
Scaling of Terrestrial Support: Differing
Solutions to Mechanical Constraints of Size

Andrew A. Biewener

Terrestrial animals and plants span an enormous size range, and yet even dis-
tantly related groups are constructed of similar materials (e.g., bone, wood,
muscle, and tendon). As with many physiological processes, evolutionary and
ontogenetic changes in size impose constraints of scale on the mechanical de-
sign and function of skeletal support systems that are built of materials having
similar properties. Adequate design requires that the capacity of skeletal ele-
ments (and muscles) for force transmission safely exceeds the levels required
for biological support and movement. This is the case when the force transmit-
ted per unit cross-sectional area of the material, defined as a mechanical stress
(= F/,4, e.g., N/mm2), does not exceed the material’s strength (the maximum
stress that the material can withstand before faihrre).  Clearly, larger structures
can support larger forces more safely. The important design consideration,
however, is whether changes in force requirements are matched by compara-
ble changes in tissue cross-sectional area in order to keep maximal stresses and,
thus, safety factors (defined as failure stress/peak functional stress) constant
as size changes. Scale-invariant features (bone strength, timber strength, and
peak muscle stress), therefore, require size-dependent changes in other fea-
tures if the functional integrity of support systems is to be maintained over
a broad size range (see also Li this volume). What are the features of terres-
trial skeletal support systems that vary in a regular way with changes in size,
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and are these scale-dependent features ones that operate across different size
ranges and obey general biological scaling laws?

Because the forces acting on a structure are likely to vary in proportion
to the organism’s weight and, hence, are proportional to its volume (aV),
stress is predicted to increase with size due to the disproportionate scaling
of volume versus area (V/A). This also implies a scale-dependent increase in
tissue strain (defined as the deformation of the tissue under mechanical load
divided by its unloaded length, or dl/L).  Stress (cr)  and strain (E) are related
by the elastic modulus (E) of the material, so that for linearly elastic mate-
rials, u = Es.  Isometric, or geometrically similar, scaling predicts that larger
animals and plants are subjected to greater stresses and strains, which should
increase oM1j3.  For organisms built of similar materials this suggests a drastic
reduction in safety factor at larger sizes. Consequently, geometrically similar
organisms likely face major constraints for meeting the force requirements of
support and movement on land with the evolution of large body size. In order
to avoid an increase in tissue stress and strain, and an increased probability of
mechanical failure (which results directly from excessive tissue strain), larger
organisms must either scale with strong allometry, restrict their size range or
functional capacity, or evolve a means for reducing weight-specific forces to
match the mass-specific decrease in tissue cross-sectional area.

In this chapter, I explore how different-sized terrestrial mammals achieve
generally similar safety factors. The scaling of muscle mass and area, which
limits locomotor stress capacity and underlies musculoskeletal design, may
be linked to the 3/4 power scaling of metabolic energy supply for force gen-
eration. However, in contrast to arguments that a single set of scaling laws
may explain the design architecture of respiratory and vascular supply net-
works (see Brown et al. this volume) associated with the 3/4  power scaling
of metabolism, I argue that similar safety factors are achieved in the mam-
malian musculoskeletal system by differing solutions to mechanical constraints
of size. Further, I examine whether similar constraints operate over different
size ranges within these animals. In particular, is peak stress relative to tissue
strength the limiting constraint at all sizes? I also discuss how differing design
constraints may also operate at different scales of size within a single individ-
ual, by examining the branching architecture of a tree. Finally, I consider how
musculoskeletal scaling to, maintain similar stress matches observed scaling
patterns of whole-body and leg spring stiffness (Farley [12]).

