




Test Modeling of Dynamic Variable Systems
using Feature Petri Nets

Georg Püschel, Christoph Seidl, Mathias Neufert,
André Gorzel, and Uwe Aßmann

University of Technology Dresden, Department of Computer Science
Software Technology Group, D-01062 Dresden

{georg.pueschel, christoph.seidl} @tu-dresden.de,
{mathias.neufert, andre.gorzel} @t-systems-mms.de,

uwe.assmann@tu-dresden.de

Abstract. In order to generate substantial market impact, mobile ap-
plications must be able to run on multiple platforms. Hence, software
engineers face a multitude of technologies and system versions result-
ing in static variability. Furthermore, due to the dependence on sensors
and connectivity, mobile software has to adapt its behavior accordingly
at runtime resulting in dynamic variability. However, software engineers
need to assure quality of a mobile application even with this large amount
of variability—in our approach by the use of model-based testing (i.e., the
generation of test cases from models). Recent concepts of test metamod-
els cannot efficiently handle dynamic variability. To overcome this prob-
lem, we propose a process for creating black-box test models based on
dynamic feature Petri nets, which allow the description of configuration-
dependent behavior and reconfiguration. We use feature models to define
variability in the system under test. Furthermore, we illustrate our ap-
proach by introducing an example translator application.

1 Introduction

Applications for mobile devices vary heavily in their quality, mostly de-
pending on the vendor’s will and ability to assure it. When more com-
petitors with similar alternative products enter the market, they are
forced to increase their products’ quality as well as the priority of soft-
ware testing. Test experts can apply model-based testing (MBT) as of
«the automation of the design of black box tests» [13]. Thus, they im-
prove the measurable test efficiency in terms of the number of test cases
and the degree of test coverage. Black box testing does not require code
but a well-defined interface specification, usually consisting of a set of
operations and a protocol definition. For mobile software, the interface
is mostly graphical as back-end components are often outsourced as In-
ternet services. Traditionally, MBT was designed as a generic approach
for arbitrary system types. However, it is desirable to build specialized
models for certain domains that let the modeler define problem-specific
issues more efficiently.



One issue engineers of mobile software are faced with is a broad hetero-
genity regarding target platforms (i.e. hardware, software libraries, and
operating systems). At the same time, various software platforms are
built to run on multiple device types (e.g., smartphones and tablets).
In the testing phase, the developed software has to be validated for cor-
rect behavior in all these configurations. Due to the black box paradigm,
testers cannot directly foresee different effects on the system under test
(SUT) between almost-equivalent configurations as hidden differences in-
side this black box can lead to unpredictable errors. Thus, it is hard to
determine configurations to test for adequate coverage.
Another problem are changes to the platform’s configuration while test-
ing. For instance, the GPS sensor can be switched on or off and the ap-
plication is then expected to react, e.g., by cancelling a GPS-dependent
activity. In consequence, mobile applications testers are faces with a dy-
namic variability challenge as well.
Findings in variability modeling methodology have mainly been driven
by software product line (SPL) research [2]. SPLs represent a family of
systems that share common assets but differ in some specific parts. A
widely used technique for variability modeling in SPL engineering are
feature trees [5], which decompose the system’s concerns in terms of
features connected by a decision tree. Thereby, the tree states several
constraints between the features like mandatory existence or mutual ex-
clusion in context of their parent feature node. A huge variety of exten-
sions for feature trees was proposed, e.g., to represent multiplicities or
attributes. A subset of features that matches all conditions of a feature
tree constitutes a valid configuration (i.e., a product) of the SPL.
As there may be a lot of configurations of a single SPL, testing faces
a complexity challenge that has been discussed in the discipline of SPL
testing (SPLT). Attemps to reduce complexity, mainly focus on devel-
oping approaches on coverage measures and criteria that allow so-called
combinatorial testing [8].
SPLT methodology provides means to solve the static part of mobile test-
ing’s variability issue such that we can reuse its formalisms to compactly
define all possible configurations. The design of dynamically variable sys-
tems is a research issue of Dynamic Software Product Lines (DSPLs). A
DSPL is an SPL that can be reconfigured at runtime [4]. Therefore, it
monitors the environment until a certain trigger is activated that indi-
cates the reconfiguration. Thus, DSPLs are runtime self-adaptive. While
there is already a body of knowledge in designing DSPLs, testing ap-
proaches are still rare.
In this paper, we will provide remedy to this problem by proposing a
process and models that allow the description of reconfigurability in test
models. MBT for mobile applications requires concepts for managing
static and dynamic variability across platforms and the SUT. The con-
tribution of this paper is an envisioned modeling and generation pro-
cess plus a metamodel for designing dynamically variable test models.
Hence, we define the SUT’s variability by using a feature model and
later describe how the configuration changes using an extended version
of Dynamic Feature Petri Nets (DFPN) as test model. The basic DFPN
formalism was proposed by Muschevici et al. [9]. It includes behavioral





