
Fakultät Informatik

TECHNISCHE BERICHTE
TECHNICAL REPORTS
ISSN 1430-211X

TUD-Fl14-02-April 2014

Püschel, Seidl, Schlegel, Aßmann
Institut für Software- und Multimediatechnik

Using Variability Management in Mobile
Application Test Modeling

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236368835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using Variability Management in Mobile
Application Test Modeling

Georg Püschel1 , Christoph Seidl1, Thomas Schlegel2, Uwe Aßmann1

1Software Technology Group
2Software Engineering of Ubiquitous Systems Group

Technische Universität Dresden
{georg.pueschel, christoph.seidl, thomas.schlegel, uwe.assmann}@tu-dresden.de

Abstract: Mobile applications are developed to run on fast-evolving platforms, such
as Android or iOS. Respective mobile devices are heterogeneous concerning hard-
ware (e.g., sensors, displays, communication interfaces) and software, especially oper-
ating system functions. Software vendors cope with platform evolution and various
hardware configurations by abstracting from these variable assets. However, they can-
not be sure about their assumptions on the inner conformance of all device parts and
that the application runs reliably on each of them—in consequence, comprehensive
testing is required. Thereby, in testing, variability becomes tedious due to the large
number of test cases required to validate behavior on all possible device configurations.
In this paper, we provide remedy to this problem by combining model-based testing
with variability concepts from Software Product Line engineering. For this purpose, we
use feature-based test modeling to generate test cases from variable operational models
for individual application configurations and versions. Furthermore, we illustrate our
concepts using the commercial mobile application “runtastic” as example application.

1 Introduction

Smart phones and tablet PCs are a vast growing market where the IT industry brings on
new devices and applications (via Apple Store, Google Play, etc.) day by day. Operating
systems (OS) are the central differentiating factor of platforms for these applications. Thus,
on the one hand, an OS establishes a rather homogeneous environment but, on the other
hand the fast evolution has a contrary effect. Each device forms a concrete platform
assembled of both a versioned software and a fixed hardware environment. Thus, mobile
applications have to support a growing number of platforms and platform versions. Hence,
the task of managing variability becomes crucial. In consequence, not only in application
development but in test management as well as in test automation engineers have to deal
with this variability.

Although the operating system provides abstraction from the underlying platform, the
system functions are black boxes and their reliability is not guaranteed. For instance,
presentation differs with screen resolution and version of the widget library; context-aware
functions depend on availability of specific sensors (e.g., GPS). Hence, platform variability
has significant impact on the system under test (SUT). Various properties must be considered

Figure 1: Overview of the workflow of the presented approach.

when specifying test cases and later selecting devices for test execution. Variability has to
be covered adequately such that testers can assure a sufficient quality.

For this problem, in the context of Software Product Lines (SPLs), concepts and approaches
were found to manage variability, create configurations, derive individual software products
and test them. SPLs consist of shared assets and differing ones. The commonalities are
subject to a domain analysis and the variable assets are subject to an application analysis.
The same scheme is applied in SPL testing (SPLT, [McG07]) where domain and application
testing must be distinguished. Domain testing comprises the validation of common features
and application testing refines it for the concrete products.

In SPL engineering, models (e.g., feature models [KCH+90]) are used to express an SPL’s
variability. The advantage of this approach is that concrete instances (products) of the
SPL can automatically be derived or checked against the model’s constraints. Testing
also benefits from using models: in model-based testing (MBT, [Utt07]), test cases can
automatically be derived from operational test models such as state or activity charts. MBT’s
advantages are traceability between generated test artifacts and requirement specifications
as well as the higher coverage, which can be reached in combination with test automation.
MBT is a black box approach where no code is directly investigated and models do not
specify the SUT’s inner properties but operations and a protocol of its interface. Hence,
variability management in MBT means tailoring the black-box-based models according to
configuration decisions on the platform’s or application’s variability model. The result are
test models that can be automatically generated for different configurations.

