7,805 research outputs found
Spin Chains with Periodic Array of Impurities
We investigate the spin chain model composed of periodic array of two kinds
of spins and , which allows us to study the spin chains with
impurities as well as the alternating spin chains in a unified fashion. By
using the Lieb-Shultz-Mattis theorem, we first study the model rigorously, and
then by mapping it to the non-linear sigma model, we extensively investigate
low-energy properties with particular emphasis on the competition between the
massive and massless phases.Comment: 5 pages, revtex, To appear in PR
A Neutrino-Factory Muon Storage Ring to Provide Beams for Multiple Detectors Around the World
We briefly discuss the physics motivation for a neutrino factory with varying
baseline distances of about 1000 to 9000 km. We describe the amount of non
planarity of the storage ring required to service three or four detectors at
once. A novel bowtie storage ring is described that could in part provide these
beams; a preliminary lattice design is given. We give the space angles between
the various detector locations and possible sites for neutrino factories.
Finally we describe detectors at the Gran Sasso Laboratory and at a new
laboratory near Carlsbad, NM to observe the neutrino interactions with wrong
sign leptons.Comment: 8 pages. Presented at the 5th Int. Conf. sponsored by UCLA on the
Physics Potential and Develoment of mu^+mu^- Colliders (San Francisco,
December 15-17, 1999) and to be published in the Proceedings by AI
An Unbiased Survey for Molecular Clouds in the Southern Galactic Warp
We have made an unbiased survey for molecular clouds in the Galactic Warp.
This survey, covering an area of 56 square degrees at l = 252 deg to 266 deg
and b = -5 deg to -1 deg, has revealed 70 molecular clouds, while only 6 clouds
were previously known in the region. The number of molecular clouds is, then,
an order of magnitude greater than previously known in this sector at R > 14.5
kpc. The mass of the clouds is in a range from 7.8x10(2) Mo to 8.4x10(4) Mo,
significantly less than the most massive giant molecular clouds in the inner
disk, ~10(6) Mo, while the cloud mass spectrum characterized by a power law is
basically similar to other parts of the Galaxy. The X factor, N(H2)/Wco(12CO),
derived from the molecular clouds in the Warp is estimated to be 3.5(+/-1.8)
times larger than that in the inner disk. The total molecular mass in the Warp
is estimated as 7.3x10(5) Mo, and total mass in the far-outer Galaxy (R > 14.5
kpc) can be estimated as 2x10(7) Mo. The spatial correlation between the CO and
HI distribution appears fairly good, and the mass of the molecular gas is about
1% of that of the atomic gas in the far-outer Galaxy. This ratio is similar to
that in the interarm but is ten times smaller than those of the spiral arms.
Only 6 of the 70 Warp clouds show signs of star formation at the IRAS
sensitivity and star formation efficiency for high-mass stars in the Warp is
found to be smaller than those in other molecular clouds in the Galaxy.Comment: 29 pages, including 12 (pages of) figures, accepted for PASJ, and
will be published in PASJ Vol.57, No.6. Tables and color-figures are
available on-line:
http://www.a.phys.nagoya-u.ac.jp/~masa/study/nakagawa_etal2005_warp.pd
Recombining Plasma & Gamma-ray Emission in the Mixed-morphology Supernova Remnant 3C 400.2
3C 400.2 belongs to the mixed morphology supernova remnant class, showing
center-filled X-ray and shell-like radio morphology. We present a study of 3C
400.2 with archival Suzaku and Fermi-LAT observations. We find recombining
plasma (RP) in the Suzaku spectra of north-east and south-east regions. The
spectra of these regions are well described by two-component thermal plasma
models: The hard component is in RP, while the soft component is in collisional
ionization equilibrium (CIE) conditions. The RP has enhanced abundances
indicating that the X-ray emission has an ejecta origin, while the CIE has
solar abundances associated with the interstellar material. The X-ray spectra
of north-west and south-west regions are best fitted by a two-component thermal
plasma model: an ionizing and a CIE plasma. We have detected GeV gamma-ray
emission from 3C 400.2 at the level of 5 assuming a point-like
source model with a power-law (PL) type spectrum. We have also detected a new
GeV source at the level of 13 assuming a Gaussian extension model
with a PL type spectrum in the neighborhood of the SNR. We report the analysis
results of 3C 400.2 and the new extended gamma-ray source and discuss the
nature of gamma-ray emission of 3C 400.2 in the context of existing NANTEN CO
data, DRAO HI data, and the Suzaku X-ray analysis results.Comment: Accepted to be published in the Astrophysical Journa
Sub-mm/mm studies of the molecular gas in the Galactic disk; the TeV gamma ray SNR RXJ1713.7-3946 and the W28 high mass star forming region
Interstellar molecular clouds are gamma ray sources through the interactions
with cosmic ray protons followed by production of neutral pions which decay
into gamma rays. We present new NANTEN2 observations of the TeV gamma ray SNR
RXJ1713.7-3946 and the W28 region in the 12CO J=2-1, 4-3 and 7-6 emission
lines. In RXJ1713.7-3946 we confirm that the local molecular gas having
velocities around -10 km/s shows remarkably good spatial correlations with the
SNR. We show that the X ray peaks are well correlated with the molecular gas
over the whole SNR and suggest that the interactions between the SNR and the
molecular gas play an important role in cosmic ray acceleration via several
ways including magnetic field compression. The CO J=4-3 distribution towards
peak C shows a compact and dense cloud core having a size of about 1 pc as well
as a broad wing. The core shows a notable anti-correlation with the Suzaku X
ray image and is also associated with hard gamma rays as observed with HESS.
