7 research outputs found

    ν•˜μ•… μ „λŒμ¦ ν™˜μžμ—μ„œ 악ꡐ정 수술 ν›„ 근심 골편 및 원심 골편의 독립적 이동에 λŒ€ν•œ 뢄석

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μΉ˜μ˜ν•™λŒ€ν•™μ› μΉ˜μ˜κ³Όν•™κ³Ό,2019. 8. κΉ€μ„±λ―Ό.1. 연ꡬλͺ©μ  λ³Έ 연ꡬλ₯Ό 톡해 ν•˜μ•… μ „λŒμ¦μœΌλ‘œ ν•˜μ•…κ³¨ 상행지 μ‹œμƒλΆ„ν•  μ ˆλ‹¨μˆ μ„ μ΄μš©ν•˜μ—¬ 악ꡐ정 μˆ˜μˆ μ„ 받은 ν™˜μžμ˜ 두뢀츑λͺ¨ 방사선 사진을 μ΄μš©ν•˜μ—¬ 근심 골편과 원심 골편의 독립적인 μ›€μ§μž„μ„ λΆ„μ„ν•˜κ³ μž ν•œλ‹€. λ˜ν•œ ν•˜μ•…κ³¨μ—μ„œ κΈˆμ†νŒ 및 κΈˆμ† λ‚˜μ‚¬μ˜ κ³ μ • 방식에 λ”°λ₯Έ νšŒκ·€λŸ‰μ˜ 차이λ₯Ό μ•Œμ•„λ³΄κ³ μž ν•œλ‹€. 2. 연ꡬ방법 ν•˜μ•… μ „λŒμ¦μœΌλ‘œ 진단을 λ°›κ³ , 상악에 λ₯΄ν¬νŠΈ 1ν˜• 골 μ ˆλ‹¨ 및 ν•˜μ•…κ³¨ 상행지 μ‹œμƒλΆ„ν•  μ ˆλ‹¨μˆ μ„ μ‹œν–‰ 받은 ν™˜μž 40λͺ…μ˜ 수술 μ „(T0), 수술 직후(T1), 수술 1λ…„ ν›„(T2)의 두뢀츑λͺ¨ 방사선사진을 λΆ„μ„ν•˜μ˜€λ‹€. 근심 골편과 원심 골편의 독립적인 μ΄λ™λŸ‰μ„ ν‰κ°€ν•˜κΈ° μœ„ν•΄, T1의 ν•˜μ•…κ³¨μ„ νŠΈλ ˆμ΄μ‹±ν•œ μ•„μ„Έν…Œμ΄νŠΈμ§€λ₯Ό T2λ₯Ό νŠΈλ ˆμ΄μ‹±ν•œ μ•„μ„Έν…Œμ΄νŠΈμ§€μ— μ€‘μ²©μ‹œν‚€κ³ , ν•˜μ•…κ³Όλ‘μ˜ νšŒμ „ 쀑심을 κΈ°μ€€μœΌλ‘œ T1의 ν•˜μ•… μ€‘μ ˆμΉ˜κ°€ T2의 상악 μ€‘μ ˆμΉ˜ 섀면에 닿을 λ•ŒκΉŒμ§€ νšŒμ „μ‹œμΌœ, 이 λ•Œμ˜ T1와 T2μ—μ„œμ˜ 근심 및 μ›μ‹¬κ³¨νŽΈμ˜ 차이λ₯Ό μΈ‘μ •ν–ˆλ‹€. λ˜ν•œ ν•˜μ•…κ³¨ 상행지 μ‹œμƒλΆ„ν•  μ ˆλ‹¨μˆ  ν›„ κΈˆμ†νŒ λ§Œμ„ μ΄μš©ν•˜μ—¬ 근심 골편과 원심 κ³¨νŽΈμ„ κ³ μ •ν•œ κ΅°(group I)κ³Ό