Altogether, an industrial application of these methods and techniques is desirable in order
to improve and automate testing of mobile applications. Therefore, in this paper, we present
our test modeling tool [anonymized for blind review] , which aims to face these challenges.
Its modeling and processing workflow is illustrated in Figure 1. We start by defining

feature models for the platform and—optionally—for the mobile application as well. The
platform’s model comprises variability in hardware and operating system capabilities while
the application’s model specifies the difference between certain versions (e.g., Lite and
Pro). The application’s variability sometimes depends on the properties of a concrete
platform (e.g., available sensors or API methods). The central test model—in our approach
a Petri net—supports two variability mechanisms: For one, using constraints, its operational
elements can be tailored to be included only for a subset of possible platform/applica-
tion configurations. Furthermore, a parametric variability mechanism allows to generate
configuration-specific test actions. The latter mechanism is based on keywords, which can
be mapped to concrete unit test code by using a template. Before the generation process
starts, the user has to select a concrete configuration (step 1) that includes the definition
of the target platform and the application product. In step 2, this configuration determines
which elements of the test model are considered in the generation step 3. In this step,
the remaining test model is subject to a reachability analysis that computes all possible
execution traces consisting of keywords. Later, in step 4, these keywords are processed by
the template-based model-to-text transformation mechanism, which produces code artifacts
(e.g., unit tests).

With our process, we are able to produce test cases for multiple mobile platform configu-
rations from one central test model. In this paper, we describe this process in detail and
illustrate it in the context of a running example based on the mobile application “runtastic”.
Thereby, we present the necessary metamodels, notations and how they are applied for the
running example.

The remainder of this paper is structured as follows: In Section 2, we introduce a running
example. In Section 3, we describe our variability metamodel and an instance for the
Android platform. Subsequently, we present the test models in Section 4 and discuss in
detail how test cases are derived. In Section 5, we discuss related work before we conclude
the paper and outline future work in Section 6.

2 Running Example

In this section, we briefly introduce our running example. We selected a proprietary third-
party Android application called “runtastic”—a successful fitness application that was
installed more than 52000 times in lite and almost 20000 times in pro version according
to Google Play Store statistics1. The application’s services depend on the available sensor
equipment as well as the version the user ordered.

Figure 2 depicts initial and main screens of runtastic. The application allows users to track
and evaluate their running accomplishments comprising functionality like time, track, and
heart rate recording, evaluation diagrams, track planning and sharing. In addition to the
features of the Lite version, the Pro version of the application adds functionality like
voice support among the complete training phase. Our goal is to automatically generate
black box test cases for this running example. Black box testing means that we do not

1http://play.google.com

Figure 2: Screenshots of the case study application “runtastic”.

require any access to the application’s source code. Test actions are solely performed on
the graphical user interface and validations are performed against it as well.

3 Platform Variability Modeling using Attributed Features

The presented example is implemented for several platforms and platform versions. For
testers, these environments have different effects on the SUT due to different variable
properties. For instance, the availability of sensors can affect the application’s functionality.
In our running example, the recording of running actions fails on devices without GPS.
Another example is the layout of the SUT’s graphical user interface, which has to be adapted
to different screen sizes depending on the device the application runs on.

All these differences must be taken into account when specifying test cases or test models
that are used to generate test cases. When aiming at generation of test cases for individual
configurations, the first step is to specify all necessary variable properties of the platform.
In SPL research, these variable properties are captured in a variability model, such as a
feature model [KCH+90]. This approach benefits from the existence of graphical notations,
several extensions (e.g., feature attributes, different cardinality elements, constraints) and
the abstraction from implementation details (i.e., the variability mechanism). In this section,
we present our problem-specific feature model that enables us to express the platform and
application variability.

3.1 Attributed Version-aware Feature Model

The initial base model and notation for feature models was proposed by Kang et al.
[KCH+90]. A feature tree is basically a compound tree where nodes are features that
can be optional or mandatory in context of their parent feature. In [CHE05], Czarnecki et

Figure 3: Metamodel for attributed version-aware cardinality-based feature models.

al. added elements to express attributes and additional cardinality constraints for features.