Based on these findings, we present a picture that peak C is a molecular clump
survived against the impact of the SN blast waves and is surrounded by high
energy electrons emitting the X ray. The TeV gamma ray distribution is, on the
other hand, more extended into the molecular gas, supporting the hadronic
origin of gamma ray production. W28 is one of the most outstanding star forming
regions exhibiting TeV gamma rays as identified through a comparison between
the NANTEN CO dataset and HESS gamma ray sources. In the W28 region, we show
the CO J=2-1 distribution over the whole region as well as the detailed image
of the two TeV gamma ray peaks. One of them show strong CO J=7-6 emission,
suggesting high excitation conditions in this high mass star forming core. A
pursuit for the detailed mechanism to produce gamma rays is in progress.Comment: 9 pages, 8 Encapsulated Postscript figures, uses aipxfm.sty
aipproc.cls aip-6s.clo aip-8d.clo aip-8s.cl
Catalogue of 12CO(J=1-0) and 13CO(J=1-0) Molecular Clouds in the Carina Flare Supershell
We present a catalogue of 12CO(J=1-0) and 13CO(J=1-0) molecular clouds in the
spatio-velocity range of the Carina Flare supershell, GSH 287+04-17. The data
cover a region of ~66 square degrees and were taken with the NANTEN 4m
telescope, at spatial and velocity resolutions of 2.6' and 0.1 km/s.
Decomposition of the emission results in the identification of 156 12CO clouds
and 60 13CO clouds, for which we provide observational and physical parameters.
Previous work suggests the majority of the detected mass forms part of a
comoving molecular cloud complex that is physically associated with the
expanding shell. The cloud internal velocity dispersions, degree of
virialization and size-linewidth relations are found to be consistent with
those of other Galactic samples. However, the vertical distribution is heavily
skewed towards high-altitudes. The robust association of high-z molecular
clouds with a known supershell provides some observational backing for the
theory that expanding shells contribute to the support of a high-altitude
molecular layer.Comment: To be published in PASJ Vol. 60, No. 6. (Issued on December 25th
2008). 35 pages (including 13 pages of tables), 7 figures. Please note that
formatting problems with the journal macro result in loss of rightmost data
columns in some long tables. These will be fixed in the final published
issue. In the meantime, please contact the authors for missing dat
Large-Scale Gravitational Instability and Star Formation in the Large Magellanic Cloud
Large-scale star formation in disk galaxies is hypothesized to be driven by
global gravitational instability. The observed gas surface density is commonly
used to compute the strength of gravitational instability, but according to
this criterion star formation often appears to occur in gravitationally stable
regions. One possible reason is that the stellar contribution to the
instability has been neglected. We have examined the gravitational instability
of the Large Magellanic Cloud (LMC) considering the gas alone, and considering
the combination of collisional gas and collisionless stars. We compare the
gravitationally unstable regions with the on-going star formation revealed by
Spitzer observations of young stellar objects. Although only 62% of the massive
young stellar object candidates are in regions where the gas alone is unstable,
some 85% lie in regions unstable due to the combination of gas and stars. The
combined stability analysis better describes where star formation occurs. In
agreement with other observations and numerical models, a small fraction of the
star formation occurs in regions with gravitational stability parameter Q > 1.
We further measure the dependence of the star formation timescale on the
strength of gravitational instability, and quantitatively compare it to the
exponential dependence expected from numerical simulations.Comment: Accepted for publication in ApJ, 10 pages, 5 figure
ISM gas studies towards the TeV PWN HESS J1825-137 and northern region
HESS J1825-137 is a pulsar wind nebula (PWN) whose TeV emission extends
across ~1 deg. Its large asymmetric shape indicates that its progenitor
supernova interacted with a molecular cloud located in the north of the PWN as
detected by previous CO Galactic survey (e.g Lemiere, Terrier &
Djannati-Ata\"i 2006). Here we provide a detailed picture of the ISM towards
the region north of HESS J1825-137, with the analysis of the dense molecular
gas from our 7mm and 12mm Mopra survey and the more diffuse molecular gas from
the Nanten CO(1-0) and GRS CO(1-0) surveys. Our focus is the possible
association between HESS J1825-137 and the unidentified TeV source to the
north, HESS J1826-130. We report several dense molecular regions whose
kinematic distance matched the dispersion measured distance of the pulsar.
Among them, the dense molecular gas located at (RA,
Dec)=(18.421h,-13.282) shows enhanced turbulence and we suggest that
the velocity structure in this region may be explained by a cloud-cloud
collision scenario. Furthermore, the presence of a H rim may be the
first evidence of the progenitor SNR of the pulsar PSR J1826-1334 as the
distance between the H rim and the TeV source matched with the
predicted SNR radius R~120 pc. From our ISM study, we identify a
few plausible origins of the HESS J1826-130 emission, including the progenitor
SNR of PSR J1826-1334 and the PWN G018.5-0.4 powered by PSR J1826-1256. A
deeper TeV study however, is required to fully identify the origin of this
mysterious TeV source.Comment: 19 figures, 27 pages, accepted by MNRA
- âŠ