12 research outputs found

    Population pharmacodynamic modeling of eflornithine-based treatments against late-stage gambiense human African trypanosomiasis and efficacy predictions of l-eflornithine-based therapy

    No full text
    Eflornithine is a recommended treatment against late-stage gambiense human African trypanosomiasis, a neglected tropical disease. Standard dosing of eflornithine consists of repeated intravenous infusions of a racemic mixture of L- and D-eflornithine. Data from three clinical studies, (i) eflornithine intravenous monotherapy, (ii) nifurtimox-eflornithine combination therapy, and (iii) eflornithine oral monotherapy, were pooled and analyzed using a time-to-event pharmacodynamic modeling approach, supported by in vitro activity data of the individual enantiomers. Our aim was to assess (i) the efficacy of the eflornithine regimens in a time-to-event analysis and (ii) the feasibility of an L-eflornithine-based therapy integrating clinical and preclinical data. A pharmacodynamic time-to-event model was used to estimate the total dose of eflornithine, associated with 50% reduction in baseline hazard, when administered as monotherapy or in the nifurtimox-eflornithine combination therapy. The estimated total doses were 159, 60 and 291 g for intravenous eflornithine monotherapy, nifurtimox-eflornithine combination therapy and oral eflornithine monotherapy, respectively. Simulations suggested that L-eflornithine achieves a higher predicted median survival, compared to when racemate is administered, as treatment against late-stage gambiense human African trypanosomiasis. Our findings showed that oral L-eflornithine-based monotherapy would not result in adequate efficacy, even at high dose, and warrants further investigations to assess the potential of oral L-eflornithine-based treatment in combination with other treatments such as nifurtimox. An all-oral eflornithine-based regimen would provide easier access to treatment and reduce burden on patients and healthcare systems in gambiense human African trypanosomiasis endemic areas. Graphical abstract

    External validation of the bilirubin-atazanavir nomogram for assessment of atazanavir plasma exposure in HIV-1-infected patients.

    No full text
    Atazanavir increases plasma bilirubin levels in a concentration-dependent manner. Due to less costly and readily available assays, bilirubin has been proposed as a marker of atazanavir exposure. In this work, a previously developed nomogram for detection of suboptimal atazanavir exposure is validated against external patient populations. The bilirubin nomogram was validated against 311 matching bilirubin and atazanavir samples from 166 HIV-1-infected Norwegian, French, and Italian patients on a ritonavir-boosted regimen. In addition, the nomogram was evaluated in 56 Italian patients on an unboosted regimen. The predictive properties of the nomogram were validated against observed atazanavir plasma concentrations. The use of the nomogram to detect non-adherence was also investigated by simulation. The bilirubin nomogram predicted suboptimal exposure in the patient populations on a ritonavir-boosted regimen with a negative predictive value of 97% (95% CI 95-100). The bilirubin nomogram and monitoring of atazanavir concentrations had similar predictive properties for detecting non-adherence based on simulations. Although both methods performed adequately during a period of non-adherence, they had lower predictive power to detect past non-adherence episodes. Using the bilirubin nomogram for detection of suboptimal atazanavir exposure in patients on a ritonavir-boosted regimen is a rapid and cost-effective alternative to routine measurements of the actual atazanavir exposure in plasma. Its application may be useful in clinical settings if atazanavir concentrations are not available
    corecore