43 research outputs found

    From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains

    Full text link
    We reconsider the excitation spectra of a dimerized and frustrated antiferromagnetic Heisenberg chain. This model is taken as the simpler example of compiting spontaneous and explicit dimerization relevant for Spin-Peierls compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We analize the excitation spectrum by semiclassical methods. The elementary triplet excitation corresponds to an extended magnon whose radius diverge for vanishing dimerization. The internal oscilations of the magnon give rise to a series of excited state until another magnon is emited and a two magnon continuum is reached. We discuss, for weak dimerization, in which way the magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex

    Domain excitations in spin-Peierls systems

    Full text link
    We study a model of a Spin-Peierls material consisting of a set of antiferromagnetic Heisenberg chains coupled with phonons and interacting among them via an inter-chain elastic coupling. The excitation spectrum is analyzed by bosonization techniques and the self-harmonic approximation. The elementary excitation is the creation of a localized domain structure where the dimerized order is the opposite to the one of the surroundings. It is a triplet excitation whose formation energy is smaller than the magnon gap. Magnetic internal excitations of the domain are possible and give the further excitations of the system. We discuss these results in the context of recent experimental measurements on the inorganic Spin-Peierls compound CuGeO3_3Comment: 5 pages, 2 figures, corrected version to appear in Phys. Rev.

    Submillimeter Wave ESR Study of Spin Gap Excitations in CuGeO3

    Full text link
    Transitions between the ground singlet state to the excited triplet state has been observed in CuGeO3 by means of submillimeter wave electron spin resonance. The strong absorption intensity shows the break down of the selection rule. The energy gap at zero field is evaluated to be 570 GHz(2.36 meV) and this value is nearly identical to the gap at the zone center observed by inelastic neutron scattering. The absorption intensity shows strong field orientation dependence but shows no significant dependence on magnetic field intensity. These features have been explained by considering the existence of Dzyaloshinsky-Moriya (DM) antisymmetric exchange interaction. The doping effect on this singlet-triplet excitation has been also studied. A drastic broadening of the absorption line is observed by the doping of only 0.5 % of Si.Comment: 6 pages, 8figures submitted to J. Phys. Soc. Jp

    Infrared signatures of the spin-Peierls transition in CuGeO3

    Get PDF
    We investigated the infrared reflectivity of several Mg- and Si-substituted CuGeO3 single crystals. The temperature dependent b-axis and c-axis optical response is reported. For T<Tsp we detected the activation of zone-boundary phonons along the b axis of the crystal on the pure sample and for 1% Mg and 0.7% Si concentrations. From a detailed analysis of the phonon parameters the redshift of the B2u mode at 48 cm^-1 is observed and discussed in relation to the soft mode expected to drive the spin-Peierls phase transition in CuGeO3. Moreover, the polarization dependence of a magnetic excitation measured in transmission at 44 cm^-1 has been investigated.Comment: Revtex, 3 pages, 5 postscript pictures, submitted to PRB Rapid Communication

    Nonadiabatic Approach to Spin-Peierls Transitions via Flow Equations

    Full text link
    The validity of the adiabatic approach to spin-Peierls transitions is assessed. An alternative approach is developed which maps the initial magneto-elastic problem to an effective magnetic problem only. Thus the equivalence of magneto-elastic solitons and magnetic spinons is shown. No soft phonon is required for the transition. Temperature dependent couplings are predicted in accordance with the analysis of experimental data.Comment: Latex, 4 pages, Phys. Rev. B, Rap. Comm. in press final version containing some clarification

    Dynamical structure factors of the magnetization-plateau state in the S=1/2S=1/2 bond-alternating spin chain with a next-nearest-neighbor interaction

    Full text link
    We calculate the dynamical structure factors of the magnetization-plateau state in the S=1/2S=1/2 bond-alternating spin chain with a next-nearest-neighbor interaction. The results show characteristic behaviors depending on the next-nearest-neighbor interaction α\alpha and the bond-alternation δ\delta. We discuss the lower excited states in comparison with the exact excitation spectrums of an effective Hamiltonian. From the finite size effects, characteristics of the lowest excited states are investigated. The dispersionless mode of the lowest excitation appears in adequate sets of α\alpha and δ\delta, indicating that the lowest excitation is localized spatially and forms an isolated mode below the excitation continuum. We further calculate the static structure factors. The largest intensity is located at q=πq=\pi for small δ\delta in fixed α\alpha. With increasing δ\delta, the wavenumber of the largest intensity shifts towards q=π/2q=\pi/2, taking the incommensurate value.Comment: to appear in Phys. Rev. B (2001

    Far-Infrared Spectroscopy in Spin-Peierls Compound CuGeO_3 under High Magnetic Fields