1 SIZE-RELATED CHANGES IN LOCOMOTOR POSTURE
AND MUSCLE MECHANICAL ADVANTAGE

Despite the constancy of their material properties, the skeletal and muscular
systems of terrestrial mammals scale near isometry, or with only slight posi-
tive allometry over much of their size range (> 104)  [l, 2, 71.  Because of this,
adjustments of bone and muscle architecture are insufficient to maintain sim-
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ilar locomotor stress. In order to achieve comparable safety factors, terrestrial
mammals, ranging in size from 0.1 to 300 kg body mass, have evolved size-
dependent changes in limb posture [8].  A shift from crouched postures at small
sizes to more upright postures at large sizes enables a reduction in the ratio
of muscular force to ground reaction force (o body weight, W)  by increasing
the effective mechanical advantage (EMA  = r/R) of limb muscles (Figure 1).
This size-related shift in limb posture during terrestrial locomotion means
that muscle forces do not scale proportionally to body weight but, rather, scale
CUWO.‘~.  For example, whereas muscular forces (F) developed in a chipmunk at
a gallop are 10 times the ground reaction force (G), they are nearly equal to the
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FIGURE 1 Scaling of posture-related muscle mechanical advantage (EMA  = r/R,
depicted in the upper left inset) in terrestrial mammals plotted against body mass on
logarithmic coordinates. Least-squares (L-S) regression equations for forelimb and
hindlimb  show a similar pattern with the combined scaling of muscle EMAcxM*.~’
(which implies muscle force F~xM*.‘~).  Changes from crouched locomotor postures in
small mammals to more upright postures in larger mammals explains the similarity
of peak bone and muscle stress in different-sized species.
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TABLE 1 Allometric and theoretical scaling relationships of bone and muscle stress,
in terrestrial mammals.

Area Force Stress Reference

Bone ,~0.72 ,M0.73 ,Mo.ol Biewener [7,  81
Muscle ,Mo.79 ,,0.73 QM-‘.O* Alexander et al. [l]

Theoretical oM314 CuM3/4
and Biewener [S]

CYMO

ground force exerted by a horse. By increasing limb mechanical advantage and
reducing mass-specific muscle forces over this size range, terrestrial mammals
are able to maintain nearly equivalent bone and muscle stresses (Table 1).
This is supported by the observation of similar stresses (and strains) within
the long bones of different-sized mammals [9,  261.

2 IS THERE A THEORETICAL BASIS FOR A LINK
BETWEEN THE BIOMECHANICS  OF MUSCLE SCALING
AND ENERGY SUPPLY?

These empirical observations suggest the possibility that the scaling of mus-
cle forces (M3j4)  over a considerable portion of the size range of terrestrial
mammals may be related to the more general 3/4 power scaling of metabolic
and transport processes (see Table 1 and Brown et al. this volume). Because
the mechanical properties of vertebrate skeletal muscle are generally scale
invariant (i.e., constant stress and strain), muscle force generating require-
ments must scale proportional to scale-dependent changes in muscle fiber
cross-sectional area, which is achieved through the scaling of limb posture
and muscle mechanical advantage. Evidence that the cost of force generation
by skeletal muscles during locomotion largely determines the scaling of en-
ergy cost in different-sized mammals [18,  291  indicates a metabolic link to
the scaling of muscle force. Because the muscles of different-sized mammals
generate similar forces per unit volume (the decrease in mass-specific force
is offset by the longer fibers of larger animals), the cost of generating mus-
cle force appears to depend mainly on the rates of force development and
muscle shortening. With their slower stride frequencies (oM-‘.l’)  [15]  and
longer periods of limb support, larger animals expend less energy than small
animals to support a given ,weight  of their body while running. Consequently,
the scaling of metabolic cost of transport and maximum aerobic capacity [28]
scales close to M314  (empirical range: oMO.‘O  to 0.080).  This suggests that the
aerobic rate of ATP supply and the amount of ATP consumed by the muscles
to move a given distance are matched to the biomechanical requirements of
muscle force generation, at least for mammals ranging from 0.1 to 300 kg in
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size. Do similar mechanisms apply more generally across the full size range oft
terrestrial mammals?

