356 research outputs found

    Fundamentals of heat measurement

    Get PDF
    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry

    Polymers in linear shear flow: a numerical study

    Full text link
    We study the dynamics of a single polymer subject to thermal fluctuations in a linear shear flow. The polymer is modeled as a finitely extendable nonlinear elastic FENE dumbbell. Both orientation and elongation dynamics are investigated numerically as a function of the shear strength, by means of a new efficient integration algorithm. The results are in agreement with recent experiments.Comment: 7 pages, see also the preceding paper (http://arxiv.org/nlin.CD/0503028

    Single polymer dynamics: coil-stretch transition in a random flow

    Full text link
    By quantitative studies of statistics of polymer stretching in a random flow and of a flow field we demonstrate that the stretching of polymer molecules in a 3D random flow occurs rather sharply via the coil-stretch transition at the value of the criterion close to theoretically predicted.Comment: 4 pages, 5 figure

    Lecture Course “Modern Physics”

    Get PDF
    In the paper, the structure of the lecture course “Modern Physics” is described in detail. The course is based on a logical presentation of modern ideas about quantum-, atomic-, nuclear-, and molecular physics as well as astrophysics. A special attention is paid to a relatively new interdisciplinary research field, namely the physics of open systems, and to the study of clusters as one of the most promising scientific areas. Separate chapters of the textbook are devoted to nonlinear optics, quantum information, structure and dynamics of molecules. The fundamental laws and concepts of modern physics, their relationship and origin are comprehensively discussed. It is underlined that this lecture course is intended, first of all, for students of technical universities, postgraduate students of relevant specialties, as well as professors of vocation-related subjects. The inclusion of new sections of physics in the curricula of universities is rationalized, in particular, by the fact that physics is closely related to engineering. Due to this fact, the important role that physics plays in society becomes especially evident. The paper may also be of interest to those who are fond of physics and its state-of-the art

    Aspects of actoprotective activity of certain natural compounds with different chemical structure

    Get PDF
    Objective: the purpose of the present research was the complex assessment of the influence of natural compounds on high-speed characteristics, working capacity, endurance of laboratory mice during physical activities. Materials and methods: actoprotective activity of natural compounds was estimated by the method of shuttle swimming in laboratory mice, anti-hypoxic activity of natural compounds was evaluated on two models: histotoxic and circulatory model. Results: administration of the ATACL compound increased the high-speed and power characteristics and endurance of laboratory animals and also positively affected both histotoxic and circulatory hypoxia. Conclusions: study results showed that compounds under the ATACL code had the most profound actoprotective and anti-hypoxic effects in comparison with other studied compounds. At the same time the pharmacological effect of the use of this compound was comparable to that of the use of reference drugs at all stages of the experiment

    Stretching of polymers around the Kolmogorov scale in a turbulent shear flow

    Full text link
    We present numerical studies of stretching of Hookean dumbbells in a turbulent Navier-Stokes flow with a linear mean profile, =Sy. In addition to the turbulence features beyond the viscous Kolmogorov scale \eta, the dynamics at the equilibrium extension of the dumbbells significantly below eta is well resolved. The variation of the constant shear rate S causes a change of the turbulent velocity fluctuations on all scales and thus of the intensity of local stretching rate of the advecting flow. The latter is measured by the maximum Lyapunov exponent lambda_1 which is found to increase as \lambda_1 ~ S^{3/2}, in agreement with a dimensional argument. The ensemble of up to 2 times 10^6 passively advected dumbbells is advanced by Brownian dynamics simulations in combination with a pseudospectral integration for the turbulent shear flow. Anisotropy of stretching is quantified by the statistics of the azimuthal angle ϕ\phi which measures the alignment with the mean flow axis in the x-y shear plane, and the polar angle theta which determines the orientation with respect to the shear plane. The asymmetry of the probability density function (PDF) of phi increases with growing shear rate S. Furthermore, the PDF becomes increasingly peaked around mean flow direction (phi= 0). In contrast, the PDF of the polar angle theta is symmetric and less sensitive to changes of S.Comment: 16 pages, 14 Postscript figures (2 with reduced quality

    Characterization of breast cancer DNA content profiles as a prognostic tool

    No full text
    Worldwide, breast cancer in women remains to be the most common malignancy that in a considerable proportion shows the resistance to genotoxic treatments and poor outcome. Chromosomal instability manifested as aneuploidy represents an integral cha­racteristics of the malignant genotype not only because of the selection of mutated aneuploid sub-clones that stipulate the tumor progression, but also because of the reversible endopolyploidy of tumor cells that serves for the endless maintenance of therapy-resistant tumor stem cells. Therefore, cytometric determination of DNA content in tissue samples for detecting malignancy, monitoring responses to therapy, and prognosing disease outcome needs to be revived. Both flow and image cytometry are most frequently used for generation of DNA content profiles (histograms), interpretation of which, however, may have some caveats. This review presents the major characterization criteria and analysis tools for breast cancer DNA histograms. Key Words: breast cancer, aneuploidy, DNA content analysis, DNA histogram, flow cytometry, image cytometry

    Dynamics of threads and polymers in turbulence: power-law distributions and synchronization

    Full text link
    We study the behavior of threads and polymers in a turbulent flow. These objects have finite spatial extension, so the flow along them differs slightly. The corresponding drag forces produce a finite average stretching and the thread is stretched most of the time. Nevertheless, the probability of shrinking fluctuations is significant and is known to decay only as a power-law. We show that the exponent of the power law is a universal number independent of the statistics of the flow. For polymers the coil-stretch transition exists: the flow must have a sufficiently large Lyapunov exponent to overcome the elastic resistance and stretch the polymer from the coiled state it takes otherwise. The probability of shrinking from the stretched state above the transition again obeys a power law but with a non-universal exponent. We show that well above the transition the exponent becomes universal and derive the corresponding expression. Furthermore, we demonstrate synchronization: the end-to-end distances of threads or polymers above the transition are synchronized by the flow and become identical. Thus, the transition from Newtonian to non-Newtonian behavior in dilute polymer solutions can be seen as an ordering transition.Comment: 13 pages, version accepted to Journal of Statistical Mechanic

    Study of dose-dependent actoprotective effect of ATACL on physical performancend psychoemotional status of animals under exhausting exercise

    Get PDF
    The aim of the study was to investigate the dose-dependent actoprotective effect of ATACL on physical performance and psychoemotional status of animals under conditions of exhausting exercis
    corecore