506 research outputs found

    Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping

    Get PDF
    The goal of our study was to examine whether the in vivo force-length behavior, work and elastic energy savings of distal muscle-tendon units in the legs of tammar wallabies (Macropus eugenii) change during level versus incline hopping. To address this question, we obtained measurements of muscle activation (via electromyography), fascicle strain (via sonomicrometry) and muscle-tendon force (via tendon buckles) from the lateral gastrocnemius (LG) and plantaris (PL) muscles of tammar wallabies trained to hop on a level and an inclined (10°, 17.4% grade) treadmill at two speeds (3.3 m s^(-1) and 4.2 m s^(-1)). Similar patterns of muscle activation, force and fascicle strain were observed under both level and incline conditions. This also corresponded to similar patterns of limb timing and movement (duty factor, limb contact time and hopping frequency). During both level and incline hopping, the LG and PL exhibited patterns of fascicle stretch and shortening that yielded low levels of net fascicle strain [LG: level, -1.0±4.6% (mean ± s.e.m.) vs incline, 0.6±4.5%; PL: level, 0.1±1.0% vs incline, 0.4±1.6%] and muscle work (LG: level, -8.4±8.4 J kg^(-1) muscle vs incline, -6.8±7.5 J kg^(-1) muscle; PL: level, -2.0±0.6 J kg^(-1) muscle vs incline, -1.4±0.7 J kg^(-1) muscle). Consequently, neither muscle significantly altered its contractile dynamics to do more work during incline hopping. Whereas electromyographic (EMG) phase, duration and intensity did not differ for the LG, the PL exhibited shorter but more intense periods of activation, together with reduced EMG phase (P<0.01), during incline versus level hopping. Our results indicate that design for spring-like tendon energy savings and economical muscle force generation is key for these two distal muscle-tendon units of the tammar wallaby, and the need to accommodate changes in work associated with level versus incline locomotion is achieved by more proximal muscles of the limb

    Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis)

    Get PDF
    In vivo measurements of strain in the femur and tibia of Iguana iguana (Linnaeus) and Alligator mississippiensis (Daudin) have indicated three ways in which limb bone loading in these species differs from patterns observed in most birds and mammals: (i) the limb bones of I. iguana and A. mississippiensis experience substantial torsion, (ii) the limb bones of I. iguana and A. mississippiensis have higher safety factors than those of birds or mammals, and (iii) load magnitudes in the limb bones of A. mississippiensis do not decrease uniformly with the use of a more upright posture. To verify these patterns, and to evaluate the ground and muscle forces that produce them, we collected three-dimensional kinematic and ground reaction force data from subadult I. iguana and A. mississippiensis using a force platform and high-speed video. The results of these force/kinematic studies generally confirm the loading regimes inferred from in vivo strain measurements. The ground reaction force applies a torsional moment to the femur and tibia in both species; for the femur, this moment augments the moment applied by the caudofemoralis muscle, suggesting large torsional stresses. In most cases, safety factors in bending calculated from force/video data are lower than those determined from strain data, but are as high or higher than the safety factors of bird and mammal limb bones in bending. Finally, correlations between limb posture and calculated stress magnitudes in the femur of I. iguana confirm patterns observed during direct bone strain recordings from A. mississippiensis: in more upright steps, tensile stresses on the anterior cortex decrease, but peak compressive stresses on the dorsal cortex increase. Equilibrium analyses indicate that bone stress increases as posture becomes more upright in saurians because the ankle and knee extensor muscles exert greater forces during upright locomotion. If this pattern of increased bone stress with the use of a more upright posture is typical of taxa using non-parasagittal kinematics, then similar increases in load magnitudes were probably experienced by lineages that underwent evolutionary shifts to a non-sprawling posture. High limb bone safety factors and small body size in these lineages could have helped to accommodate such increases in limb bone stress

    In vivo locomotor strain in the hind limb bones of Alligator mississipiensis and Iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture.

    Get PDF
    Limb postures of terrestrial tetrapods span a continuum from sprawling to fully upright; however, most experimental investigations of locomotor mechanics have focused on mammals and ground-dwelling birds that employ parasagittal limb kinematics, leaving much of the diversity of tetrapod locomotor mechanics unexplored. This study reports measurements of in vivo locomotor strain from the limb bones of lizard (Iguana iguana) and crocodilian (Alligator mississippiensis) species, animals from previously unsampled phylogenetic lineages with non-parasagittal limb posture and kinematics. Principal strain orientations and shear strain magnitudes indicate that the limb bones of these species experience considerable torsion during locomotion. This contrasts with patterns commonly observed in mammals, but matches predictions from kinematic observations of axial rotation in lizard and crocodilian limbs. Comparisons of locomotor load magnitudes with the mechanical properties of limb bones in Alligator and Iguana indicate that limb bone safety factors in bending for these species range from 5.5 to 10.8, as much as twice as high as safety factors previously calculated for mammals and birds. Limb bone safety factors in shear (3.9-5.4) for Alligator and Iguana are also moderately higher than safety factors to yield in bending for birds and mammals. Finally, correlations between limb posture and strain magnitudes in Alligator show that at some recording locations limb bone strains can increase during upright locomotion, in contrast to expectations based on size-correlated changes in posture among mammals that limb bone strains should decrease with the use of an upright posture. These data suggest that, in some lineages, strain magnitudes may not have been maintained at constant levels through the evolution of a non-sprawling posture unless the postural change was accompanied by a shift to parasagittal kinematics or by an evolutionary decrease in body size