3 STRESS-SIMILARITY SCALING AT GIANT SIZE:
POSITIVE SKELETAL ALLOMETRY

Economos [ll] suggests that different scaling relationships and, by implication,
mechanical constraints may apply to large versus small terrestrial mammals
(which he has estimated to occur at about 20 kg body mass). Consistent
with this, but at a larger size, posture-related changes in limb mechanical
advantage at sizes above 300 kg body mass appear to be constrained, such
that positive allometric changes in skeletal shape are required to maintain
adequate safety factors in extremely large terrestrial species. In a study com-
paring the scaling of different-sized carnivoran families with previous studies
of bovids [20]  and ceratomorphs (rhinos, tapirs, and their fossil relatives) [24],
John Bertram and I [6]  found evidence that, over different size ranges, these
groups of terrestrial mammals exhibit differing allometric scaling (Figure 2),
with ursids closely matching the elastically similar scaling (LQD’.‘~)  [19]  ob-
served within bovids. As a larger size group, ceratomorphs scale with stronger
positive allometry, close to static stress similarity (L&o.5)  [19].  At smaller
sizes, carnivorans and small bovids scale closer to geometric similarity (LaD).
The increasingly more robust scaling within larger sized groups of terrestrial
mammals, particularly within ceratomorphs, is also likely associated with re-
ductions in locomotor performance (maximum speed and maneuverability);
however, other than for largely anecdotal evidence [14]  constraints on locomo-
tor performance at extremely large sizes remain to be demonstrated. It is the
case that elephants are unable to trot or gallop (13, 161  and their maximum
running speed is considerably less than fleet bovids and cursorial carnivores,
but measurements of limb mechanical advantage have not yet been made for
these terrestrial giants.

4 GEOMETRIC SCALING AT SMALL SIZE: A
CONSTRAINT OF STIFFNESS VERSUS STRENGTH?

In most cases, limits on physiological and mechanical performance are gener-
ally analyzed in terms of the effect of a size increase, rather than a consid-
eration of the implications of an (evolutionary) size decrease. Choosing the
particular size from which scale-dependent changes are considered is equally
important. In an evolutionary context, the reference size for considering scale
effects should be the size of the basal ancestral group from which the group
evolved. For eutherian mammals this would be in the range of 0.1 to 1.0 kg.
What are the consequences when a lineage of animals or plants evolve to
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FIGURE 2 Differential scaling of tibial dimensions (length versus anteroposterior
diameter on logarithmic coordinates) in bovids (small closed squares [20]),  carnivo-
rans (small crosses [6]) and ceratomorphs (open squares [24]).  Small bovids (L-S
slope = 0.89, r = 0.90) and small carnivorans (mustelids, procyonids, and viverrids:
L-S slope = 0.85, r = 0.98) scale similarly, with only slight allometry; whereas, large
bovids (L-S slope= 0.48, r = 0.83) and large carnivorans (ursids and felids: L-S
slope = 0.70, r = 0.95) scale with strong allometry, approaching the extremely ro-
bust scaling observed for ceratomorphs (L-S slope = 0.47, r = 0.98). All regressions
are significant at p < 0.01. L-S regression was used to compare the data from the
three studies. The large-bovid line (A) parallels the ceratomorph line (B) but with a
higher intercept, indicating their longer tibiae. The largest carnivoran  species closely
overlap the ceratomorph regression. From Bertram  and Biewener [6].  Printed with
permission from Wiley-Liss, Inc., a division of John Wiley & Sons. Inc.

smaller size? In terms of mechanical stress, geometric scaling as well as elasti-
cally similar scaling predict a decrease in stress with decreasing size (Figure 3).
This results from decreases in weight-related forces that exceed reductions in
bone, muscle, and tendon cross-sectional area. Consequently, smaller geomet-
rically similar animals can also be expected to have relatively greater limb
stiffness. That is to say, the structural elements of the limbs of smaller an-
imals are likely to undergo smaller deflections for their size compared with
the limb elements of larger animals. The nearly geometric scaling of small to
medium-sized mammalian taxa (weighing 0.03 to 30 kg) suggests, therefore,
that stiffness of support elements, and their effect on overall limb stiffness,
may be the limiting design constraint rather than strength (i.e., peak stress).