Our metamodel relies on attributes of features due to the need to specifiy the different
variants of numeric properties in the platform environment (e.g., display resolution). Fur-
thermore, we take the continuous evolution of platforms into account by introducing an
element to specify the version of a feature.

We provide a formalization for feature models with these capabilities using the metamodel
presented in Figure 3. It is separated into two packages: data for attribute data structures
and values as well as features for the feature metamodel itself. The latter one starts with
the definition of a FeatureTree, which has exactly one root Feature. A feature has a
name and specifies whether it is considered mandatory in context of its parent feature.
A feature may further possess children features. A version of a feature allows the
definition of functional evolution in time. When selecting a feature for configuration,
exactly one version of that feature has to be selected as well. In the case that there is only
a single version of a feature, it does not have to be modeled explicitly so that the feature
alone may be selected.

As we use attributed feature models, we introduce elements for data structures describ-
ing the domain of possible values for a particular attribute. DataStructures have
a name and contain one or multiple StructureElements. Valid sub-elements are
DataStructure itself (to build up a composite tree) and Variable for leaf elements.
A second composite structure can be built up for value Sets. The abstract value type is
DataElement and has a name. Concrete leaf values are represented by instances of
Value. Sets containing sets implement a test specific requirement: while the root set
represents a value domain, sub sets represent equivalence classes such that the test modeler
is able to abstract from certain value ranges.

Connection between both packages appear on type and instance level. Firstly, a Feature
can contain multiple named instances of Attributes which are association classes each
pointing to a StructureElement. Secondly, the tester uses Configurations to
build up concrete products where all variability is resolved. Thus, a configuration refers to
a selection of features and contains DataBindings to bind the concrete values to its

Figure 4: Feature model for the Android platform including concrete configurations of devices.

features’ attribute variables. With these classes, we can now specify a real world platform
landscape of environments in which the SUT may be tested.

3.2 Feature Model of the Android Platform

Android is Google’s operating system for mobile devices. While runtastic was also imple-
mented for a variety of other operating systems, our investigation focuses on Android due
to its broad support by a large number of devices. At the time of writing, the maximum
version of Android on our devices is 4.1 and there is a large number of devices that were
not and will not be updated to this release. Thus, several past versions must be considered
in testing to assure that the application runs reliably on these “legacy” systems.

Figure 4 depicts excerpts of a feature model capturing the variability for the Android
platform along with concrete configurations of individual devices. Top level features of
the platform are Connectivity, Battery, StorageAndMemory, Display, OS
(operating system), Camera, and Hardware (e.g., USB, FMRadio). Several features are
versioned (e.g., in Figure 4 the OS) and attributed (e.g., Resolution). For attributes, only
four value domains were required—Duration (3 - 2180 hours), Memory (0 - 256000
MB), ScreenPixels (240 - 1920 pixels), and CamPixels (2.0 - 12.19 megapixels).
We refrained from specifying different domains for attributes with equal dimensions even if
the employed domains may contain excess values never used in practical scenarios.

Additionally, the bottom part of Figure 4 depicts an excerpt of platform configurations used
by individual devices. The unfolded configuration for the Xperia E smartphone contains
several features and data bindings (e.g., RAM size is 2048MB).

Due to the large number of features and configurations, we built the variability model
for Android automatically by parsing the information on Google’s website2. Due to this
automation, we do not need to alter the model manually if new features or devices appear in
order for the information to stay up to date. The model depicted in Figure 4 was retrieved
on 02/13/2013.

Note that there are several other feature groupings possible but we decided to organize the
feature tree exactly as Google organized its feature configuration. Furthermore, we did not
include the CPU in our feature tree because there are too many variants of processors to gain
an advantage from using the concrete CPU as discrimination parameter in testing. Several
useful limitations may be specified to consider the compatibility definitions of Google
for each Android version3. To reduce complexity, we neglect this issue for the platform
environment in our example. However, such variablity constraints can be constructed, e.g.,
with propositional logic (cf. Section 4.2).