    Optic flow stabilizes flight in ruby-throated hummingbirds

    Get PDF
    Flying birds rely on visual cues for retinal image stabilization by negating rotation-induced optic flow, the motion of the visual panorama across the retina, through corrective eye and head movements. In combination with vestibular and proprioceptive feedback, birds may also use visual cues to stabilize their body during flight. Here, we test whether artificially induced wide-field motion generated through projected visual patterns elicits maneuvers in body orientation and flight position, in addition to stabilizing vision. To test this hypothesis, we present hummingbirds flying freely within a 1.2 m cylindrical visual arena with a virtual surround rotated at different speeds about its vertical axis. The birds responded robustly to these visual perturbations by rotating their heads and bodies with the moving visual surround, and by adjusting their flight trajectories, following the surround. Thus, similar to insects, hummingbirds appear to use optic flow cues to control flight maneuvers as well as to stabilize their visual inputs

    Scaling of Terrestrial Support: Differing Solutions to Mechanical Constraints of Size

    Get PDF
    Terrestrial animals and plants span an enormous size range, and yet even distantly related groups are constructed of similar materials (e.g., bone, wood, muscle, and tendon). As with many physiological processes, evolutionary and ontogenetic changes in size impose constraints of scale on the mechanical design and function of skeletal support systems that are built of materials having similar properties. Adequate design requires that the capacity of skeletal elements (and muscles) for force transmission safely exceeds the levels required for biological support and movement. This is the case when the force transmitted per unit cross-sectional area of the material, defined as a mechanical stress (= F/,4, e.g., N/mm2), does not exceed the material&apos;s strength (the maximum stress that the material can withstand before faihrre). Clearly, larger structures can support larger forces more safely. The important design consideration, however, is whether changes in force requirements are matched by comparable changes in tissue cross-sectional area in order to keep maximal stresses and, thus, safety factors (defined as failure stress/peak functional stress) constant as size changes. Scale-invariant features (bone strength, timber strength, and peak muscle stress), therefore, require size-dependent changes in other features if the functional integrity of support systems is to be maintained over a broad size range (see also Li this volume). What are the features of terrestrial skeletal support systems that vary in a regular way with changes in size

    Walking and Running in the Red-Legged Running Frog, Kassina Maculata

    Get PDF
    Although most frog species are specialized for jumping or swimming, Kassina maculata (red-legged running frog) primarily uses a third type of locomotion during which the hindlimbs alternate. In the present study, we examined Kassina\u27s distinct locomotory mode to determine whether these frogs walk or run and how their gait may change with speed. We used multiple methods to distinguish between terrestrial gaits: the existence or absence of an aerial phase, duty factor, relative footfall patterns and the mechanics of the animal\u27s center of mass (COM). To measure kinematic and kinetic variables, we recorded digital video as the animals moved over a miniature force platform (N=12 individuals). With respect to footfall patterns, the frogs used a single gait and walked at all speeds examined. Duty factor always exceeded 0.59. Based on COM mechanics, however, the frogs used both walking and running gaits. At slower speeds, the fluctuations in the horizontal kinetic energy (Ek) and gravitational potential energy (Ep) of the COM were largely out of phase, indicating a vaulting or walking gait. In most of the trials, Kassina used a combined gait at intermediate speeds, unlike cursorial animals with distinct gait transitions. This combined gait, much like a mammalian gallop, exhibited the mechanics of both vaulting and bouncing gaits. At faster speeds, the Ek and Ep of Kassina\u27s COM were more in phase, indicating the use of a bouncing or running gait. Depending on the definition used to distinguish between walking and running, Kassina either only used a walking gait at all speeds or used a walking gait at slower speeds but then switched to a running gait as speed increased

    In Vivo muscle force-length behavior during steady-speed hopping in tammar wallabies

    Get PDF
    © The Company of BiologistsModerate to large macropodids can increase their speed while hopping with little or no increase in energy expenditure. This has been interpreted by some workers as resulting from elastic energy savings in their hindlimb tendons. For this to occur, the muscle fibers must transmit force to their tendons with little or no length change. To test whether this is the case, we made in vivo measurements of muscle fiber length change and tendon force in the lateral gastrocnemius (LG) and plantaris (PL) muscles of tammar wallabies Macropus eugenii as they hopped at different speeds on a treadmill. Muscle fiber length changes were less than +/-0.5 mm in the plantaris and +/-2.2 mm in the lateral gastrocnemius, representing less than 2 % of total fiber length in the plantaris and less than 6 % in the lateral gastrocnemius, with respect to resting length. The length changes of the plantaris fibers suggest that this occurred by means of elastic extension of attached cross-bridges. Much of the length change in the lateral gastrocnemius fibers occurred at low force early in the stance phase, with generally isometric behavior at higher forces. Fiber length changes did not vary significantly with increased hopping speed in either muscle (P>0.05), despite a 1. 6-fold increase in muscle-tendon force between speeds of 2.5 and 6.0 m s-1. Length changes of the PL fibers were only 7+/-4 % and of the LG fibers 34+/-12 % (mean +/- S.D., N=170) of the stretch calculated for their tendons, resulting in little net work by either muscle (plantaris 0.01+/-0.03 J; gastrocnemius -0.04+/-0.30 J; mean +/- s.d. ). In contrast, elastic strain energy stored in the tendons increased with increasing speed and averaged 20-fold greater than the shortening work performed by the two muscles. These results show that an increasing amount of strain energy stored within the hindlimb tendons is usefully recovered at faster steady hopping speeds, without being dissipated by increased stretch of the muscles' fibers. This finding supports the view that tendon elastic saving of energy is an important mechanism by which this species is able to hop at faster speeds with little or no increase in metabolic energy expenditure.Andrew A. Biewener, David D. Konieczynski and Russell V. Baudinett
    • …
    corecore