Why is stiffness important? One property of muscles that is strongly af-
fected  by stiffness is their force-length relationship. All skeletal muscles exhibit
an optimal range of length (I&) over which they can exert maximal force.
Due to actin-myosin filament overlap, a muscle’s ability to generate force is

.~I*,__- _. ,,  , , ,  ,, ,,,,,,  ,, ,,,,,  ,,,,  , , ,,,,,  ,,,  ,,/,/,1/1,  . , , , ,,,,  ,,,,,,,,,,,,,,’ I”’  ‘ “ “ “ ’ ” ““““’  “”  ”

Andrew A. Biewener 57

Log Body Mass

FIGURE 3 Theoretical logarithmic scaling of musculoskeletal stress (0) versus body
mass for the three similarity models: geometric (G.S.), elastic (E.S.), and static
stress (S.S.). Only for S.S. does stress remain constant with change of size. For
both G.S. and ES., stress (and deflection of bone elements, y) scales with body
mass, according to the above relationships (ES. and S.S. relationships are based on
McMahon [19]).  For a given optimum stress (uOpt)  at a given mass, evolutionary
decreases in body size according to G.S. or E.S., suggest reduced stress, increased
stiffness, and increased safety factor. Evolutionary or ontogenetic size increases,
on the other hand, predict increased stress, reduced stiffness, and reduced safety
factor. These scaling trends suggest that, whereas peak stress and safety factor (i.e.,
strength) are important at large size, stiffness may be the key design constraint at
small size.

greatly reduced at long lengths (> 20% of Lo& and at short lengths (< 20%
of Lo&.  Consequently, the operating length of a muscle must be matched to
the length of its fibers. If the tendons and bones of the limb become too slen-
der relative to the forces that they must transmit, their resulting deflections
might require excessive length change of the muscles’ fibers, placing the mus-
cles at a disadvantage for effective control of limb motion [25].  In most cases,
the thickness of mammalian tendons seems to be disproportionately large rel-
ative to the forces that the tendon’s muscle can exert, such that many tendons
operate with safety factors in the range of 8-10 [17].  This suggests that stiff-
ness can be as important a design constraint as strength. Geometric scaling
to smaller body size is consistent with this observation.

While evolutionary decreases in size, at least within mammalian taxa,
appear to be generally rare (the notable exception being insular island popu-



lations), interpretations of the importance of stiffness versus strength as con-
straints on mechanical design depend critically on what body size stress is
considered to be “optimal” for the dimensions of the organism (uopt,  Fig-
ure 3). Although no attempt is made here to define oopt,  Alexander et al.
[3] have defined an optimal bone stiffness in relation to bone stress, as that
which would minimize the combined weight of bone and muscle in the limb
at a peak stress of 70 MPa.  Their analysis, however, does not consider scale
effects of size. In the case of an evolutionary increase in size within a lineage
(Cope’s rule; see Stanley [27]  and Alroy [4]),  therefore, stiffness may be the
limiting constraint at small size, with a shift to strength (and safety factor)
as the lineage evolves to larger size along a geometrically similar trajectory.
In order to distinguish this, it would be necessary to demonstrate a reduction
in safety factor from what would be considered an “excessive” value at small
size, which is not an easy task.

5 DIFFERENTIAL SCALECONSTRAINTS WITHIN A TREE

As with the scaling of the mammalian musculoskeletal system, differential con-
straints on mechanical design also appear to apply to the scaling of branch
architecture within trees. By sampling the branching architecture of a single
tree, Bertram [5]  has shown that two distinct size classes and scale patterns ex-
ist within a silver maple (Acer  saccharinurn).  Nonperipheral branches (trunk
and main supporting branches) scaled with strong positive allometry, closely
matching McMahon’s  [19]  elastic similarity model (Figure 4). Reduced major
axis (RMA) and least-squares (L-S) regression give exponents that bracket the
predicted 2/3 value for elastically similar deflections that McMahon  and Kro-
nauer [22]  previously have found for white oak (Quercus  &a).  On the other
hand, the peripheral (leaf bearing) branches scaled with substantial negative
allometry: LaD 1.3g (RMA regression), such that these smaller branches be-
come relatively more slender as they grow. The divergence in scale pattern is
clearly seen when the slenderness ratio (L/D)  of different size classes of the
tree’s peripheral and nonperipheral branches is plotted versus branch diameter
(Figure 4(c)).

