7 research outputs found
νμ μ λμ¦ νμμμ μ κ΅μ μμ ν κ·Όμ¬ κ³¨νΈ λ° μμ¬ κ³¨νΈμ λ 립μ μ΄λμ λν λΆμ
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :μΉμνλνμ μΉμκ³Όνκ³Ό,2019. 8. κΉμ±λ―Ό.1. μ°κ΅¬λͺ©μ
λ³Έ μ°κ΅¬λ₯Ό ν΅ν΄ νμ
μ λμ¦μΌλ‘ νμ
골 μνμ§ μμλΆν μ λ¨μ μ μ΄μ©νμ¬ μ
κ΅μ μμ μ λ°μ νμμ λλΆμΈ‘λͺ¨ λ°©μ¬μ μ¬μ§μ μ΄μ©νμ¬ κ·Όμ¬ κ³¨νΈκ³Ό μμ¬ κ³¨νΈμ λ
립μ μΈ μμ§μμ λΆμνκ³ μ νλ€. λν νμ
골μμ κΈμν λ° κΈμ λμ¬μ κ³ μ λ°©μμ λ°λ₯Έ νκ·λμ μ°¨μ΄λ₯Ό μμλ³΄κ³ μ νλ€.
2. μ°κ΅¬λ°©λ²
νμ
μ λμ¦μΌλ‘ μ§λ¨μ λ°κ³ , μμ
μ λ₯΄ν¬νΈ 1ν 골 μ λ¨ λ° νμ
골 μνμ§ μμλΆν μ λ¨μ μ μν λ°μ νμ 40λͺ
μ μμ μ (T0), μμ μ§ν(T1), μμ 1λ
ν(T2)μ λλΆμΈ‘λͺ¨ λ°©μ¬μ μ¬μ§μ λΆμνμλ€. κ·Όμ¬ κ³¨νΈκ³Ό μμ¬ κ³¨νΈμ λ
립μ μΈ μ΄λλμ νκ°νκΈ° μν΄, T1μ νμ
골μ νΈλ μ΄μ±ν μμΈν
μ΄νΈμ§λ₯Ό T2λ₯Ό νΈλ μ΄μ±ν μμΈν
μ΄νΈμ§μ μ€μ²©μν€κ³ , νμ
κ³Όλμ νμ μ€μ¬μ κΈ°μ€μΌλ‘ T1μ νμ
μ€μ μΉκ° T2μ μμ
μ€μ μΉ μ€λ©΄μ λΏμ λκΉμ§ νμ μμΌ, μ΄ λμ T1μ T2μμμ κ·Όμ¬ λ° μμ¬κ³¨νΈμ μ°¨μ΄λ₯Ό μΈ‘μ νλ€.
λν νμ
골 μνμ§ μμλΆν μ λ¨μ ν κΈμν λ§μ μ΄μ©νμ¬ κ·Όμ¬ κ³¨νΈκ³Ό μμ¬ κ³¨νΈμ κ³ μ ν κ΅°(group I)κ³Ό κΈμν λ° νμ
μνμ§μ μΆκ° κΈμ λμ¬λ₯Ό μ΄μ©νμ¬ κ³ μ ν κ΅°(group II)λ‘ λλμ΄ λ κ΅° κ°μ μ μν μ°¨μ΄ μ 무λ₯Ό νμΈνλ€.
νμ
κ·Όμ¬κ³¨νΈκ³Ό μμ¬κ³¨νΈμ κ³ μ λ°©μμ λ°λ₯Έ κ° λ³νλμ νκ°λ₯Ό μν΄ Kolmogorove-Smirnov testλ‘ κ³μΈ‘μΉκ° μ κ·λΆν¬λ₯Ό λ°λ₯΄λ μ§λ₯Ό νκ°νλ€. Kolmogorov-Smirnov testλ₯Ό μ΄μ©ν΄ κ° μΈ‘μ κ°μ μ κ·μ± κ²μ κ²°κ³Ό μ κ·μ±μ λ§μ‘±νμ§ μλ λ€μ― κ°μ§ μΈ‘μ κ°λ€μ Mann-Whitney testλ₯Ό ν΅ν΄, μ κ·λΆν¬λ₯Ό λ§μ‘±νλ λλ¨Έμ§ μΈ‘μ κ°λ€μ λ
립νλ³Έ T κ²μ μ μ€μνμ¬ λ κ΅° κ°μ μ μν μ°¨μ΄κ° μλμ§λ₯Ό νκ°νλ€. λν 40λͺ
μ 체 νμμμμ κ° λ³νλ κ°μ μκ΄κ΄κ³λ Pearsons correlation analysisλ₯Ό μ΄μ©νμ¬ νκ°νλ€.
3. μ°κ΅¬κ²°κ³Ό
λͺ¨λ νμμμ μμ ν κ·Όμ¬ κ³¨νΈκ³Ό μμ¬ κ³¨νΈμ λ
립μ μ΄λμ΄ κ΄μ°°λλ€. λν μΆκ° κΈμ λμ¬μ μ λ¬΄κ° λ 골νΈμ λ
립μ μΈ μ΄λμ ν° μν₯μ μ£Όμ§ λͺ»νλ€.
