3,824 research outputs found

    Angular distribution and forward-backward asymmetry of the Higgs-boson decay to photon and lepton pair

    Get PDF
    The Higgs-boson decay h -> gamma l+ l- for various lepton states l = (e, mu, tau) is analyzed. The differential decay width and forward-backward asymmetry are calculated as functions of the dilepton invariant mass in a model where the Higgs boson interacts with leptons and quarks via a mixture of scalar and pseudoscalar couplings. These couplings are partly constrained from data on the decays to leptons, h -> l+ l-, and quarks h -> q \bar{q} (where q = (c, b)), while the Higgs couplings to the top quark are chosen from the two-photon and two-gluon decay rates. Nonzero values of the forward-backward asymmetry will manifest effects of new physics in the Higgs sector. The decay width and asymmetry integrated over the dilepton invariant mass are also presented.Comment: 9 pages, 4 figures, SVJour3 class; v2: minor changes in text, references updated and extended, corresponds to journal versio

    Principles of Japanese model of labour potential and human resource management formation

    Get PDF

    Testing Lorentz Invariance by Comparing Light Propagation in Vacuum and Matter

    Full text link
    We present a Michelson-Morley type experiment for testing the isotropy of the speed of light in vacuum and matter. The experiment compares the resonance frequency of a monolithic optical sapphire resonator with the resonance frequency of an orthogonal evacuated optical cavity made of fused silica while the whole setup is rotated on an air bearing turntable once every 45 s. Preliminary results yield an upper limit for the anisotropy of the speed of light in matter (sapphire) of \Delta c/c < 4x10^(-15), limited by the frequency stability of the sapphire resonator operated at room temperature. Work to increase the measurement sensitivity by more than one order of magnitude by cooling down the sapphire resonator to liquid helium temperatures (LHe) is currently under way.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    Test of the isotropy of the speed of light using a continuously rotating optical resonator

    Full text link
    We report on a test of Lorentz invariance performed by comparing the resonance frequencies of one stationary optical resonator and one continuously rotating on a precision air bearing turntable. Special attention is paid to the control of rotation induced systematic effects. Within the photon sector of the Standard Model Extension, we obtain improved limits on combinations of 8 parameters at a level of a few parts in 101610^{-16}. For the previously least well known parameter we find κ~eZZ=(1.9±5.2)×1015\tilde \kappa_{e-}^{ZZ} =(-1.9 \pm 5.2)\times 10^{-15}. Within the Robertson-Mansouri-Sexl test theory, our measurement restricts the isotropy violation parameter βδ12\beta -\delta -\frac 12 to (2.1±1.9)×1010(-2.1\pm 1.9)\times 10^{-10}, corresponding to an eightfold improvement with respect to previous non-rotating measurements.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mechanics on Lie Groups and Methods of Group Algebras

    Full text link
    In Part I of this series we presented the general ideas of applying group-algebraic methods for describing quantum systems. The treatment was there very "ascetic" in that only the structure of a locally compact topological group was used. Below we explicitly make use of the Lie group structure. Basing on differential geometry enables one to introduce explicitly representation of important physical quantities and formulate the general ideas of quasiclassical representation and classical analogy
    corecore