TransApp’s software architecture, variability is handled by inheritance
and polymorphism. We can mind a factory pattern, which produces a
new object of INetTransSvc or DictTransSvc for each translation of
which are both subtypes of AbstractTransSvc. The subtype selection
depends on the current connectivity.
To parameterize the translator component, the sample application uses
a localization service to retrieve the current country. This information
gives an initial intention of the target language and is used to provide
higher quality and faster translations. The system may select from two
alternatives again: one is based on GPS (GPSLocalSvc) data, the other
one (NetLocalSvc) uses the mobile cell network information for approxi-
mating a position.
The resulting feature model is depicted in Fig. 1c. The syntax and se-
mantics of our feature model comply to those of Kang et al. [6]. There
are two layers of feature: the upper part identifies the capabilities of the
SUT and lower part identifies features of the operation environment re-
quired by the SUT’s capabilities. The semantics include tree edges for
features beeing optional, mandatory, or mutually exclusive (logical xor)
in context of their parent feature’s selection.
Both translation and localization services are mandatory and for each
one an implementation has to be chosen. Alternative implementations
conflict so they are mutually exclusive.
We decided only to take operating environments into account that are
equipped with GPS and a Cell Phone feature but 3G networks are op-
tional. Several application features depend on the respective operation
environment capabilites. For instance, GPS localization can only be used
if GPS is provided by the platform.

3 Envisioned Test Modeling Process

Fig. 2 depicts our overall process. It starts from a feature model as al-
ready used in our example. These feature models can describe variability
in the software platform (operating system, libraries), sets of devices,
and the SUT itself.
In the next step, the complete set of all configurations is computed. For
valid configurations, the feature models’ constraints must hold. We can
set a combinatorial coverage criterion [8], which defines an additional
propositional constraint on them, so that the amount of valid configura-
tions decreases.
Regarding the example case, a test modeler may preselect the GPS
Localization feature so that only configurations are considered where
the feature is active. The selection of a subset of remaining configura-
tions enables us to measure the test coverage in relation to the complete
configuration space.
The resulting configurations each define a possible initial state. This can
be used as a parameterization of the DFPN-based behavioral model from
which test cases are generated.
DFPNs not only define configuration-dependent behavior, but also spec-
ify activation or deactivation of features at runtime. Thus, test modelers





F Ssample = {T ransApp, Localization, T ranslation,

GP S Localization, Local Dictionary T ranslation,

P latform, GP S, Cell P hone}

In the next step, test modelers have to define the valid behavior for
this configuration and how the configuration may be changed by in-
ternally (application workflow) or externally (context). In the following
section, DFPNs are introduced, which provide means for modeling such
behavior.

5 Introduction to Feature Petri Nets

In this section, we introduce the behavioral metamodel from which test
sequences can be generated. The central requirement is that a single
model is capable of defining behavior in all configuration states.
Muschevici et al. [10][9] proposed an extension to Petri nets [11], called
Feature Petri Nets (FPNs) for modeling dynamically variable systems. A
further extension they propose are Dynamic Feature Petri Nets (DFPN),
which add the ability to control feature binding at runtime. For test
modeling of mobile applications, we use the latter extension. We start
with an informal overview of DFPN while the exact formal definition
of FPNs and DFPNs can by found in [9]. Fig. 3 depicts an example of
a DFPN. Informally, a basic Petri net consists of places (visualized as
circles), transitions (black rectangles) and arcs (arrows) connecting mu-
tually places and transitions. Each place can be marked by tokens (black
dot). A set of token assignments to places at a discrete point in time is
called marking and represents a state of the Petri net. In the operational
semantics of Petri nets a state change is applied by letting a transition
consume tokens from input places and produce new ones in output places.
Thus, transitions can fire if each place in the input set of the transition
is marked by a token. Petri nets are well-formalized and can be used
to model parallelism. In DFPNs, transitions are additionally annotated
with a statement with following syntax:

application condition ϕ

update expression u

The application condition defines an constraint stating the product con-
figurations under which a transition may fire. Over a set of features F ,
an application condition is defined as a propositional formula ϕ with the
syntax grammar:

»ϕ ::= a | ϕ ∧ ϕ | ¬ϕ, where a ∈ F« [9]
Muschevici et al. defined two semantics for FPNs: The first one is projec-
tive: it changes the Petri net graph by removing all transitions with ap-
plication conditions not holding in the current configuration. The second
semantics definition is operational and reasons on the current configu-
ration which makes it applicable for dynamic reconfigurations as well.





the SUT’s interface. To consider arbitrary synchronous and asynchronous
messaging, we define separate input and output operations:

– action(X) produces an output message X, where X may contain a
user-defined data term. Modelers are free to adress interfaces and
operations, for instance by replacing X with an interface method
and respective parameter values.