μμ μ ν νμ
골μ νν΄λκ³Ό μμ μ§ν κ·Όμ¬ κ³¨νΈμ μκ³λ°©ν₯ νμ λμ μ μν μκ΄κ΄κ³λ₯Ό 보μλ€. λν μμ μ§ν μκ³λ°©ν₯μΌλ‘ νμ ν 골νΈμ μμ ν 1λ
κ° λ°μκ³λ°©ν₯μΌλ‘μ νκ· μμμ 보μμ§λ§, μμ μ μμΉκΉμ§ λμμ€μ§λ μμλ€. μμ 1λ
ν(T2) νμ
골 Bμ μμμ λ°μκ³λ°©ν₯ μ 체 νκ·λμ 2.01Β±1.69 mmμμΌλ©°, T2μμμ κ·Όμ¬κ³¨νΈμ λ°μκ³ λ°©ν₯μΌλ‘μ νμ λμ 2.63Β±1.95Β°μλ€. T1μμ νΈλ μ΄μ±ν νμ
μ 체 μ΄λ―Έμ§λ₯Ό T2μμμ νμ
κ·Όμ¬κ³¨νΈμ λ§κ² μ€μ²©μ ν κ²°κ³Ό, νμ
B μ μμμ νκ·λμ 1.55Β±1.71 mmμκ³ , μμ¬κ³¨νΈμ λ
립μ μΈ μκ³λ°©ν₯ νμ μ΄ κ΄μ°°λμλ€.
4. κ²°λ‘
μ μκ·Όμ μ΄λμ μμ ν νμ
골 νκ· νμμ μ£Όλ μμΈμ΄κ³ , κ·Όμ¬ κ³¨νΈ λ° μμ¬ κ³¨νΈμ λ
립μ μ΄λμ μμ ν νμ
골μ νκ·μ κ΄λ ¨μ΄ μμΌλ―λ‘, λ 골νΈμ λ
립μ μ΄λμ μ μκ·Όμ νμ μν₯μ λ°λλ€κ³ ν μ μλ€. λ³Έ μ°κ΅¬μ κ²°κ³Όμ κ·Όκ±°νλ©΄ κ·Όμ¬κ³¨νΈκ³Ό μμ¬κ³¨νΈμ μμ ν κ°κ° λ
립μ μΈ μμ§μμ΄ μμμΌλ©°, μ΄λ κΈμν λ° κΈμλμ¬μ κ³ μ μλ λΆκ΅¬νκ³ κ·Όμ¬κ³¨νΈκ³Ό μμ¬κ³¨νΈ μ¬μ΄μ λ―ΈλλΌ μ΄λμ΄ λ°μνμμμ μ μνλ€.
λ°λΌμ μμ ν νκ·λμ μ€μ΄κΈ° μν΄ κ·Όμ¬ κ³¨νΈμ΄ μμ μ€μ μκ³λ°©ν₯μΌλ‘ νμ νμ§ μλλ‘ μ‘°μ ν΄μΌ νλ€. λν μμ ν κ·Όμ¬κ³¨νΈμ λ°μκ³ λ°©ν₯μ νμ μλ λΆκ΅¬νκ³ μμ¬κ³¨νΈμμλ μΌλΆ μκ³λ°©ν₯μ νμ μ΄ λ°ννλ―λ‘ κ°λ°©κ΅ν©μ΄ λ°μνμ§ μλλ‘ μ μν΄μΌ νλ€. κ·Όμ¬κ³¨νΈκ³Ό μμ¬κ³¨νΈ μ¬μ΄μ λ―ΈλλΌ μ΄λμ΄ λ°μν¨μ κ³ λ €νμ¬ κ³¨νΈμ λ
립μ μΈ μμ§μμ νμ©ν μ μλ λ°κ³ μ (semi-rigid) λ°©μμ κΈμνμ μ¬μ©ν΄ μ 체 νμ
골μ νκ·λμ μ€μ΄λ κ²μ΄ λ°λμ§νλ€.1. Objectives
The purpose of this present study was to evaluate the isolated movement (IM) of the proximal segment (PS) and distal segment (DS) during postoperative period after orthognathic surgery for mandibular prognathism. In addition, the IM was analyzed depending on the different fixation type of the mandible.
2. Methods
The study included data from 40 patients who underwent Le Fort I osteotomy and setback surgery of the mandible via sagittal split ramus osteotomy (SSRO) with or without genioplasty. Lateral cephalograms were taken before surgery (T0), immediately after surgery (T1), 1 year after surgery (T2). To evaluate the IM of PS and DS, the acetate paper traced with the whole mandible at T1 was overlaid on T2. The overlaid acetate paper of mandible at T1 was rotated until mandibular central incisor at T1 reached cingulum of maxillary central incisor at T2. Landmarks at this position of mandible were marked in T2, and they were defined as T3. To measure the IM of PS, the traced mandible at T1 was overlaid on T2, and Mandible at T1 was rotated until the posterior border of PS at T1 was aligned with the posterior border of PS at T2 (T3). The differences of cephalometric parameters and the SN-ArGo angle between T2 and T3 were measured.
