448 research outputs found
Statistical Mechanics of Steiner trees
The Minimum Weight Steiner Tree (MST) is an important combinatorial
optimization problem over networks that has applications in a wide range of
fields. Here we discuss a general technique to translate the imposed global
connectivity constrain into many local ones that can be analyzed with cavity
equation techniques. This approach leads to a new optimization algorithm for
MST and allows to analyze the statistical mechanics properties of MST on random
graphs of various types
Exact asymptotics of the freezing transition of a logarithmically correlated random energy model
We consider a logarithmically correlated random energy model, namely a model
for directed polymers on a Cayley tree, which was introduced by Derrida and
Spohn. We prove asymptotic properties of a generating function of the partition
function of the model by studying a discrete time analogy of the KPP-equation -
thus translating Bramson's work on the KPP-equation into a discrete time case.
We also discuss connections to extreme value statistics of a branching random
walk and a rescaled multiplicative cascade measure beyond the critical point
P1.49 (also presented as PD1.05): The Genomics of Young Emergent Lung Cancer: Track: Advanced NSCLC.
Slowdown for time inhomogeneous branching Brownian motion
We consider the maximal displacement of one dimensional branching Brownian
motion with (macroscopically) time varying profiles. For monotone decreasing
variances, we show that the correction from linear displacement is not
logarithmic but rather proportional to . We conjecture that this is
the worse case correction possible
Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer
The interaction between cancer cells and microenvironment has a critical role in tumor development and progression. Although microRNAs regulate all the major biological mechanisms, their influence on tumor microenvironment is largely unexplored. Here, we investigate the role of microRNAs in the tumor-supportive capacity of stromal cells. We demonstrated that miR-15 and miR-16 are downregulated in fibroblasts surrounding the prostate tumors of the majority of 23 patients analyzed. Such downregulation of miR-15 and miR-16 in cancer-associated fibroblasts (CAFs) promoted tumor growth and progression through the reduced post-transcriptional repression of Fgf-2 and its receptor Fgfr1, which act on both stromal and tumor cells to enhance cancer cell survival, proliferation and migration. Moreover, reconstitution of miR-15 and miR-16 impaired considerably the tumor-supportive capability of stromal cells in vitro and in vivo. Our data suggest a molecular circuitry in which miR-15 and miR-16 and their correlated targets cooperate to promote tumor expansion and invasiveness through the concurrent activity on stromal and cancer cells, thus providing further support to the development of therapies aimed at reconstituting miR-15 and miR-16 in advanced prostate cancer. © 2011 Macmillan Publishers Limited All rights reserved
THE EARS PROJECT: A NEW CONCEPT FOR A EUROPEAN REUSABLE SMALLSAT PLATFORM
Space exploitation can be made more affordable - and sustainable - by the development of reusable, low-cost spacecraft. In the EARS project, we aim at the development of an affordable and flexible platform that can be re-used and easily produced in large numbers, targeting the low-cost SmallSat market. The EARS spacecraft is conceived to be launched in Low Earth Orbit to support microgravity manufacturing and a variety of small experiments. The spacecraft is planned to de-orbit after several months in orbit, to perform a controlled re-entry and finally to be recovered in order to deliver its products and results back to the Earth. The spacecraft will be also conceived to be re-used with minimal refurbishment for several times, thus minimizing pollution and cost of access to space. In the EARS project, besides identifying the spacecraft overall architecture and concept of operation, we have focussed on the development of the key technologies needed for its implementation, such as: efficient propulsion system, reliable Guidance, Navigation and Control (GNC) for the re-entry phase and heat shield to prevent major damage to the spacecraft during the re-entry phase. The study has been complemented by an analysis to identify the most promising application field
C-Met/miR-130b axis as novel mechanism and biomarker for castration resistance state acquisition
Although a significant subset of prostate tumors remain indolent during the entire life, the advanced forms are still one of the leading cause of cancer-related death. There are not reliable markers distinguishing indolent from aggressive forms. Here we highlighted a new molecular circuitry involving microRNA and coding genes promoting cancer progression and castration resistance. Our preclinical and clinical data demonstrated that c-Met activation increases miR-130b levels, inhibits androgen receptor expression, promotes cancer spreading and resistance to hormone ablation therapy. The relevance of these findings was confirmed on patients' samples and by in silico analysis on an independent patient cohort from Taylor's platform. Data suggest c-Met/miR-130b axis as a new prognostic marker for patients' risk assessment and as an indicator of therapy resistance. Our results propose new biomarkers for therapy decision-making in all phases of the pathology. Data may help identify high-risk patients to be treated with adjuvant therapy together with alternative cure for castration-resistant forms while facilitating the identification of possible patients candidates for anti-Met therapy. In addition, we demonstrated that it is possible to evaluate Met/miR-130b axis expression in exosomes isolated from peripheral blood of surgery candidates and advanced patients offering a new non-invasive tool for active surveillance and therapy monitoring
Performance of the model for end-stage liver disease score for mortality prediction and the potential role of etiology
Background & Aims: Although the discriminative ability of the model for end-stage liver disease (MELD) score is generally considered acceptable, its calibration is still unclear. In a validation study, we assessed the discriminative performance and calibration of 3 versions of the model: original MELD-TIPS, used to predict survival after transjugular intrahepatic portosystemic shunt (TIPS); classic MELD-Mayo; and MELD-UNOS, used by the United Network for Organ Sharing (UNOS). We also explored recalibrating and updating the model. Methods: In total, 776 patients who underwent elective TIPS (TIPS cohort) and 445 unselected patients (non-TIPS cohort) were included. Three, 6 and 12-month mortality predictions were calculated by the 3 MELD versions: discrimination was assessed by c-statistics and calibration by comparing deciles of predicted and observed risks. Cox and Fine and Grey models were used for recalibration and prognostic analyses. Results: In the TIPS/non-TIPS cohorts, the etiology of liver disease was viral in 402/188, alcoholic in 185/130, and non-alcoholic steatohepatitis in 65/33; mean follow-up±SD was 25±9/19±21 months; and the number of deaths at 3-6-12 months was 57-102-142/31-47-99, respectively. C-statistics ranged from 0.66 to 0.72 in TIPS and 0.66 to 0.76 in non-TIPS cohorts across prediction times and scores. A post hoc analysis revealed worse c-statistics in non-viral cirrhosis with more pronounced and significant worsening in the non-TIPS cohort. Calibration was acceptable with MELD-TIPS but largely unsatisfactory with MELD-Mayo and -UNOS whose performance improved much after recalibration. A prognostic analysis showed that age, albumin, and TIPS indication might be used to update the MELD. Conclusions: In this validation study, the performance of the MELD score was largely unsatisfactory, particularly in non-viral cirrhosis. MELD recalibration and candidate variables for an update to the MELD score are proposed. Lay summary: While the discriminative performance of the model for end-stage liver disease (MELD) score is credited to be fair to good, its calibration, the correspondence of observed to predicted mortality, is still unsettled. We found that application of 3 different versions of the MELD in 2 independent cirrhosis cohorts yielded largely imprecise mortality predictions particularly in non-viral cirrhosis. Thus, we propose a recalibration and suggest candidate variables for an update to the model
- …