The overall model contains 36 abstract and concrete (leaf) features, including 16 versions
and 7 attributes. Even though this is a rather manageable feature tree, 278 distinct platform
configurations were specified on this basis. Hence, the usage of features, attributes, and
versions in variability management results in a significant complexity reduction in compari-
son to mapping each test artifact to concrete configurations. When test cases are generated,
the modeler selects a subset of platforms (i.e., concrete devices), instead of creating a new
configuration from the feature tree. The utilization of the constructed platform variability
model for our running example is presented in the next section.

4 Feature-based Test Modeling

The challenge for testers is to determine whether a specified input produces an expected
output. The subject of testing depends on the integration level: single components are
tested with unit tests, multiple components require integration testing and, in the end,
the fully-integrated system has to be checked in a system test. Due to the the black box
perspective employed by MBT, this approach can deal with all these test procedures as
single components as well as combinations of multiple components can be perceived as
black boxes. A black box provides an interface with several parameterized operations and a
protocol definition. The behavior defined by this protocol has to be tested and, thus, needs to
be described in an operational model. Furthermore, we can use the aforementioned feature
model notation to specify the behavioral consequences implied by different application
configurations and test environments (i.e., platform configurations).

In the following, we discuss how the business-related variability that application developers
intended can be integrated into our approach by using an extra application feature model.
After that, we introduce the operational model employed in our approach as well as the
concept to map features to platform functionality.

2http://www.android.com/devices
3http://source.android.com/compatibility

Figure 5: Excerpt from the example application feature model and configurations.

4.1 Application Feature Model

Mobile applications are often released in at least two versions: a Lite version and a
commercial Pro version. Naturally, the latter one provides extended functionality. In case
of our running example, e.g., heart rate measuring is only accessible in “runtastic pro”.
This type of variability in functionality is mostly due to business considerations such that
different groups of users are attracted and to provide an impression of the functionality of
an app without having to pay. We can specify the variable capabilities of the SUT inside
the feature tree and re-organize it according to a changed business strategy or for newly
added features. We then use the features of each version as determination parameters for
our test model instead of a singular version distinction.

For our running example, the application feature tree and the two configurations are
depicted in Figure 5. As a configuration only consists of statements on selected features
and bound variable values, each application configuration can be combined with a platform
configuration by simply building a set-wise union of both statements. Thus, the tester can
select one of each type before generating a test suite for a specific application version and
platform target. Such application feature models are optional and only necessary if we
distinguish between multiple business-driven versions.

Figure 6: Minimalistic sample model of our Petri-net-based operational model illustrating syntactic
elements.

Figure 7: Excerpt of the variable control flow model for the example application “runtastic”.

4.2 Operational Metamodel and Parameterization

As discussed before, an operational model is required to define the black box interface’s
behavior. Several types of models exist that potentially can be employed for this purpose:
state machines or UML activity diagrams, state charts, or sequence charts provide means for
behavior modeling. However, some of these models lack means for parallelism and others
are syntactically complex and lack strict semantics. Furthermore, none of the notations
includes variability mechanisms that would enable them to be configured by our feature
models (cf. Figure 1, step 1). In consequence, we use an alternative formalism based on
Petri nets to model behavior in our approach. In order to relate the feature model and the
SUT’s behavior, we extended Petri nets by two different variability mechanisms:

1. By attaching contraints over features on elements in the test model, these elements’
availability gets dependent on the selected configuration. If the constraint is not
satisfiable in this configuration, the respective elements are “subtracted” from the

model. This extension is based on Muschevici et al.’s Feature Petri Nets [MCP10].

2. Elements in the operational model are parameterized with references into the feature
model such that selection decisions, version names, and attribute values later are
appearing in the generated test cases (template mechanism).