These distinct scaling patterns suggest that, whereas strength and stiff-
ness are important to the design of the nonperipheral weight-support branches,
in which elastic similarity applies, flexibility is key to the function of the
peripheral branches. Being flexible enables the tree’s peripheral branches and
leaves to reorient in the wind to reduce drag. The small diameter of these
branches also means that they are difficult to break by bending: the smaller
a beam’s diameter, the less strain can be developed for a given bending cur-
vature (an analogous but more extreme example of this is glass optical fibers,
which have considerable flexibility and rarely break, despite the high stiffness
and brittleness of glass as a material). An advantage of studying scaling pat-
terns within a single individual, such as the sugar maple, is the absence of
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FIGURE 4 (a) Differential scaling of branch dimensions (length versus diame-
ter) within a silver maple (Acer s4cch4rinum). Branches were divided into two
size classes: nonperipheral supporting branches (small solid squares) and periph-
eral leaf-bearing branches (larger open squares); branch length and diameter being
determined as shown in (b). Nonperipheral and peripheral branches separated sta-
tistically into two size classes (large and small) and showed significantly different
scale relations. Whereas nonperipheral branches scaled with strong positive allom-
etry (slope < l), close to McMahon’s [19])  elastic similarity model and similar to
the branching scaling observed for a white oak [22],  the peripheral branches scaled

/ with strong negative allometry (slope > l), making them increasingly more slender
as they grew in length. The change in scale pattern between the two branch size

li
classes is clearly observed in (c), which shows the slenderness ratio (L/D) plotted

i
against diameter (smaller peripheral branches, open squares; large nonperipheral
branches solid squares).
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Leg  Stiflhess  depends on 2 Factors:
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FIGURE 5 Whole limb spring stiffness (elastic deformation of the limb during
ground support) depends on two factors: (1) muscle mechanical advantage (r/R)
and (2) the structural stiffness of muscle tendon (km+t)  and bone (kb)  support ele-
ments (depicted here for the “knee” joint). The latter depend on the elastic modulus

’ of the tissues and their shape (cross-sectional area, A, and second moment of area,
I, for bending).

genetic variation; however, the disadvantage is that generalizations to other
individuals within the species and across species is more limited. Additional
studies of other trees are needed to test the generality of these intriguing
results.

6 SCALING OF LIMB MECHANICAL ADVANTAGE AND
LEG STIFFNESS

Changes in limb mechanical advantage that allow terrestrial mammals of
vastly differing size to maintain similar levels of peak bone and muscle stress
were discussed above. In addition to affecting  the magnitude of muscle force
required to support an animal’s weight, changes in limb posture also likely af-
fect the scaling of limb stiffness during running (Figure 5). Whole leg stiffness
(&s,  after McMahon  and Cheng [21]  and Farley  et al. [12])  can be defined
as the ratio of the displacement (AL) of the leg during the stance phase of
a step to the peak ground reaction force (G): kieg  = AL/G (Figure 6). In
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running, trotting, galloping, and hopping gaits, when an animal lands on a
limb, its CM falls during the first half of stance, compressing its leg spring.
During the second half of stance its leg spring recoils, as its CM rises, until the
limb leaves the ground. Displacements of the leg spring (AL) are a function of
the cumulative angular excursions of the lib’s  joints (A@ during its contact
with the ground (Figure 6). The notion that the leg functions lie a spring
derives from the fact that these “bouncing” gaits all utilize a similar energy
conserving mechanism [lo],  in which the potential and kinetic energy that is
lost as the body’s CM falls (Ay) and decelerates during the first half of stance
is converted into and stored as elastic strain energy in the tendons, ligaments,
and muscles of the limb. This elastic energy is subsequently recovered dur-
ing the second half of stance, ,allowing  the animal to regain its lost potential
and kinetic energy as it leaves the ground. Consequently, compression of the
“leg spring” actually reflects the stretching of muscle-tendon and ligamentous
spring elements in the limb. (Displacements due to compression of articular
cartilage and bone flexure, in comparison, are likely to be quite small: i.e.,
kb > hn+t  .)