The linear and angular changes of landmarks and parameters between T0 and T1, T1 and T2, T3 and T2 was evaluated. In group I, a four-hole miniplate was used on both sides of mandible for fixation of PS and DS. In group II, at least one positional screw was additionally used to fix PS and DS because of lack of bone contact in retromolar area. Mann-Whitney test and independent student t test were used to determine statistically significance between two groups. Pearsons correlation coefficient was used to assess the relation of surgical changes, postoperative relapses, and IM.
3. Results
The postoperative IM of PS (counterclockwise rotation) and DS (clockwise rotation) were observed in all patients. However, the use of additional positional screws didnt significantly affect the amount of IM of PS and DS. The amount of perioperative mandibular setback was proportional to the amount of the perioperative clockwise rotation of PS. The amount of postoperative counterclockwise rotation (CCWR) of PS (Group I : -2.53 Β± 1.84Β° / Group II : -2.72 Β± 2.05Β°) was less than that of perioperative clockwise rotation (CWR) of PS (Group I : +4.27 Β± 1.89Β° / Group II : 4.22 Β± 1.84Β°). When the posterior border of PS at T1 aligned with that at T2, the difference of horizontal point B was 1.55 Β± 1.71 mm. The total amount of horizontal relapse (T2-T1) at point B was 2.01 Β± 1.69 mm.
4. Conclusion
All patients showed IM of PS and DS, and postoperative IM of PS and DS were significantly correlated with postoperative relapse of mandible. In order to prevent postoperative relapse, PS should not be rotated clockwise perioperatively. Different from CCWR of PS postoperatively, CWR happens in DS postoperatively. Therefore, adequate care is necessary to prevent open bite during postoperative period.I. Introduction 2
II. Materials and methods
1. Patients 3
2. Cephalometric analysis 5
3. Statistical analysis 6
III. Results
1. Overbite and overjet 7
2. Surgical changes 7
3. Relapse 8
4. Isolated movement of proximal segment and distal segment 9
5. The correlation of surgical change, postoperative relapse, and isolated movements 10
IV. Discussion 11
V. Conclusion 15
VI. References 16Maste
Studies on dihydropyrimidine dehydrogenase mRNA expression as a predictor of 5-fluorouracil chemosensitivity and toxicity in head and neck cancer
νμλ
Όλ¬Έ(λ°μ¬)--μμΈλνκ΅ λνμ :μνκ³Ό μμλ³λ¦¬νμ 곡,2002.Docto
Position-controlled selective growth of wide bandgap semiconductor nano- and microstructures for light-emitting device applications
DoctorSemiconductor nano- and microstructures fabricated by bottom-up approach have been considered as ideal building blocks for electronic and optoelectronic device applications due to the high crystallinity of the nanomaterials and easy miniaturization of the devices. Recently developed catalyst-free metal-organic vapor phase epitaxy (MOVPE) growth of ZnO nanostructures demonstrated their high purity and crystallinity with few extended crystal defects, thus the