– assert(X,Verdict) retrieves an input message in form of a term
from the SUT and verifies whether it matches X. If it does, the test
runner continues else it sets the test case’s verdict to Verdict (e.g.,
FAIL or ERROR) and aborts test case execution.

The message operations can be integrated into a redefinition of the up-
date expressions’ syntax. The altered grammar is as follows:

u′ ::= noop | a on | a off | action(∗) | assert(∗, ∗) | u′; u′

where a ∈ F is a feature in feature set F . Consequently, we also have to
redefine the semantics of update to

F S
noop−−−→ F S

F S
action(∗)−−−−−−→ F S

F S
assert(∗,∗)−−−−−−−→ F S

F S
a on−−−→ F S ∪ a

F S
a off−−−−→ F S \ a

F S
u0−→ F S′ F S′

u1−→ F S′′

F S
uo,u1−−−−→ F S′′

where ∗ are arbitrary terms and F S is the modified feature set state in
a specific point in time. Basically, the action and assert operations are
filtered so that they cannot not affect the DFPN formalism’s proofable
properties. Further, we redefine the application conditions’ grammar for
more convenience as

ϕ ::= a | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ¬ϕ | true

where a ∈ F is a feature in feature set F . Again redefine the satisfaction
semantics: given an application condition ϕ and a feature set F S, F S � ϕ
iff ϕ = true or

F S � a iff a ∈ F S

F S � ϕ1 ∧ ϕ2 iff F S � ϕ1 and F S � ϕ2

F S � ϕ1 ∨ ϕ2 iff F S � ϕ1 or F S � ϕ2

F S � ¬ϕ iff ϕ 2 F S







reconfiguration DFPN), so that each trace corresponds to a test case.
The simulation is identical to a reachability analysis. A DFPN transition
occurence

(Mi, F Si)
ti−→ (Mi+1, F Si+1)

where (Mi, F Si) are tupels of markings and features, changed by tran-
sitions ti that can be mapped to a test sequence s(ti). Given the update
expression u(t) mapping s(t) is defined as

s(t) = noop iff u(t) = a on or u(t) = a off

s(t) = u(t) otherwise

where a ∈ F . From a DFPN trace

(M0, F S0) t0−→ (M1, F S1) t1−→ . . .
tn−1−−−→ (Mn, F Sn)

we are now able to create a test case consisting of test steps

s(t0); s(t1); . . . ; s(tn)

. Informally, only actions and assertions remain in the created test se-
quence. If we assume that an initial configuration with activated Internet
feature is selected, a sample test case for TransApp is as follows:

1 a c t i o n ( d e a c t i v a t e C e l l ( ) ) ; //X
2 a c t i o n ( activateGPS ( ) ) ; //X
3 a c t i o n ( e n t e r (PHRASE) ) ; //A
4 a c t i o n ( c l i c k ( Trans late ) ) ; //A
5 a s s e r t ( t r a n s l a t i o n (PHARASE,GPS, I n t e r n e t ) , FAIL ) ; //B

Comments in each line denote the transitions that produced the respec-
tive test action. In the example, the produced generation path first tra-
versed the reconfiguration net and subsequently applied the transitions
of the workflow.

7 Related Work

The integration of variability management and testing on mobile devices
was investigated by Ridene and Babier [12]. By using a domain specific
modeling language (DSML), they specify variability decisions on tech-
nical properties of the device configuration. Their DSML is basically an
extension to sequence diagrams such that test cases are defined in form
of message sequences between involved objects. Thus, the search space
is much smaller than in our completely operational model. However, this
also makes Ridene et al.’s model less powerful as there are, for instance,
no loops.
A second approach to dynamic system testing was developed in context
of the DiVA project [3][7]. In DiVA, variability models were used as well.
To test a specific system, two phases were defined: In the first «early»
phase, instances of a context model were generated and associated with
partial solutions of the variability model. Thus, it is possible to test



whether environment changes correctly effect the system’s adaptation
mode. In the second «operational» phase, the context changes are se-
quentially applied to the system at runtime. The DiVA approach is quite
powerful as it additionally includes the relation between context and sys-
tem configuration. However, DiVA provides no operational model that
allows to explicitly control the task workflow and the order of changes
in a synchronized manner as our approach does.