kleg  depends on two general factors (Figure 5): (1) the structural stiffness
of lib support elements: the muscle-tendon units and bones (k,+t  and kb)  ,
and (2) the limb’s muscle mechanical advantage (r/R, defined in Figure 1).
The former depends on the material moduli (E) of the elements and, as noted
above, their shape (length relative to cross-sectional area and second moment
of area). The latter reflects the relative magnitude of force that the muscle-
tendon (and bone) elements must generate (or support) for a given magnitude
of ground reaction force at the foot. In a recent study of seven bipedal and
quadrupedal mammals, Farley  et al. [12]  found that h,s  scaled proportionally
to M”.67,  with larger animals having stiffer leg springs. This resulted from
the fact that peak ground reaction forces scaled directly with the animal’s
body weight (GaMo.g7) and displacements of the their leg spring, AL, scaled
proportional to Mo.3o (all exponents being close to simple fractional values
predicted by geometric similarity: M2i3,  Ml, and M1j3).

This pattern of leg spring stiffness matches the predicted changes in whole
limb displacement associated with postural adjustments in muscle mechanical
advantage. As discussed above, these changes in muscle mechanical advan-
tage are required to maintain bone and muscle stress constant in different-
sized mammals (0.03 and 300 kg) [8],  by matching muscle force to the scaling
of bone area and muscle area (Table 1). The stiffness of the muscle-tendon
spring (k,+t  = F/AZ)  reflects the ratio of force transmission relative to its
stretch, which can be related to the joint moment arm (r) and joint angular
displacement (A@ according to

AX=T  A@. (1)



62 Scaling of Terrestrial Support

(4 CM (W
AY

FIGURE 6 (a) Following McMahon and Cheng [21]  and Farley  et al. [12]  the stiff-
ness of the whole limb (IQ.&  can be defined as the maximum displacement of the
limb (AL) divided by the ground reaction force (G) acting on the limb. AL rep-
resents the displacement of the limb, which oc,curs  due to flexion  of limb joints, as
the limb contacts the ground (initially ground force and muscle-tendon force are
zero), becoming compressed at mid-support when maximum G and muscle force
(F) are developed (dark lines in (b)). Subsequently, the limb rebounds as the “leg
spring” is unloaded, causing the CM to rise during the second half of stance. The
muscle-tendon model of leg spring stiffness depicted in (a) and (b), for the purpose
of analyzing how limb mechanical advantage affects leg spring stiffness, is analogous
to the simple mass-spring model. (c) used by McMahon and Cheng [21]  and Farley
et al. [12].  Reprinted with permission from Elsevier Science.

Correspondingly, the vertical displacement of the whole leg (AL) will be a
function of leg segment lengths and joint angular displacements. Given

L = 2L,,,  sin 0 (2)

we can write
AL = 2L,,,  cos 009. (3)

Following a similar analysis by McMahon et al. [23],  we can assess how
much changes in limb posture (reduced mechanical advantage, r/R) versus
muscle-tendon stiffness (Ic,+t)  contribute to Lreg.  Given

G
beg = aL
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and

G FT=-
R

it follows that

h
FT

eg =m*
Substituting for F in terms of k,,,+t  and Ax, gives

kg = A,,,+$=.
ALR

Using Eqs. (1) and (3),  we can rewrite Eq. (7) as

beg = km+t

T2

2L,,,  cos OR

and recognizing that R = Lseg  cos 0,  Eq. (8) simplifies to
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(5)