method provide the desirable method for nano- and micrometer scale devices. Despite of successful demonstration of ZnO nanorod-based device applications, there remains a huge challenge for self-assembled positioning the devices in a designed fashion for not only addressable fabrication process but also practical device applications. This thesis presents the position-controlled selective growth of wide bandgap semiconductor-based nano and microstructures on substrates and their light-emitting device applications. The strategy for the selective growth of wide bandgap semiconductor nano- and microstructures is (i) utilizing catalyst-free MOVPE methods for high purity material growth, (ii) utilizing GaN micropatterns or amorphous growth mask for large gradient in surface formation energy, (iii) GaN films/Si or c-Al2O3 as a conducting and epitaxial seed layer, and (iv) well-established GaN-based MOVPE techniques for heteroepitaxy and light-emitting device applications.Firstly, epitaxial growth modes of ZnO nanostructures were investigated in terms of anisotropic surface formation energy. For the controlled growth modes, various epitaxial substrates such as single crystalline GaN and Al2O3 were employed, which provide large differences in surface formation energy, depending on different fundamental crystal planes of substrates. The surface morphology of ZnO nanostructures were determined mainly by the crystal orientation of the epitaxial substrate, which is consistent with theoretical calculation results of the anisotropic surface and the interface formation energies. The controlled growth modes of ZnO crystal extended into the position-controlled selective growth of ZnO nanorods by utilizing facet-controlled GaN micropatterns with highly anisotropic surface energies. The large gradient in surface energies of GaN micropatterns allowed control of the surface morphology and growth position concurrently during growth of ZnO nanorods and nanotubes. Electron microscopy and high-resolution synchrotron-radiation and high-resolution x-ray diffractometry (XRD) revealed that single crystal ZnO nanorods were heteroepitaxially grown only on a (0001)-top surface of GaN with uniform distributions in their diameters and lengths. Furthermore, these selectively grown ZnO nanorods exhibited excellent photoluminescent (PL) characteristics with a free exciton PL peak as well as well-resolved bound exciton PL peaks. Although facet-controlled GaN micropatterns were only used for selective MOVPE growth in this thesis, many other micropatterns can be employed where the difference in surface energies between a top surface and the sidewalls of a micropattern is large enough to affect heteroepitaxial selective growth of the nanorods. The controlled epitaxial growth modes can be a general route to control the surface morphologies of the nanostructures as well as their positions in a designed fashion, which would be crucial to develop practical integrated circuits of nanostructures