8 Conclusion and Future Work
In this paper, we presented an approach to employ feature-based vari-
ability modeling for mobile application testing. For this purpose, we de-
signed a test modeling process for dynamically variable systems, start-
ing from creating a feature model that defines a test configuration space.
These models are widely reusable in various test projects where platform-
configuration at runtime affects the system under test. In the next step,
a SAT-solver generates concrete configurations that are initial system
states.
Feature Petri nets are suitable to model dynamically adapting behavior.
Enriched with test-specific output labels, test cases can be derived from
traces (i.e., traces of the reachability analysis). We sustained syntax and
semantics of FPNs, so that property proofs (e.g., liveness) on their orig-
inal formalism will still hold for our approach.
The major advantage of our approach is the reduction of effort. Test
modelers neither have to specify a test model for each configuration nor
for each adaptation mode. Both static and dynamic variability are ex-
pressed in the feature models and extended DFPNs.
For future work, a requirement is the definition of suitable formal ade-
quacy criteria. They have to be composed from combinatorial and Petri
net criteria. Another point are attributes that we aim to integrate in the
variability model. Therefore, finite domain variables can be attached to
the feature model. As variable assignments state additional information
on the DSPL state, they need additional syntax and semantics for FPN
conditions and DFPN manipulation actions.
To focus industrial evaluations, a tooling implementation for test mod-
eling and test suite generation from DFPNs is required. Therefore, our
Eclipse-based Mobile Application Test Enironment1 (MATE) will be ex-
tended and used in a case study.

Acknowledgement This research was funded within the projects
#100084131 and VICCI #100098171, by the European Social Fund (ESF)
and Federal State of Saxony, and by our industrial partner T-Systems
Multimedia Solutions.

References
1. Batory, D.: Feature models, grammars, and propositional formulas.

In: Software Product Lines. vol. 3714, pp. 7–20. Springer (2005)
1 http://www.quality-mate.org



2. Czarnecki, K., Østerbye, K., Völter, M.: Generative programming.
In: Object-Oriented Technology ECOOP 2002Workshop Reader. pp.
15–29. Springer (2002)

3. Dehlen, V., Solberg, A.: DiVA methodology (DiVA deliverable D2.3)
(2010)

4. Hallsteinsen, S., Hichey, M., Park, S., Schmid, K.: Dynamic Software
Product Lines. IEEE Computer pp. 93–95 (2008)

5. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.:
Feature-Oriented Domain Analysis (FODA). Tech. rep., Software
Engineering Institute, Carnegie Mellon University (1990)

6. Lee, K., Kang, K., Lee, J.: Concepts and guidelines of feature model-
ing for product line software engineering. In: Gacek, C. (ed.) Software
Reuse: Methods, Techniques, and Tools, Lecture Notes in Computer
Science, vol. 2319, pp. 62–77. Springer Berlin Heidelberg (2002),
http://dx.doi.org/10.1007/3-540-46020-9_5

7. Maaß, A., Beucho, D., Solberg, A.: Adaptation model and validation
framework – final version (DiVA deliverable D4.3) (2010)

8. McGregor, J.: Testing a Software Product Line. Tech. Rep. Decem-
ber, Carnegie Mellon University (2001)

9. Muschevici, R., Clarke, D., Proenca, J.: Feature Petri Nets. In: Pro-
ceedings of the 14th International Software Product Line Conference
(SPLC 2010). vol. 2. Springer (2010)

10. Muschevici, R., Proença, J., Clarke, D.: Modular Modelling of Soft-
ware Product Lines with Feature Nets. In: Software Engineering and
Formal Methods. pp. 318–333. Springer (2011)

11. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Technis-
che Hochschule Darmstadt (1962)

12. Ridene, Y., Barbier, F.: A Model-driven Approach for Automating
Mobile Applications Testing. In: Proceedings of the 5th European
Conference on Software Architecture. p. 9. ACM Press (2011)

13. Utting, M.: Practical Model-based Testing: A Tools Approach. Mor-
gan Kaufmann (2007)

14. Zhu, H., He, X.: A Methodology of Testing High-level Petri Nets.
Information and Software Technology 44(8), 473–489 (2002)




