6,490 research outputs found

    Performance Testing of Distributed Component Architectures

    Get PDF
    Performance characteristics, such as response time, throughput andscalability, are key quality attributes of distributed applications. Current practice,however, rarely applies systematic techniques to evaluate performance characteristics.We argue that evaluation of performance is particularly crucial in early developmentstages, when important architectural choices are made. At first glance, thiscontradicts the use of testing techniques, which are usually applied towards the endof a project. In this chapter, we assume that many distributed systems are builtwith middleware technologies, such as the Java 2 Enterprise Edition (J2EE) or theCommon Object Request Broker Architecture (CORBA). These provide servicesand facilities whose implementations are available when architectures are defined.We also note that it is the middleware functionality, such as transaction and persistenceservices, remote communication primitives and threading policy primitives,that dominates distributed system performance. Drawing on these observations, thischapter presents a novel approach to performance testing of distributed applications.We propose to derive application-specific test cases from architecture designs so thatthe performance of a distributed application can be tested based on the middlewaresoftware at early stages of a development process. We report empirical results thatsupport the viability of the approach

    Measuring Hall Viscosity of Graphene's Electron Fluid

    Full text link
    Materials subjected to a magnetic field exhibit the Hall effect, a phenomenon studied and understood in fine detail. Here we report a qualitative breach of this classical behavior in electron systems with high viscosity. The viscous fluid in graphene is found to respond to non-quantizing magnetic fields by producing an electric field opposite to that generated by the classical Hall effect. The viscous contribution is large and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyze the anomaly over a wide range of temperatures and carrier densities and extract the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiment. Good agreement with theory suggests further opportunities for studying electron magnetohydrodynamics.Comment: 18 pages, 9 figure

    Nonlocal Spin Transport as a Probe of Viscous Magnon Fluids

    Get PDF
    Magnons in ferromagnets behave as a viscous fluid over a length scale, the momentum-relaxation length, below which momentum-conserving scattering processes dominate. We show theoretically that in this hydrodynamic regime viscous effects lead to a sign change in the magnon chemical potential, which can be detected as a sign change in the nonlocal resistance measured in spin transport experiments. This sign change is observable when the injector-detector distance becomes comparable to the momentum-relaxation length. Taking into account momentum- and spin-relaxation processes, we consider the quasiconservation laws for momentum and spin in a magnon fluid. The resulting equations are solved for nonlocal spin transport devices in which spin is injected and detected via metallic leads. Because of the finite viscosity we also find a backflow of magnons close to the injector lead. Our work shows that nonlocal magnon spin transport devices are an attractive platform to develop and study magnon-fluid dynamics

    Bound on the multiplicity of almost complete intersections

    Full text link
    Let RR be a polynomial ring over a field of characteristic zero and let IāŠ‚RI \subset R be a graded ideal of height NN which is minimally generated by N+1N+1 homogeneous polynomials. If I=(f1,...,fN+1)I=(f_1,...,f_{N+1}) where fif_i has degree did_i and (f1,...,fN)(f_1,...,f_N) has height NN, then the multiplicity of R/IR/I is bounded above by āˆi=1Ndiāˆ’maxā”{1,āˆ‘i=1N(diāˆ’1)āˆ’(dN+1āˆ’1)}\prod_{i=1}^N d_i - \max\{1, \sum_{i=1}^N (d_i-1) - (d_{N+1}-1) \}.Comment: 7 pages; to appear in Communications in Algebr

    Electron polarization function and plasmons in metallic armchair graphene nanoribbons

    Get PDF
    We calculate the polarization function of Dirac fermions in metallic armchair graphene nanoribbons for an arbitrary temperature and doping. We find that at finite temperatures due to the phase space redistribution among inter-band and intra-band electronic transitions in the conduction and valence bands, the full polarization function becomes independent of the temperature and the position of the chemical potential. As a result, for a given width of nanoribbons there exists a single plasmon mode, with the energy dispersion determined by the graphene's fine structure constant. In Coulomb-coupled nanoribbons, this plasmon splits into the basic in-phase and out-of-phase plasmon modes, with the splitting energy determined additionally by the inter-ribbon spacing.Comment: 7 pages, 4 figures; in press in Phys. Rev.

    Magnetic hallmarks of viscous electron flow in graphene

    Full text link
    We propose a protocol to identify spatial hallmarks of viscous electron flow in graphene and other two-dimensional viscous electron fluids. We predict that the profile of the magnetic field generated by hydrodynamic electron currents flowing in confined geometries displays unambiguous features linked to whirlpools and backflow near current injectors. We also show that the same profile sheds light on the nature of the boundary conditions describing friction exerted on the electron fluid by the edges of the sample. Our predictions are within reach of vector magnetometry based on nitrogen-vacancy centers embedded in a diamond slab mounted onto a graphene layer.Comment: 5 pages, 6 figure
    • ā€¦
    corecore