in near future.Next, simple, easy but well-controlled selective growth method is further presented. As a novel method for nanoarchitecturing, arbitrary shape formation of vertical ZnO nanowalls was artificially controlled by using the selective growth of ZnO nanowalls. In order to control both the shape and the position of ZnO nanowalls, a patterned SiO2 growth-mask layer was prepared, as a growth mask, by lithography on Si substrates with a thin GaN epitaxial seed layer, and subsequently ZnO nanowalls were grown selectively only along the pattern edges by MOVPE. Fabrications of nanoarchitectures were further demonstrated for shape- and dimension-controlled ZnO nanotubes by employing the selective growth method of ZnO nanowalls. The origin of shape-controlled nanoarchitectures was discussed with the theoretically calculated surface formation energies of ZnO crystal and high-resolution scanning electron microscopy (SEM) inspections. Further, the effect of hole spacing on growth rate of ZnO nanoarchitectures was investigated in terms of diffusion of gas-phase species via surface collection area. High-resolution transmission electron microscopy (TEM) revealed high-quality ZnO nanoarchitectures with single crystallinity. Based on the position-controlled ZnO nanotube arrays, high quality GaN/ZnO coaxial nanotube heterostructures arrays and GaN-based coaxial nanotube multiple quantum wells (MQWs) were fabricated by conventional MOVPE method. First, the GaN/ZnO nanotube heterostructures were fabricated by growing a GaN layer on the entire surface of position-controlled ZnO nanotube arrays using low-pressure MOVPE. As determined by TEM analyses, an abrupt and coherent interface between the core ZnO and the GaN overlayer was observed without the formation of dislocation. The cathodoluminescence (CL) spectroscopy exhibited high optical quality of heteroepitaxial GaN/ZnO nanotube heterostructures. This position-controlled growth of high quality single crystalline GaN/ZnO coaxial nanotube heterostructures allowed the fabrication of artificial arrays of high-quality GaN-based coaxial quantum structures by the heteroepitaxial growth of GaN/InxGa1–xN MQWs along the circumference of the GaN/ZnO nanotubes. The optical and structural characteristics of the position-controlled GaN/InxGa1–xN coaxial nanotube quantum structures were investigated by using CL spectroscopy and TEM analysis, respectively. The spatial resolved CL image showed the excellent luminescent characteristics of GaN/InxGa1–xN MQWs. The HR-TEM results revealed that coaxial nanotube quantum structures with smaller heterostructured wall thickness have few extended crystal defects while those with greater one have many defects such as stacking faults and misfit dislocations. Both CL and PL spectroscopy exhibited that greater nanotube spacing results in thicker InxGa1–xN QWs through the position-controlled growth of GaN/InxGa1–xN coaxial nanotube quantum structures, implying that the absolute control