Figure 6 depicts a minimalistic sample model instance illustrating all possible elements.
The elliptic entity represents a place and is marked with an initial token (green) as known
from conventional Petri nets. The label “init” is the name of the place and has no impact on
its semantics. The arc to the right connects the place with a transition. In Petri nets, source
and target of an arc must be of different types, either transition or place. We extended the
basic Petri net syntax and semantics of transitions in our formalism. The transition and its
representation is separated into three compartments:

a) The upper compartment contains a variability constraint in the form of propositional
logic over the set of features, versions, and attribute values. The “true” symbol states the
sample transition to be unconstrained (despite the control flow arc). The exact syntax is
defined in the following syntax diagram:

〈Expr〉 ::=-- � true� not 〈Expr〉 �� 〈Atom〉 �� 〈Expr〉 �and� or ��〈Expr〉 �
� -�

〈Atom〉 ::=-- � ?featureID� ?featureID [?versionID] ��?dataLeafID = ?dataElementID �� -�

The start symbol 〈Expr〉 lets us express and/or/not propositional logic with the intuitive se-
mantics and operator priorities. The atoms are feature references (true if feature is selected)
either with or without a version, and the atom for comparison of an attribute variable value
with a literal value (as reference to a value defined in the value sets/equivalence classes, cf.
Section 3). An example expression that is satisfiable on Xperia E (cf. Figure 4) is:

Android[Android 4.1] and talkTime = 6hours

The variability constraint implements the first subtractive variability mechanism: If a
constraint cannot be satisfied in the current configuration, the respective transition is
removed along with the remaining dangling arcs at test case generation.

b) The middle compartment contains a sequence of parameterized keywords. Keywords are
used in automating test execution to abstract from the actual potentially complex execution
of single test actions. For instance, a keyword “clickOnLoginBtn” can be used instead
of detailed code for the button localization and widget selection directly into the models.
Instead, these details are later specified in a separate definition (cf. Figure 1, step 4). Further
advantages of this approach are the possibility to reuse the keywords inside the behavior
model or rewriting their implementation and their potential platform-dependent semantics
without changing the test model. The keywords’ syntax is defined as follows:

〈Sequence〉 ::=--
� ��� ?ident�?ident (〈Param〉) ��� -�

〈Param〉 ::=-- � ?ident�?ident (〈Param〉) �� ?numeric �� ?string �� � , �� 〈Param〉 � �� 〈Function〉 �

� -�

〈Function〉 ::=-- �$isSelected(?ident)� $value(?ident) ��$version(?ident) �� -�

Our syntax additionally supports several arguments to parameterize the keywords. There can
be multiple comma-separated arguments. The first type of arguments are literals (identifiers,
numerics, or strings). Moreover, the modeler can use functions to query the currently se-
lected feature configuration. These functions are templates and are substituted at generation
time by the generator. Thus, $isSelected(. . .) is replaced with true or false depending
on whether the referenced feature is selected. Furthermore, $version(. . .) and $value(. . .)
are replaced with the current configuration’s included version name of a feature or its value
for a feature attribute variable. An example expression for this compartment is:

start
validate_widgets(start_screen,$value(screenDim)

This expression consists of two keywords: start indicates a test action that starts the
SUT and validate_widgets must later be mapped to an evaluation procedure which
checks to layout of the start screen under the given screen dimension.

c) The lowest compartment can be used to enter free text statements. The modeler can use
them to either add human-readable notes to the model or to specify manually executable
test actions besides the keyword-based ones. Manual actions are required if necessary input
or manipulations cannot be automated completely and human interaction is required.

In the lower right of Figure 6, another arc connects this transition to a screenshot-represented
place element. This place has semantics completely equivalent to the elliptic representation.
The screen-based place was added to provide orientation for test modelers when creating or
maintaining the model. In contrast, the elliptic place represents “partial states” that cannot
be directly associated with screens. The transition in the lower left of Figure 6 is framed by
a red border. It states that a behavioral sequence that leads to this transition generates a test
case with each execution of this transition. This element is required because Petri nets do
not have a terminal state (as state machines do) and the generator has to determine if the
end of a produced trace can be identified as an actual termination.