    Full text link
    Polarized far-infrared (FIR) spectroscopic measurements and FIR magneto-optical studies were performed on the inorganic spin-Peierls compound CuGeO_3. An absorption line, which was found at 98 cm1^{-1} in the dimerized phase (D phase), was assigned to a folded phonon mode of B3u_{3u} symmetry. The splitting of the folded mode into two components in the incommensurate phase (IC phase) has been observed for the first time. A new broad absorption centered at 63 cm1^{-1} was observed only in the Eb{\bf E}\parallel b axis polarization, which was assigned to a magnetic excitation from singlet ground state to a continuum state.Comment: 9 pages multicolREVTeX, 10 figure

    A Study of the S=1/2 Alternating Chain using Multiprecision Methods

    Full text link
    In this paper we present results for the ground state and low-lying excitations of the S=1/2S=1/2 alternating Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the dimer limit and numerical diagonalization of systems of up to 28 spins. A novel application of multiple precision numerical diagonalization allows us to determine analytical perturbation series to high order; the results found using this approach include ninth-order perturbation series for the ground state energy and one magnon gap, which were previously known only to third order. We also give the fifth-order dispersion relation and third-order exclusive neutron scattering structure factor for one-magnon modes and numerical and analytical binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm

    Spin Dynamics of the One-Dimensional J-J' Model and Spin-Peierls Transition in CuGeO_3

    Full text link
    Spin dynamics as well as static properties of the one-dimensional J-J' model (S=1/2, J>0 and 0\le \alpha=J'/J\le 0.5) are studied by the exact diagonalization and the recursion method of finite systems up to 26 sites. Especially, the dynamical structure factor S(q,\omega) is investigated carefully for various values of \alpha. As \alpha increases beyond the gapless-gapful critical value \alpha_c=0.2411, there appear features definitely different from the Heisenberg model but the same with the Majumdar-Ghosh model. Some of these features depend only on the value of \alpha and not on \delta: a parameter introduced for the coupling alternation. By comparing these results with a recent inelastic neutron scattering spectrum of an inorganic spin-Peierls compound CuGeO_3 [M. Arai et al.: Phys. Rev. Lett. 77 (1996) 3649], it is found that the frustration by J' in CuGeO_3 is unexpectedly strong (\alpha=0.4-0.45), and at least \alpha must be larger than \alpha_c to some extent. The value of J is evaluated at \sim 180K consistent with other estimations. The coupling alternation is extremely small. This large frustration is a primary origin of the various anomalous properties CuGeO_3 possesses. For comparison we refer also to \alpha'-NaV_2O_5.Comment: 14 pages. A hard copy of 20 figures is available on request. To be published in J. Phys. Soc. Jpn. Vol. 66 No. 11 (1997

    Carbon Abundances of Three Carbon-Enhanced Metal-Poor Stars from High-Resolution Gemini-S/bHROS Spectra of the 8727A [C I] Line

    Full text link
    We present the results from an analysis of the 8727ang forbidden [C I] line in high-resolution Gemini-S/bHROS spectra of three CEMP stars. We find the [C/Fe] ratios based on the [C I] abundances of the two most Fe-rich stars in our sample (HIP 0507-1653: [Fe/H] = -1.42 and HIP 0054-2542: [Fe/H] = -2.66) to be in good agreement with previously determined CH and C_2 line-based values. For the most Fe-deficient star in our sample (HIP 1005-1439: [Fe/H] = -3.08), however, the [C/Fe] ratio is found to be 0.34 dex lower than the published molecular-based value. We have carried out 3D local thermodynamic equilibrium (LTE) calculations for [C I], and the resulting corrections are found to be modest for all three stars, suggesting that the discrepancy between the [C I] and molecular-based C abundances of HIP 1005-1439 is due to more severe 3D effects on the molecular lines. Carbon abundances are also derived from C I high-excitation lines and are found to be 0.45-0.64 dex higher than the [C I]-based abundances. Previously published non-LTE C I abundance corrections bring the [C I] and C I abundances into better agreement; however, targeted NLTE calculations for CEMP stars are clearly needed. We have also derived the abundances of N, K, and Fe for each star. The Fe abundances agree well with previously derived values, and the K abundances are similar to those of C-normal metal-poor stars. Nitrogen abundances have been derived from resolved lines of the CN red system. The abundances are found to be approximately 0.44 dex larger than literature values, which have been derived from CN blue bands near 3880 and 4215 ang. We discuss evidence that suggests that analyses of the CN blue system bands underestimate the N abundances of metal-poor giants.Comment: Accepted for publication in AJ; 42 pages, 6 figures, 7 table
    corecore