of position or density of nanotubes must be very important for vertical heterostructured nanoarchitecture design relying on very closely spaced vertical nanotube-based lighting devices for high emission color purity. The high-quality heteroepitaxial GaN/ZnO nanotube heterostructures enabled to greater tunability in the thickness and composition of the QW as well as GaN-based p–n homojunction diodes in the heterostructures, which will significantly enhance the versatility of the components for nanoscale electronics and photonics.For the applications of large-area lighting source as a competing counterpart of conventional thin film LEDs, epitaxial lateral overgrowth of Mg-doped GaN layer were performed on (GaN/InxGa1–xN) coaxial nanorod MQWs. The p-GaN film on (GaN/InxGa1–xN) coaxial nanorod MQWs were demonstrated as a hybrid structure for high-efficiency LEDs with easy and reliable process for p-electrode. Without the lateral growth of p-GaN layer, the geometry of both nanostructure arrays and metal contact are important for the device efficiency and reliability. For example, vertical nanorod arrays enabled large emitting-area LEDs with a high-bright electroluminescence (EL). Conformal and good ohmic contacts at the nanostructure tips are of particular interest. Especially for coaxial nanorod p–n junction LEDs, the area of p-electrode on the circumference of nanorod LED structure should be larger to reduce the resistance due to the high resistivity of p-type III–V compound semiconductors. The difficulties in large area contact formation on p-type shell layer may be circumvented by growing lateral overgrown p-type film on vertical n-type core nanorod arrays for easy p-electrode formations. The position-controlled coaxial nanorod heterostructures combined with the epitaxial lateral grown thin films offer the method for easy and reliable contact formations for large area lighting devices.In addition, the accurate position and dimension-controlled growth of high-quality ZnO nanotubes on Si substrates was used to optimize their field-emission characteristics by controlling their spatial arrangement. The ZnO nanotube electron-emitter arrays grown on Si substrates enabled to utilize the emitters for high bright field-emission lighting-devices. This controlled selective growth of ZnO nanowalls and nanotubes presents significant opportunities for the fabrication of artificial one- and two-dimensional nanomaterials as functional components with diverse arrangements and morphologies required for various nanodevice applications.Position-controlled MOVPE growth of wide bandgap semiconductor nanostructures enabled coaxial heterostructures and quantum structures with well-defined semicoherent interfaces for LED applications. In particular, the green–violet color LED microarrays were successfully fabricated by the controlled heteroepitaxial coaxial coatings of GaN/InxGa1–xN coaxial nanotube quantum structures and outermost p-GaN layer onto the GaN/ZnO coaxial