The operational semantics of our extended Petri net model is defined as follows: A transition
is activated if all places that are connected over incoming arcs (i.e., input places) are marked
with at least one token. Activated transitions can be executed by consuming one token from
each input place and producing one token into each place connected to the transition via an
outgoing arc (i.e., output place). If multiple input places are connected to a transition, one
token of each input place has to be consumed. At each execution step, a single activated

transition is executed and its keywords are appended to the test case (after performing
the keywords’ template substitutions). As we require to generate multiple test cases, the
generation process is identical to a reachability analysis.

4.2.1 Excerpt from Running Example Model

Figure 7 illustrates how the introduced syntax is applied in our running example. Each
transition is numbered and explained in the following:

1) The initial transition is included in arbitrary configurations. Hence, its variability
constraint is set to true. The keyword sequence starts with start and login
followed by a validate_layout action with three arguments: main indicates
the validated form, $version is replaced at generation time with the operating
system version and the value argument by the configuration’s screen resolution.
The latter keyword is parameterized and makes the correct layout for the concrete
targeted device available to test automation.

2/3) The main screen shows four monitoring sections (upper/lower left/right). For each,
the user can select the monitored quantity (e.g., time, pace, heart rate). At first, the
user has to select one of the monitoring sections (in the example case, the upper left
one [in some keyword abbreviated ul]). After tapping on the set monitor button, a
list of available quantities appears. Depending on the configuration, the application
sets the monitor to the selected quantity or forwards the user to the “Go Pro” screen
where features are listed that are only available in the Pro version. This behavior
is modeled by both transitions (2) and (3), which are available or not depending
on feature PulseReading. In case of transition (3), the validate keyword
checks if the GUI shows the correct form with the new heart rate monitor available.
Afterwards, there are tokens in the main screen place and in heart_rate_ul.
The latter place indicates a partial state in the test model to mark that the heart rate
monitor is set to the upper left section.

4) To move back to main screen, the keyword swipe_left is parameterized with the
numeric argument 2 indicating this action to be executed twice.

5/6) The last two transitions illustrate how a training recording is to be modeled. The (non-
manual) recording can only be performed if GPS is available. If GPS is not available,
runtastic issues a warning to the user, which is not depicted in this excerpt. Again,
depending on feature PulseReading, the transitions behave differently. At the
beginning of recording, the user taps on start_workout. Then, training data
from sensors (GPS, heart rate, time etc.) is induced. In test execution automation,
this has to be done automatically (by manipulating the device using mock data) or by
carrying the device on a physical test track. Subsequently, the workout is stopped
and measured values are validated.

7) A quit action is executed to terminate the test (indicated by the red border).

As this example shows, both our variability mechanisms can play different roles in test
models. Using this model, test cases can be generated. The remainder of the section
discusses how keyword-based test cases are produced and afterwards mapped to concrete
test case implementations.

4.3 Test Case Generation and Automation

As this paper focuses on test modeling, we just give a brief description of the test case
generation and automation process. Generation from Petri nets is basically identical to
reachability analysis where all sequences of execution are recorded, each sequence resulting
in a test case. Due to the variablity constraints in our extended formalism, a preliminary
filtering step has to be executed where transitions are removed that are not satisfiable in the
current configuration. The steps of the generation process are:

1. The user selects a subset of the provided platform configurations (cf. Section 3).

2. For each selected platform do the following:

2.1 For each application configuration do:
2.1.1 Join both the platform and application configuration.
2.1.2 Subtract to unsatisfiable transitions and afterwards dangling arcs from the

operational model according to the statements of the joined configuration.
2.1.3 Create a new test suite from all sequences of transitions by reachability

analysis and record their template-processed keyword sequences as test
cases until a coverage criterion is fulfilled.

The coverage criterion plays an important role in the test case generation as it limits the
search in the model’s behavioral space, which is potentially infinite (due to loops—in
Petri nets also due to unbound production of tokens). In the literature, criteria such as
state, branch, and path coverage for state machines/charts and transition or place coverage
for Petri nets were proposed. Instead of discussing them here, we refer to the respective
literature, e.g., [DAGCH08].

