61 research outputs found

    Using Variability Management in Mobile Application Test Modeling

    Get PDF
    Mobile applications are developed to run on fast-evolving platforms, such as Android or iOS. Respective mobile devices are heterogeneous concerning hardware (e.g., sensors, displays, communication interfaces) and software, especially operating system functions. Software vendors cope with platform evolution and various hardware configurations by abstracting from these variable assets. However, they cannot be sure about their assumptions on the inner conformance of all device parts and that the application runs reliably on each of them—in consequence, comprehensive testing is required. Thereby, in testing, variability becomes tedious due to the large number of test cases required to validate behavior on all possible device configurations. In this paper, we provide remedy to this problem by combining model-based testing with variability concepts from Software Product Line engineering. For this purpose, we use feature-based test modeling to generate test cases from variable operational models for individual application configurations and versions. Furthermore, we illustrate our concepts using the commercial mobile application “runtastic” as example application

    Test Modeling of Dynamic Variable Systems using Feature Petri Nets

    Get PDF
    In order to generate substantial market impact, mobile applications must be able to run on multiple platforms. Hence, software engineers face a multitude of technologies and system versions resulting in static variability. Furthermore, due to the dependence on sensors and connectivity, mobile software has to adapt its behavior accordingly at runtime resulting in dynamic variability. However, software engineers need to assure quality of a mobile application even with this large amount of variability—in our approach by the use of model-based testing (i.e., the generation of test cases from models). Recent concepts of test metamodels cannot efficiently handle dynamic variability. To overcome this problem, we propose a process for creating black-box test models based on dynamic feature Petri nets, which allow the description of configuration-dependent behavior and reconfiguration. We use feature models to define variability in the system under test. Furthermore, we illustrate our approach by introducing an example translator application
    corecore