62 research outputs found

    CMC is more than a measure of corticospinal tract integrity in acute stroke patients

    Get PDF
    In healthy subjects, motor cortex activity and electromyographic (EMG) signals from contracting contralateral muscle show coherence in the beta (15-30 Hz) range. Corticomuscular coherence (CMC) is considered a sign of functional coupling between muscle and brain. Based on prior studies, CMC is altered in stroke, but functional significance of this finding has remained unclear. Here, we examined CMC in acute stroke patients and correlated the results with clinical outcome measures and corticospinal tract (CST) integrity estimated with diffusion tensor imaging (DTI). During isometric contraction of the extensor carpi radialis muscle, EMG and magneto encephalographic oscillatory signals were recorded from 29 patients with paresis of the upper extremity due to ischemic stroke and 22 control subjects. CMC amplitudes and peak frequencies at 13-30 Hz were compared between the two groups. In the patients, the peak frequency in both the affected and the unaffected hemisphere was significantly (p < 0.01) lower and the strength of CMC was significantly (p < 0.05) weaker in the affected hemisphere compared to the control subjects. The strength of CMC in the patients correlated with the level of tactile sensitivity and clinical test results of hand function. In contrast, no correlation between measures of CST integrity and CMC was found. The results confirm the earlier findings that CMC is altered in acute stroke and demonstrate that CMC is bidirectional and not solely a measure of integrity of the efferent corticospinal tract.Peer reviewe

    Exploring functional brain networks using independent component analysis:functional brain networks connectivity

    No full text
    Abstract Functional communication between brain regions is likely to play a key role in complex cognitive processes that require continuous integration of information across different regions of the brain. This makes the studying of functional connectivity in the human brain of high importance. It also provides new insights into the hierarchical organization of the human brain regions. Resting-state networks (RSNs) can be reliably and reproducibly detected using independent component analysis (ICA) at both individual subject and group levels. A growing number of ICA studies have reported altered functional connectivity in clinical populations. In the current work, it was hypothesized that ICA model order selection influences characteristics of RSNs as well as their functional connectivity. In addition, it was suggested that high ICA model order could be a useful tool to provide more detailed functional connectivity results. RSNs’ characteristics, i.e. spatial features, volume and repeatability of RSNs, were evaluated, and also differences in functional connectivity were investigated across different ICA model orders. ICA model order estimation had a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Notably, at low model orders neuroanatomically and functionally different units tend to aggregate into large singular RSN components, while at higher model orders these units become separate RSN components. Disease-related differences in functional connectivity also seem to alter as a function of ICA model order. The volume of between-group differences reached maximum at high model orders. These findings demonstrate that fine-grained RSNs can provide detailed, disease-specific functional connectivity alterations. Finally, in order to overcome the multiple comparisons problem encountered at high ICA model orders, a new framework for group-ICA analysis was introduced. The framework involved concatenation of IC maps prior to permutation tests, which enables statistical inferences from all selected RSNs. In SAD patients, this new correction enabled the detection of significantly increased functional connectivity in eleven RSNs.Tiivistelmä Toiminnallisten aivoalueiden välinen viestintä on todennäköisesti avainasemassa kognitiivisissa prosesseissa, jotka edellyttävät jatkuvaa tiedon integraatiota aivojen eri alueiden välillä. Tämä tekee ihmisaivojen toiminnallisen kytkennällisyyden tutkimuksesta erittäin tärkeätä. Kytkennälllisyyden tutkiminen antaa myös uutta tietoa ihmisaivojen osa-alueiden välisestä hierarkiasta. Aivojen hermoverkot voidaan luotettavasti ja toistettavasti havaita lepotilan toiminnasta yksilö- ja ryhmätasolla käyttämällä itsenäisten komponenttien analyysia (engl. Independent component analysis, ICA). Yhä useammat ICA-tutkimukset ovat raportoineet poikkeuksellisia toiminnallisen konnektiviteetin muutoksia kliinisissä populaatioissa. Tässä tutkimuksessa hypotetisoitiin, että ICA:lla laskettaujen komponenttien lukumäärä (l. asteluku) vaikuttaa tuloksena saatujen hermoverkkojen ominaisuuksiin kuten tilavuuteen ja kytkennällisyyteen. Lisäksi oletettiin, että korkea ICA-asteluku voisi olla herkempit tuottamaan yksityiskohtaisia toiminnallisen jaottelun tuloksia. Aivojen lepotilan hermoverkkojen ominaisuudet, kuten anatominen jakautuminen, volyymi ja lepohermoverkkojen havainnoinnin toistettavuus evaluoitin. Myös toiminnallisen kytkennällisyyden erot tutkitaan eri ICA-asteluvuilla. Havaittiin että asteluvulla on huomattava vaikutus aivojen lepotilan hermoverkkojen tilaominaisuuksiin sekä niiden jakautumiseen alaverkoiksi. Pienillä asteluvuilla hermoverkojen neuroanatomisesti erilliset yksiköt pyrkivät keräytymään laajoiksi yksittäisiksi komponenteiksi, kun taas korkeammilla asteluvuilla ne havaitaan erillisinä. Sairauksien aiheuttamat muutokset toiminnallisessa kytkennällisyydessä näyttävät muuttuvan myös ICA asteluvun mukaan saavuttaen maksiminsa korkeilla asteluvuilla. Korkeilla asteluvuilla voidaan havaita yksityiskohtaisia, sairaudelle ominaisia toiminnallisen konnektiviteetin muutoksia. Korkeisiin ICA asteluvun liittyvän tilastollisen monivertailuongelman ratkaisemiseksi kehitimme uuden menetelmän, jossa permutaatiotestejä edeltävien itsenäisten IC-karttoja yhdistämällä voidaan tehdä luotettava tilastollinen arvio yhtä aikaa lukuisista hermoverkoista. Kaamosmasennuspotilailla esimerkiksi kehittämämme korjaus paljastaa merkittävästi lisääntynyttä toiminnallista kytkennällisyyttä yhdessätoista hermoverkossa

    The effect of gray matter ICA and coefficient of variation mapping of BOLD data on the detection of functional connectivity changes in Alzheimer’s disease and bvFTD

    No full text
    Abstract Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in patients with brain atrophy. To encounter this problem, we used a coefficient of variation (CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in order to minimize brain volume effects between groups. The effects of these measures were compared to whole brain ICA dual regression results in Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD patients and 25 healthy controls were included. The quality of the data was controlled by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA (wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were conducted, both of which were performed both before and after data quality control. Decreased FC was detected in posterior DMN in the AD group and in the Salience network in the bvFTD group after combining CV quality control with gmICA. Before CV quality control, the decreased connectivity finding was not detectable in gmICA in neither of the groups. Same finding recurred when exclusion was based on randomization. The subjects excluded due to artifacts noticed in the CV maps had significantly lower temporal signal-to-noise ratio than the included subjects. Data quality measure CV is an effective tool in detecting artifacts from resting state analysis. CV reflects temporal dispersion of the BOLD signal stability and may thus be most helpful for spatial ICA, which has a blind spot in spatially correlating widespread artifacts. CV mapping in conjunction with gmICA yields results suiting previous findings both in AD and bvFTD
    corecore