If we perform above steps for our running example, e.g., the Xperia E platform configu-
ration can be selected in step (1), and further the Lite or Pro version with all included
features and variable value bindings is added in step (2.1.1). The resulting configuration is
the union of both. For Lite it contains GPS but no PulseReading feature such that the
transitions that are only satisfiable with PulseReading are removed from the operational
model (cf. Figure 7) in step (2.1.2). Afterwards, in step (2.1.3), test cases are generated. A
sample test case is:

start ` login ` validate layout(main, “Android 4.1”,
screenDim = {screenWidth = 480, screenHeight = 320})

` select monitor ul ` activate heart rate

` validate(go pro) ` swipe left(2) ` quit

At this point, the generated test cases are still abstract and implementation-independent.
The last task is to interpret the test cases and map them to platform-specific test code using
a template-based model-to-text transformation. The concept of templates is widely used
in many keyword-driven test automation systems such as Selenium4. For the discussed
Android platform, a template must basically produce a JUnit5 class with one test method
for each test case. A well-known template language is XPand6. The following listing shows
briefly how an XPand-based template can be used:

<<DEFINE s u i t e (S t r i n g a c t i v i t y) FOR t e s t : : T e s t S u i t e>>
<<FOREACH c a s e s AS c ITERATOR ic>>
<<FILE a c t i v i t y + ” T e s t C a s e ” + i c . c o u n t e r 1 + ” . j a v a ”>>
package t e s t ;

import a n d r o i d . t e s t . A c t i v i t y I n s t r u m e n t a t i o n T e s t C a s e 2 ;
import my . t e s t . a u o m t a t i o n . f ramework .∗ ;

p u b l i c c l a s s <<a c t i v i t y >>Tes tCase<<i c . c o u n t e r 1>> ex tends
A c t i v i t y I n s t r u m e n t a t i o n T e s t C a s e 2<<<a c t i v i t y >>> {

p u b l i c <<a c t i v i t y >>Tes tCase<<i c . c o u n t e r 1 >>() {
super(<<a c t i v i t y >>.c l a s s) ;

}

/ / g e n e r a t e d t e s t s e q u e n c e
p u b l i c vo id r u n T e s t () {

<<FOREACH c . s t e p s AS s>><<EXPAND term FOR s . keyword>>;
<<ENDFOREACH>>

}

/ / keyword i m p l e m e n t a t i o n s
p r i v a t e vo id s w i p e l e f t (i n t c o u n t){

Tes tAutomat ionFramework . s w i p e L e f t (c o u n t) ;
}

p r i v a t e vo id v a l i d a t e (S t r i n g what){
i f (what . e q u a l s (main)){

A s s e r t . a s s e r t T r u e (s o l o . s e a r c h T e x t (” S t a r t workout ”)) ;
/ / . . .

}
}

/∗∗ . . . ∗∗ /
}
<<ENDFILE>>
<<ENDFOREACH>>
<<ENDDEFINE>>

Assuming that each test suite consists of one or multiple test cases, for each case a new file
is created. Each test case consists of steps reflecting the keywords shown above. Those
keywords now get listed in the runTest method. Their implementation then is done
by employing the automation framework to control the graphical user interface or to run
assertions over its elements. The template makes use of the Android testing framework.
The resulting test cases are tailored for specific platforms by our test generation process.

4http://www.seleniumhq.org/
5http://junit.sourceforge.net/
6http://www.eclipse.org/modeling/m2t/?project=xpand

5 Related Work

The means used in our work are based on the findings of software product line testing (SPLT)
research [McG07]. An important point is that we do not assume the tested software to be
explicitly designed as an SPL. Instead, we are aware of multiple implementations and the
SPL domain is based on a common set of requirements these implementations have to fulfill
and have to be validated against. In this process, we model a common (shared) behavior
and use refining interpretation by templates to create product-specific tests. Thus, we have
to tackle some of the central challenges of SPLT as well: the potentially large number of
test cases for variable components and variability inherent to test cases.

