properties of Bovine tendon xenografts treated with a modern processing method
Xenograft tendons have been used in few human studies, with variable results. With the advent of novel tissue processing techniques, which may mitigate against an immune - mediated rejection response without adversely affecting mech anical properties, there may now be a clinical role for xenograft tendons, particularly in knee ligament reconstruction. We hypothesize that ‘BioCleanse® ’ processed bovine extensor digitorum m edialis (EDM) tendons exhibit favorable time - zero pre - implantati on biomechanical characteristics when compared to both unprocessed bovine EDM tendons and BioCleanse® processed human cadaveric allograft tibialis anterior tendons. In this in vitro case controlled laboratory study, three groups of tendons underwent a 5 - stage static loading test protocol: 15 BioCleanse® bovine (BCB), 15 fresh frozen unprocessed bovine (FFB), and 12 BioCleanse® human allograft (BCA) tendons. Cross - sectional area of th e grafts was measured using an alginate molding technique, and tendons were mounted within an Instron® 5565 Materials Testing System using cryogenic clamps. BCB tendons displayed a higher ultimate tensile stress (p 0.05). BCB tendons had an equivalent cross - sectional area to the BCA tendons (p>0.05) whilst exhibiting a greater failure load, ultimate tensile stre ss , less creep and a higher modu lus of elasticity (p<0.05). The BioCleanse® process d id not adversely affect the time - zero biomechanical roperties of bovine xenograft EDM tendons. BioCleanse® processed bovine xenograft EDM tendons exhibit ed superior biomechanical characteristics when 3 co mpared with BioCleanse® processed allograft tibialis anterior tendons. These findings support further investigation of xenograft tendons in orthopaedic soft tissue reconstructive surgery
Joint replacement surgery:Comparing hospitals
Statistics regarding aspects of hospital inpatient care are readily available in the public domain. This data is used by policy makers, healthcare commissioners and patients, to compare healthcare providers and inform decision-making. However, by convention these statistics are expressed in the form of the arithmetic mean, which is not an optimal tool for comparing healthcare providers. The authors propose that when comparing lengths of inpatient stay following hospital admissions of elective joint replacement surgery, the geometric mean and mode should be used. These measures are more meaningful to patients, and less sensitive to long stay outliers, which some specialist hospitals are predisposed to due to complexity of case mix, as well as for geographic and socioeconomic reasons. We conducted a comparative cohort study, reviewing prospectively collected length of stay data, for a central London teaching hospital and a Home Counties district general hospital. Our results support the use of the geometric mean and mode over the measures currently used. </jats:p
Musculoskeletal injuries in real tennis
JA Humphrey,1 PP Humphrey,2 AS Greenwood,3 JL Anderson,4 HS Markus,5 A Ajuied61Orthopaedic Department, Milton Keynes University Hospital, Milton Keynes, MK65LD, UK; 2School of Pharmacy, University College London, London, WC1N 1AX, UK; 3Department of Sport and Exercise Sciences, St Mary’s University, Twickenham, TW1 4SX, UK; 4Medical Education Department, University of Brighton, Brighton, BN1 9PH, UK; 5Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, UK; 6Orthopaedic Department, Guys’ and St Thomas’ NHS Trust, London SE1 9RT, UKIntroduction: Real tennis is a growing, unique, and well-established sport. To date, there has been no epidemiological data on real tennis injuries. The primary aim of this retrospective study is to record the incidence and document any trends in real tennis musculoskeletal injuries, so as to improve injury awareness of common and possibly preventable injuries.Methods: A surveillance questionnaire e-mailed to 2,036 Tennis & Rackets Association members to retrospectively capture injuries sustained by amateur and professional real tennis players over their playing careers.Results: A total of 485 (438 males and 47 females) questionnaires were fully completed over 4 weeks. A total of 662 musculoskeletal injuries were recorded with a mean of 1.4 injuries per player (range 0–7). The incidence of sustaining an acute real tennis musculoskeletal injury is 0.4/1000 hrs. The three main anatomical locations reported injured were elbow 15.6% (103/662), knee 11.6% (77/662), and face 10.0% (66/662). The most common structures reported injured were muscle 24% (161/661), tendon 23.4% (155/661), ligament 7.0% (46/661), soft tissue bruising 6.5% (43/661), and eye 6.2% (41/661). The majority of the upper limb injuries were gradual onset (64.7%, 143/221), and the lower limb injuries were sudden onset (72.0%, 188/261).Conclusion: This study uniquely provides valuable preliminary data on the incidence and patterns of musculoskeletal injuries in real tennis players. In addition, it highlights a number of reported eye injuries. The study is also a benchmark for future prospective studies on academy and professional real tennis players.Keywords: epidemiology, musculoskeletal injuries, real tenni