nanotube heterostructures. Moreover, p-GaN films on (GaN/InxGa1–xN) coaxial nanorod MQWs were demonstrated as a hybrid structure for high-efficiency LEDs with easy and reliable process for p-electrode. The controlled epitaxial growth of wide bandgap semiconductor one-dimensional nanostructures and their heterostructures grown by MOVPE opens up significant opportunities for the fabrication of various practical optoelectronic and electronic devices.μμκ°κΈ° λ°©μμ λ°λ체 λλ
Έμμ¬λ λμ λ¨κ²°μ μ±κ³Ό κ³ λ°λ μ§μ μ κ°λ₯μ± λλ¬Έμ λ°λ체 λΆμΌμμ λ§μ μ£Όλͺ©μ λ°μμλ€. νΉν, 1μ°¨μ λλ
Έμμ¬λ ν° μ’
ν‘λΉμ ꡬ쑰μ νΉμ± λλ¬Έμ 곡μ μ‘°μμ΄ μ©μ΄ν λΏλ§ μλλΌ μ΄μ’
ꡬ쑰λ₯Ό μΆλ°©ν₯ λ΄μ§λ λμ¬λ°°μ΄λ‘ μ μ‘°ν μ μμ΄ μμ μμ©μ μμ΄ μ€μν ꡬ쑰λ₯Ό μ 곡νλ€. νμ¬ λ°λ체 μ°μ
μ 리μκ·ΈλΌνΌμ μκ°μ΄λΌλ λ°©λ²μ μ¬μ©νμ¬ μνλ μμΉμ μνλ ννμ λ°λ체 μμλ₯Ό κΉμλ΄κΈ° λ°©λ²μΌλ‘ μ μ‘°νκ³ μλ€. μ΄λ¬ν λ°©λ²μ μμ μμ¨μ΄ λκ³ λλμμ°μ μμ΄ μ 리ν λ°©λ²μ μ 곡νλ€. μμκ°κΈ° λ°©μμ λ°λ체 λλ
Έμμ¬λ₯Ό κΈ°μ‘΄μ κΉμλ΄κΈ° λ°©μμμ μ¬μ©νμλ μ΄λλ μλΈ λ°λ체 μ μ‘° 곡μ μ μ¬μ©νμ¬ λ³΄λ€ μ μ©ν μμλ‘ μ μ‘°νκΈ° μν΄μλ κΈ°νμ μνλ μμΉμ μνλ ννμ κΈ°λ₯μ± μμλ₯Ό μ μ‘°νλ κ²μ΄ λ§€μ° μ€μνλ€. μ΅κ·Ό κ°λ°λ λΉμ΄λ§€ μ κΈ°κΈμ ννκΈ°μμ¦μ°©λ²μ κ³ μλ κ³ νμμ μ°νμμ° λλ
Έλ§λλ₯Ό κΈ°νμ μμ§μΌλ‘ λ°°ν₯μμΌ μ μ‘°ν μ μλ λ°©λ²μ μ 곡νμμΌλ, μμ μΈκΈν λ°μ κ°μ΄ μ μ©ν μ μ λ° κ΄μμλ₯Ό κΈ°μ‘΄μ λ°λ체 곡μ μΌλ‘ μ μ‘°νλλ° νμν μμΉμ‘°μ μ νμ±μ₯μ μ리 λ° λ°©λ²μ΄ μμ§ κ°λ°λμ§ μμλ€. μ΄μ λ³Έ μ°κ΅¬μμλ, λΉμ΄λ§€ μ κΈ°κΈμ ννκΈ°μμ¦μ°©λ²μΌλ‘ μ°νμμ° λλ
Έκ΅¬μ‘°λ¬Όμ κΈ°νμ μνλ μμΉμ μμ§μΌλ‘ λ°°ν₯μμΌ μ±μ₯νλ λ°©λ²κ³Ό μ리λ₯Ό μ°κ΅¬νμκ³ , μ΄μ’
ꡬ쑰λ₯Ό μ μ‘°νμ¬ κ²°μ νμ , κ΄νμ μ±μ§μ κ΄μ°°νμ¬ μ νμ±μ₯λ κ³ νμμ λ°λ체 λλ
Έμμ¬κ° μ μ©ν μμλ‘ μμ©λ μ μμμ μ
μ¦νκ³ μ νμλ€. λν μμ μ μ‘°μ μμ΄μλ μ€λ¦¬μ½ κΈ°νμ μ¬μ©νκ±°λ λλ©΄μ μ μ λ’°λκ° λμ μμ ꡬ쑰λ₯Ό μ μ‘°νμ¬ μμΉ μ‘°μ λ λλ
Έμμ¬λ₯Ό μ΄μ©ν λ°κ΄μμκ° μ€μ©μ μΌλ‘ μ΄μ©λ μ μλμ§ λ³΄μ΄κ³ μ νμλ€.첫째λ‘, κΈ°νμ λ©΄λ°©ν₯μ λ°λ₯Έ μ°νμμ° λλ
Έμμ¬μ μνΌν
μ μ±μ₯λͺ¨λλ₯Ό κ΄μ°°νμλ€. μΌλ°μ μΌλ‘ μ°νμμ° λλ
Έλ§λλ κΈ°νμ μ’
λ₯μ κ΄κ³μμ΄ μμ§μΌλ‘ μ λ°°ν₯λλ κ²μ κ΄μ°°νμλ€. κ·Έλ¬λ μ§νκ°λ₯¨μ΄λ μ¬νμ΄μ΄μ κ°μ μνΌν
μ κ΄κ³λ₯Ό κ°μ§λ λ¨κ²°μ κΈ°νμ μ¬μ©νμμ λμλ κΈ°νμ λ©΄λ°©ν₯μ λ°λΌ μ°νμμ°μ΄ λλ
Έλ§λλ‘ λλ λ°λ§μΌλ‘ μ±μ₯ν¨μ κ΄μ°°νμλ€. μ¦, κΈ°νμ λ©΄λ°©ν₯μ΄ μ°νμμ° λλ
Έκ΅¬μ‘°λ¬Όμ μ±μ₯λ°©ν₯κ³Ό νμμ μν₯μ λ―Έμ³€λ€. μ΄λ¬ν κΈ°νμ μν λλ
Έκ΅¬μ‘°λ¬Όμ μ νμ νμ±μ κΈ°ν λ° μ°νμμ°μ μ΄λ°©μ νλ©΄μλμ§μ κΈ°μΈνλ€. μ¦, νλ©΄μλμ§λ₯Ό μ΅μννκΈ° μν΄ μ°νμμ°μ λλ
Έλ§λ λλ λ°λ§ ννλ‘ μ±μ₯νλ κ²μ΄λ€. μ΄λ¬ν κΈ°νμ λ©΄λ°©ν₯μ λ°λ₯Έ μ νμ κ²°μ μ±μ₯μ μ리λ₯Ό λ°νμΌλ‘, μ§νκ°λ₯¨ λ§μ΄ν¬λ‘ ν¨ν΄ μ΄λ μ΄μ κ°μ΄ νλ©΄μλμ§ κ΅¬λ°°κ° ν° ν¨ν΄μ κΈ°νμ μ μ‘°νμ¬, μ°νμμ° λλ
Έλ§λλ₯Ό μνλ μμμ μ νμ±μ₯ν μ μμλ€. νΉν, μ§νκ°λ₯¨ λ§μ΄ν¬λ‘ ν¨ν΄μ νΌλΌλ―Έλ ννλ₯Ό μ΄μ©νλ©΄ κ°λ³ λλ
Έλ§λμ μμΉλ₯Ό λ§μ΄ν¬λ‘ νΌλΌλ―Έλλ₯Ό μ΄μ©νμ¬ μ μ΄νμ¬ μ±μ₯μν¬ μ μμλ€. μ΄λ κ² μ±μ₯λ μ°νμμ° λλ
Έλ§λλ νλΆμ μ§νκ°λ₯¨ λ§μ΄ν¬λ‘ ν¨ν΄κ³Ό μνΌν
μ κ΄κ³λ₯Ό κ°μ§μ λ°©μ¬κ΄ κ°μκΈ°μ x-μ νμ λΆμμΌλ‘ κ΄μ°°νμλ€. λ³΄λ€ μ€μνκ²λ ν¬κ³Όμ μ νλ―Έκ²½μΌλ‘ μ§νκ°λ₯¨ λ§μ΄ν¬λ‘ νΌλΌλ―Έλμ μ¬λ©΄μμλ λ°λ§μ΄, κΌμ§μ μμλ λλ
Έλ§λ λλ λλ
ΈνλΈκ° μ±μ₯ν κ²μ κ΄μ°°νμκ³ , μ΄λ‘μ¨ μ΄λ°©μ νλ©΄μλμ§μ μ΄λ‘ κ³μ°μ΄ μ€μ λλ
Έκ΅¬μ‘°λ¬Όμ κ²°μ μ±μ₯μ κ²°κ³Όμ μΌμΉν¨μ μ
μ¦νμλ€.λ³΄λ€ μ½κ³ , λ μ ννκ² λλ
Έκ΅¬μ‘°λ¬Όμ μμΉμ νμμ μ‘°μ νμ¬ μ±μ₯νλ λ°©λ²μ μ°κ΅¬νμλ€. 2μ°¨μ ꡬ쑰μ λλ