Lamancha et al. [LUdG09] proposed a model-driven SPLT approach completely based on
standards, especially OVM, UML (including the UML Testing Profile [UML-TP]), Query
View Transformation (QVT) and the OMG Model-Driven Engineering (MDE) process.
After modeling OVM variation points and variants, these are mapped to UML classes and
fragments in sequence charts such that the QVT transformation is able to tailor the model
according to the selected variants and produce UML-TP-based test cases. Furthermore,
Olimpiew and Gomaa showed in [OG05] and [OG09] how their PLUS approach can be
used to construct mappings between features, sequence charts, activity diagrams, use cases,
test specifications and other model elements and how test cases can be generated from this
information. As mentioned, we avoided to use UML as Petri nets have equally well-defined
semantics and an easily comprehensible and extensible syntax.

Another approach explicitly targeting software families was proposed by Bertolino and
Gnesi in [BG04]. Their PLUTO methodology uses tags to parameterize textual use-case-
based test cases. Tags can be alternative, parametric, or optional. Moreover, the authors
use categories to configure the tests. In comparison to our approach, PLUTO does not
support test case generation from an operational (i.e., operational) model.

6 Discussion and Future Work

Our central approaches are attributed feature models as well as a subtraction-based and a
parameterization-based variability mechanism, which were used to tailor an operational test
model for a specific platform configuration and application product. The concepts presented
in this paper enable testers to deal with the variability in single and between multiple
platform environments and generate test cases automatically from a single operational
model.

For our future work, the long-term target is to produce and execute test cases semi-
automatically. Furthermore, we aim to extend our test modeling approach with an concept
for validating dynamically adapting systems. Thus, it could be beneficial to use dynamic
SPLs (DSPLs, [HHPS08]) synergetically with static feature mechanisms discussed in this
paper.

Acknowledgment This work has been funded with the projects #100084131 and #100098171
(VICCI) by the European Social Fund (ESF).

References

[BG04] Antonia Bertolino and Stefania Gnesi. PLUTO: A Test Methodology for Product
Families. In Lecture Notes in Computer Science. SpringerVerlag Heidelberg. 3014,
pages 181–197. Springer, 2004.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[DAGCH08] Junhua Ding, Gonzalo Argote-Garcia, Peter J Clarke, and Xudong He. Evaluating
test adequacy coverage of high level petri nets using spin. In Proceedings of the 3rd
international workshop on Automation of software test, pages 71–78. ACM, 2008.

[HHPS08] S. Hallsteinsen, Mike Hichey, Sooyong Park, and Klaus Schmid. Dynamic software
product lines. IEEE Computer, pages 93–95, 2008.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical report,
DTIC Document, 1990.

[LUdG09] B.P. Lamancha, M.P. Usaola, and I.G.R. de Guzman. Model-driven testing in soft-
ware product lines. In Software Maintenance, 2009. ICSM 2009. IEEE International
Conference on, pages 511 –514, sept. 2009.

[McG07] John D. McGregor. Testing a Software Product Line. In PSSE, pages 104–140, 2007.

[MCP10] Radu Muschevici, Dave Clarke, and J. Proenca. Feature Petri Nets. In Proceedings
of the 14th International Software Product Line Conference (SPLC 2010), volume 2.
Springer, 2010.

[OG05] Erika Mir Olimpiew and Hassan Gomaa. Model-based testing for applications derived
from software product lines. In Proceedings of the 1st international workshop on
Advances in model-based testing, A-MOST ’05, pages 1–7, New York, NY, USA, 2005.
ACM.

[OG09] Erika Mir Olimpiew and Hassan Gomaa. Reusable Model-Based Testing. In Stephen H.
Edwards and Gregory Kulczycki, editors, Formal Foundations of Reuse and Domain En-
gineering, volume 5791 of Lecture Notes in Computer Science, pages 76–85. Springer
Berlin Heidelberg, 2009.

[Utt07] Mark Utting. Practical model-based testing: a tools approach. Morgan Kaufmann,
2007.

