1,802 research outputs found

    Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system

    Get PDF
    Paleoclimatic records indicate a decline of vegetation cover in the Western Sahara at the end of the African Humid Period (about 5,500 years before present). Modelling studies have shown that this phenomenon may be interpreted as a critical transition that results from a bifurcation in the atmosphere-vegetation system. However, the stability properties of this system are closely linked to climate variability and depend on the climate model and the methods of analysis. By coupling the Planet Simulator (PlaSim), an atmosphere model of intermediate complexity, with the simple dynamic vegetation model VECODE, we assess previous methods for the detection of multiple equilibria, and demonstrate their limitations. In particular, a stability diagram can yield misleading results because of spatial interactions, and the system's steady state and its dependency on initial conditions are affected by atmospheric variability and nonlinearities. In addition, we analyse the implications of climate variability for the abruptness of a vegetation decline. We find that a vegetation collapse can happen at different locations at different times. These collapses are possible despite large and uncorrelated climate variability. Because of the nonlinear relation between vegetation dynamics and precipitation the green state is initially stabilised by the high variability. When precipitation falls below a critical threshold, the desert state is stabilised as variability is then also decreased. © 2011 The Author(s)

    Investigation of topographical stability of the concave and convex Self-Organizing Map variant

    Get PDF
    We investigate, by a systematic numerical study, the parameter dependence of the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf concave and convex learning with respect to different input distributions, input and output dimensions

    A Comparison of an Unhooded and Hooded Sprayer for Pesticide Drift Reduction

    Get PDF
    Management of drift from pesticide applications is important for human and environmental health concerns. It is also necessary to ensure adequate dosage of the pesticide meets the target species(s). A variety of factors can affect the drift potential of a pesticide application, including nozzle selection, solution chemistry, and application equipment. In the present study, a comparison of two ground sprayers, one with a hood and one without a hood, is made using three common ground nozzles in the US. The hooded sprayer reduced the drift potential of the pesticide application for all nozzles tested. In addition, higher spray coverage under the boom was measured when using the hooded sprayer. The results of this study indicate that incorporating a hood will lead to reduced drift potential from a pesticide application

    Proper Motion of H2O Masers in IRAS 20050+2720 MMS1: An AU Scale Jet Associated with An Intermediate-Mass Class 0 Source

    Full text link
    We conducted a 4 epoch 3 month VLBA proper motion study of H2_2O masers toward an intermediate-mass class 0 source IRAS 20050+2720 MMS1 (d=700 pc). From milli-arcsecond (mas) resolution VLBA images, we found two groups of H2O maser spots at the center of the submillimeter core of MMS1. One group consists of more than 50\sim 50 intense maser spots; the other group consisting of several weaker maser spots is located at 18 AU south-west of the intense group. Distribution of the maser spots in the intense group shows an arc-shaped structure which includes the maser spots that showed a clear velocity gradient. The spatial and velocity structures of the maser spots in the arc-shape did not significantly change through the 4 epochs. Furthermore, we found a relative proper motion between the two groups. Their projected separation increased by 1.13+/-0.11 mas over the 4 epochs along a line connecting them. The spatial and velocity structures of the intense group and the relative proper motions strongly suggest that the maser emission is associated with a protostellar jet. Comparing the observed LSR velocities with calculated radial velocities from a simple biconical jet model, we conclude that the most of the maser emission are likely to be associated with an accelerating biconical jet which has large opening angle. The large opening angle of the jet traced by the masers would support the hypothesis that poor jet collimation is an inherent property of luminous (proto)stars.Comment: 14 pages, 10 figures, Fig.3 was downsized significantly. accepted for publication in A&

    Two drastically different climate states on an Earth-like terra-planet

    No full text
    We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an overland recycling mechanism hints at the possibility of a wider habitable zone for Earth-like terra-planets at low obliquities

    Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration

    Get PDF
    The total activity of the single-seeded cellular rule 150 automaton does not follow a one-step iteration like other elementary cellular automata, but can be solved as a two-step vectorial, or string, iteration, which can be viewed as a generalization of Fibonacci iteration generating the time series from a sequence of vectors of increasing length. This allows to compute the total activity time series more efficiently than by simulating the whole spatio-temporal process, or even by using the closed expression.Comment: 4 pages (3 figs included

    Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene

    Get PDF
    Marine sediment records from a series of core sites along the northwest African margin show a sudden increase in North Atlantic dust deposition at about 5&thinsp;ka&thinsp;BP that has been associated with an abrupt end of the African Humid Period (AHP). To assess the causes of the abrupt shift in North Atlantic dust deposition, we explore changes in the Holocene dust cycle and in North African climate and landscape by performing several time slice simulations from 8&thinsp;ka&thinsp;BP until the preindustrial era. To do this, we use the coupled aerosol–climate model ECHAM6–HAM2 including dynamic vegetation and interactive dust, wherein ocean conditions and lake surface area are prescribed for each time slice.We find a rapid increase in simulated dust deposition between 6 and 4&thinsp;ka&thinsp;BP that is fairly consistent with the abrupt change in marine sediment records at around 20°&thinsp;N close to the northwest African margin. At more northern and more remote cores, a significant change in dust deposition is noticeable roughly between 6 and 2&thinsp;ka&thinsp;BP in the simulations as well as in the records, but the change is less sharp compared to the near-margin core sites. The rapid change in simulated dust deposition is caused by a rapid increase in simulated dust emissions in the western Sahara, where the main dust sources for dust transport towards the North Atlantic are located. The sudden increase in dust emissions in the western Sahara is according to our simulations a consequence of a fast decline of vegetation cover from 22 to 18°&thinsp;N that might occur due to vegetation–climate feedbacks or due to the existence of a precipitation threshold on vegetation growth. Additionally, the prescribed gradual reduction of lake area enforces accelerated dust release as highly productive dust sources are uncovered. Concurrently with the continental drying, surface winds in the western Sahara are accelerated. Changes in the Saharan landscape and dust emissions south of 18°&thinsp;N and in the eastern Sahara play a minor role in driving the dynamics of North Atlantic dust deposition at the core sites. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape. As a consequence, implications from local data records on large-scale climate have to be treated with caution.</p

    First results from a VLBA proper motion survey of H2O masers in low-mass YSOs: the Serpens core and RNO15-FIR

    Full text link
    This article reports first results of a long-term observational program aimed to study the earliest evolution of jet/disk systems in low-mass YSOs by means of VLBI observations of the 22.2 GHz water masers. We report here data for the cluster of low-mass YSOs in the Serpens molecular core and for the single object RNO~15-FIR. Towards Serpens SMM1, the most luminous sub-mm source of the Serpens cluster, the water maser emission comes from two small (< 5 AU in size) clusters of features separated by ~25 AU, having line of sight velocities strongly red-shifted (by more than 10 km/s) with respect to the LSR velocity of the molecular cloud. The two maser clusters are oriented on the sky along a direction that is approximately perpendicular to the axis of the radio continuum jet observed with the VLA towards SMM1. The spatial and velocity distribution of the maser features lead us to favor the interpretation that the maser emission is excited by interaction of the receding lobe of the jet with dense gas in the accretion disk surrounding the YSO in SMM1. Towards RNO~15-FIR, the few detected maser features have both positions and (absolute) velocities aligned along a direction that is parallel to the axis of the molecular outflow observed on much larger angular scales. In this case the maser emission likely emerges from dense, shocked molecular clumps displaced along the axis of the jet emerging from the YSO. The protostar in Serpens SMM1 is more massive than the one in RNO~15-FIR. We discuss the case where a high mass ejection rate can generate jets sufficiently powerful to sweep away from their course the densest portions of circumstellar gas. In this case, the excitation conditions for water masers might preferably occur at the interface between the jet and the accretion disk, rather than along the jet axis.Comment: 18 pages (postscript format); 9 figures; to be published into Astronomy & Astrophysics, Main Journa
    corecore