Έλ²½μ κΈ°νμ μμ§μΌλ‘ λ§μꡬ쑰μ μ»€νΌ νμμΌλ‘ μ±μ₯λλλ°, λΉμ μ§ μ±μ₯λ§μ€ν¬μ λ€μν λ¬Έμμ μκ°νμ¬ μΌκ°, μ¬κ°, μνμ λλ
ΈνλΈλ₯Ό ν¬ν¨νλ λ³΄λ€ λ³΅μ‘ν νμμ λλ
Έκ΅¬μ‘°λ¬Όλ€μ μ‘°μ νμ¬ μ±μ₯μν¬ μ μμλ€.λ€μμΌλ‘, μ°νμμ° λλ
ΈνλΈμ μ§νκ°λ₯¨ λ° μΈλμ§νκ°λ₯¨μ μνΌν
μλ‘ μ½ν
νμ¬ μ΄μ’
ꡬ쑰 λ΄μ§λ μμμ°λ¬Όκ΅¬μ‘°λ₯Ό λμ¬λ°°μ΄λ‘ μ μ‘°νμλ€. μ¬κΈ°μ μ§νκ°λ₯¨ λ΄μ§λ μΈλμ§νκ°λ₯¨μ λͺ¨λ κΈ°μ‘΄μ MOCVD λ°©λ²μΌλ‘ μ μ‘°νμλ€. μ§νκ°λ₯¨μ μ°νμμ°κ³Ό 격μμμ μ°¨μ΄κ° 1.9% μ΄λ΄λ‘ μκ³ , κ²°μ κ΅¬μ‘°κ° λμΌν λΏλ§ μλλΌ μ΄λ―Έ κΈ°μ‘΄μ μ²μμ λ°κ΄μμλ‘ κ°λ°λ λ¬Όμ§μ΄λ€. μ°νμμ° λλ
ΈνλΈμ λμ¬λ°°μ΄μ κ΅¬μ‘°λ‘ μ¦μ°©λ μ§νκ°λ₯¨ λ° μΈλμ§νκ°λ₯¨μ μ΄μ’
ꡬ쑰λ μ°μν κ΄νμ μ±μ§μ λνλ΄μλ€. μλ₯Ό λ€λ©΄ μμ¨μμλ κ΄λ°κ΄ λ° μ μμ λ°κ΄ λΆκ΄ κ΄μ°°λ‘ λ₯λ 벨μ κ²°ν¨μ€μμ λ°κ΄μ κ±°μ κ΄μ°°ν μ μμμΌλ©° λ κ°κ²©μ ν΄λΉλλ λ°΄λ μ£μ§ λ°κ΄λ§μ΄ κ΄μ°°λμλ€. λν μ§νκ°λ₯¨μ μ°νμμ° λλ
ΈνλΈμ 7 nmλ‘ μκ² μ½ν
νμμ λ, μ μμ κ°μ κ²°μ κ²°ν¨μ΄ μ ν κ΄μ°°λμ§ μμλ€. μΌλ°μ μΌλ‘ λκ»κ° 1 m μ΄λ΄μ μ§νκ°λ₯¨/μΈλμ§νκ°λ₯¨μ μ΄μ’
κ΅¬μ‘°κ° μ½ν
λ μ°νμμ° λλ
ΈνλΈ κ΅¬μ‘°μμλ 1μ°¨μ λ΄μ§λ 2μ°¨μμ κ²°μ κ²°ν¨μ΄ κ±°μ λ°κ²¬λμ§ μμ, λλ
Έμμ¬λ‘ κ²°μ νμ§μ΄ λ§€μ° λ°μ΄λ μ΄μ’
ꡬ쑰 λ΄μ§λ μμμ°λ¬Ό ꡬ쑰λ₯Ό μ μ‘°ν μ μμμ μ
μ¦νμλ€.μμΉκ° μ‘°μ λ μμ§ λλ
Έκ΅¬μ‘°λ¬Όλ₯Ό μ μ©ν μμλ‘ μμ©νκΈ° μν΄ μ²«μ§Έλ‘, μ°νμμ° λλ
ΈνλΈλ₯Ό μ΄μ©ν μ κ³λ°©μΆ λ°κ΄μμλ₯Ό μ μ‘°νμλ€. λλ
ΈνλΈμ μ§κ²½ λ° κ°κ²©μ μ‘°μ νμ¬ μ κ³λ°©μΆ νΉμ±μ μΈ‘μ νμκ³ , λλ
ΈνλΈμ κ°κ²©μ΄ λλ
ΈνλΈμ κΈΈμ΄μ μ½ 2λ°°κ° λ λ, κ·Έλ¦¬κ³ μ§κ²½μ κ°λμλ‘ λ³΄λ€ μ°μν μ κ³λ°©μΆ νΉμ±μ 보μλ€. νΉν, μ°νμμ°μ μ°νλ¬Όλ‘μ¨, νμ λλ
ΈνλΈμλ λ€λ₯΄κ² μ§κ³΅ μνμμ λ―Έλμ μλ₯ μ°μλ λ¬Ό κ°μ€μ μν΄ νκ΄΄λμ§ μμ μ€λ μκ°λμ μ°μμΌλ‘ κ°ν μ κ³μ₯μ μΈκ°νμ¬ μ κ³ν¨κ³Όλ₯Ό μΈ‘μ νμμμλ κ·Έ μ±λ₯μ΄ λ³νμ§ μμλ€. μ΄λ¬ν μ°μν νΉμ±μ μ°νμμ° λλ
ΈνλΈ μ μλ°©μΆ μμλ‘ λ
Ήμ λ°κ΄μμλ₯Ό μ μ‘°νμμΌλ©°, μμ ν¬κΈ°κ° 0.8Γ0.8 mm2 λ‘ λ§€μ° μμλλ° μΌλ° μ€λ΄μ‘°λͺ
νμμλ μ‘μμΌλ‘ μΆ©λΆν κ΄μ°° κ°λ₯ν μμ€μ λ°κ΄μ 보μ¬μ£Όμλ€. λ°λΌμ μ νμ±μ₯λ²μ΄ κ³ ν¨μ¨μ μ κ³λ°©μΆ λμ€νλ μ΄λ₯Ό μ μ‘°νλλ° νλμ μ€μν κΈ°μ μ μ 곡νλ€κ³ ν μ μλ€. λμ§Έλ‘, μ νμμΉμ μμ§μΌλ‘ μ±μ₯λ λλ
Έλ§λ λ°κ΄λ€μ΄μ€λλ₯Ό μ΄μ©ν λλ©΄μ μ μμ μ λ°κ΄μ μν΄μ μ§νκ°λ₯¨/μΈλμ§νκ°λ₯¨ λλ
Έλ§λ μ΄μ’
ꡬ쑰μ p-ν μ§νκ°λ₯¨μ λλ
Έλ§λ μ΄μ’
ꡬ쑰μ μ νλ©΄μ μ μΈ‘λ©΄μ±μ₯ (epitaxial lateral overgrowth)μ νμ¬ p-ν λ°λ§/λμ¬λ°°μ΄ λλ
Έλ§λ μ΄μ’
ꡬ쑰μ λ°κ΄μμλ₯Ό μ μ‘°νμλ€. μ΄λ κ² μ μ‘°λ λ°κ΄μμλ λ€μ΄μ€λ νΉμ±μ κ°μ§κ³ μμμΌλ©° p-μ κ·Ήμ p-ν λ°λ§μ μ§μ νμ±νλ―λ‘ μ λ₯μ£Όμ
μ΄ κΈ°μ‘΄μ μμ§ λλ
Έλ§λν λ°κ΄μμμ λΉν΄ μ©μ΄νμ¬ μμ μ μ΄λ©΄μλ μμ μ λ©΄μ μμ λ°κ΄νλ κ³ νλμ λλ©΄μ λ°κ΄μμλ₯Ό μ μ‘°ν μ μμλ€. κΈ°μ‘΄μ λ°λ§ν λ°κ΄ λ€μ΄μ€λμ λμ¬λ°°μ΄μ λλ
Έλ§λ μ΄μ’
κ΅¬μ‘°κ° μ λͺ©λ νμ΄λΈλ¦¬λ ννμ p-n μ ν© λ°κ΄ λ€μ΄μ€λλ λλ
Έκ΅¬μ‘°λ¬Όμ μ΄μ©ν λ°κ΄ λ€μ΄μ€λμ μλ‘μ΄ κ΅¬μ‘°λ₯Ό μ μνλ€κ³ ν μ μλ€.μμ½νλ©΄, λΉμ΄λ§€ μ κΈ°κΈμ ννκΈ°μμ¦μ°©λ²μΌλ‘ κΈ°νμ μνλ μμΉμ λμ λ κ°κ²© λ°λ체 λλ
Έμμ¬λ₯Ό μ νμ±μ₯ν μ μμλ€. μ νμ±μ₯νκΈ° μν΄ νλ©΄ μλμ§ κ΅¬λ°°λ₯Ό κ°μ§λ κ·μΉμ ν¨ν΄μ κ°μ§λ κΈ°ν λ΄μ§λ μ±μ₯λ§μ€ν¬λ₯Ό μ΄μ©νμμΌλ©°, νΉν λλ
Έλ²½μ μ νμ±μ₯νμ¬ λ³΄λ€ λ³΅μ‘ν νμμ λλ
Έκ΅¬μ‘°λ¬Όμ μνλ ννλ‘ μ μ‘°ν μ μμλ€. μ΄λ κ² μ±μ₯λ λλ
Έμμ¬μ III-μ§νλ¬Ό λ°λ체λ₯Ό λμ¬λ°°μ΄μ μ΄μ’
ꡬ쑰 λ΄μ§λ μμμ°λ¬Όκ΅¬μ‘°λ‘ μ μ‘°νμ¬ κ·Έ κ΄νμ μ±μ§κ³Ό κ²°μ μ±μ΄ λ§€μ° μ°μν¨μ κ΄μ°°νμλ€. μ νμ±μ₯λ λλ
Έμμ¬λ₯Ό μ κ³λ°©μΆ λ°κ΄μμ λ° λλ
Έλ§λ λ°κ΄λ€μ΄μ€λλ₯Ό μ μ‘°νμ¬ κ³ ν¨μ¨μ μ λ’°μ±μλ μμλ₯Ό μ μ‘°ν μ μμλ€