(6)

Hence, the ratio of kleg  to k,+t scales as

h r2
-a-&f3.54eg

k R2m+t

suggesting that km+, scales oM”.13  ( M0*67/M0*54).  A theoretical basis for why
the muscle-tendon stiffness  scales in this manner (aM2i3) is unclear because
it reflects a geometric change in leg stiffness (czM~/~)  divided by an allometric
change in limb mechanical advantage squared (approximately CXM’/~).  This
result may also depend on modeling kleg based on the displacement of a single
joint. When other joints are taken into account, the scaling of leg stiffness rel-
ative to limb mechanical advantage, and hence, muscle-tendon stiffness, may
differ from the analysis shown above. It will also be important to explore the
function of muscles and muscle-tendon components in different-sized animals
in order to determine whether their active force-length properties match the
overall scaling predicted by whole leg stiffness and postural shifts in mechan-
ical advantage.

The scaling of km+t suggested by the forgoing analysis indicates, there-
fore, that other size-related changes in muscle-tendon architecture are likely to
contribute to the enhanced stiffness of larger animal limbs. Given that muscle
stiffness is less than tendon stiffness, it seems likely that the relatively shorter
muscle fibers ( CXMO.~* ) [l] of larger mammals and their relatively longer ten-
dons may both contribute to the suggested overall increase in muscle-tendon
stiffness. At present, these observations, and the predictions derived from
them, require further study.
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7 CONCLUSIONS

The observed scaling patterns of musculoskeletal design within terrestrial
mammals suggests that differential mechanical constraints operate over diier-
ent ranges of size and taxa. No one pattern, or general scaling model, explains
the range of observed solutions. Whereas peak stress and safety factors are
probably limiting constraints over much of the terrestrial size range, stiffness
may be the key design constraint at smaller size. Further, differing mecha-
nisms for maintaining uniform safety factors also appear to operate. Over
much of their size range (0.1 to 300 kg), posture-related changes in limb me-
chanical advantage occur that enable terrestrial mammals to match locomotor
forces to the scaling of bone and muscle areas. Intriguingly, within this size
range there appears to be a link between the scaling of transport processes
for energy supply and use, which obey a 3/4 power law, and the scaling of
muscle force requirements for terrestrial locomotion. However, at larger sizes
(> 300 kg), more extreme positive allometry (robust scaling) and/or reduc-
tions in locomotor performance appear to be required in order to keep peak
stresses within a safe range. How these adjustments in locomotor support af-
fect muscle-force generating requirements in relation to the metabolic supply
of energy as yet remains unknown. Posture-related changes in limb-muscle
mechanical advantage are also shown to be consistent with recently observed
changes in the stiffness of animal limbs (&s)  [12],  in which the shift to a more
upright posture to reduce musculoskeletal loading for constant safety factor
also results in an increased limb stiffness, counter to the decrease in stiffness
predicted by geometric or elastic similarity scaling at larger size (Figure 3).
Consequently, changes in limb stiffness that would be predicted by the struc-
tural scaling of limb support elements (Figure 3) must also take into account
size-related changes in limb mechanical advantage. Finally, as for the limbs
of terrestrial mammals, differential scaling patterns and design constraints
are also to be found within the branching architecture of a single tree: larger
structural support branches scale with positive allometry to avoid excessive
deflection, whereas small leaf-bearing branches scale with negative allometry
precisely in order to achieve flexibility, reduce drag, and avoid bending failure.

Although common design principles and a single scaling model may help
to explain general features of vascular and respiratory supply networks within
biology, no one scaling model appears sufficient for explaining how mammals
and trees have evolved to meet the mechanical demands of life on land. Nev-
ertheless, it is the case that certain features, largely those that reflect the
strength of the materials of which even distantly related organisms are con-
structed, are scale invariant.. As a result, regular size-related changes in other
features are required either to maintain a constant mechanical safety factor
or to achieve an appropriate limb (or branch) stiffness.
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