κΈˆμ†νŒ 및 ν•˜μ•… 상행지에 μΆ”κ°€ κΈˆμ† λ‚˜μ‚¬λ₯Ό μ΄μš©ν•˜μ—¬ κ³ μ •ν•œ κ΅°(group II)둜 λ‚˜λˆ„μ–΄ 두 κ΅° 간에 μœ μ˜ν•œ 차이 유무λ₯Ό ν™•μΈν–ˆλ‹€. ν•˜μ•… κ·Όμ‹¬κ³¨νŽΈκ³Ό μ›μ‹¬κ³¨νŽΈμ˜ κ³ μ • 방식에 λ”°λ₯Έ 각 λ³€ν™”λŸ‰μ˜ 평가λ₯Ό μœ„ν•΄ Kolmogorove-Smirnov test둜 κ³„μΈ‘μΉ˜κ°€ μ •κ·œλΆ„ν¬λ₯Ό λ”°λ₯΄λŠ” 지λ₯Ό ν‰κ°€ν–ˆλ‹€. Kolmogorov-Smirnov testλ₯Ό μ΄μš©ν•΄ 각 μΈ‘μ •κ°’μ˜ μ •κ·œμ„± κ²€μ • κ²°κ³Ό μ •κ·œμ„±μ„ λ§Œμ‘±ν•˜μ§€ μ•ŠλŠ” λ‹€μ„― 가지 츑정값듀은 Mann-Whitney testλ₯Ό 톡해, μ •κ·œλΆ„ν¬λ₯Ό λ§Œμ‘±ν•˜λŠ” λ‚˜λ¨Έμ§€ 츑정값듀은 λ…λ¦½ν‘œλ³Έ T 검정을 μ‹€μ‹œν•˜μ—¬ 두 κ΅° 간에 μœ μ˜ν•œ 차이가 μžˆλŠ”μ§€λ₯Ό ν‰κ°€ν–ˆλ‹€. λ˜ν•œ 40λͺ… 전체 ν™˜μžμ—μ„œμ˜ 각 λ³€ν™”λŸ‰ κ°„μ˜ μƒκ΄€κ΄€κ³„λŠ” Pearsons correlation analysisλ₯Ό μ΄μš©ν•˜μ—¬ ν‰κ°€ν–ˆλ‹€. 3. 연ꡬ결과 λͺ¨λ“  ν™˜μžμ—μ„œ 수술 ν›„ 근심 골편과 원심 골편의 독립적 이동이 관찰됐닀. λ˜ν•œ μΆ”κ°€ κΈˆμ† λ‚˜μ‚¬μ˜ μœ λ¬΄κ°€ 두 골편의 독립적인 이동에 큰 영ν–₯을 주지 λͺ»ν–ˆλ‹€. 수술 μ „ν›„ ν•˜μ•…κ³¨μ˜ ν›„ν‡΄λŸ‰κ³Ό 수술 직후 근심 골편의 μ‹œκ³„λ°©ν–₯ νšŒμ „λŸ‰μ€ μœ μ˜ν•œ 상관관계λ₯Ό λ³΄μ˜€λ‹€. λ˜ν•œ 수술 직후 μ‹œκ³„λ°©ν–₯으둜 νšŒμ „ν•œ κ³¨νŽΈμ€ 수술 ν›„ 1λ…„κ°„ λ°˜μ‹œκ³„λ°©ν–₯으둜의 νšŒκ·€ 양상을 λ³΄μ˜€μ§€λ§Œ, 수술 μ „ μœ„μΉ˜κΉŒμ§€ λŒμ•„μ˜€μ§€λŠ” μ•Šμ•˜λ‹€. 수술 1λ…„ ν›„(T2) ν•˜μ•…κ³¨ Bμ μ—μ„œμ˜ λ°˜μ‹œκ³„λ°©ν–₯ 전체 νšŒκ·€λŸ‰μ€ 2.01Β±1.69 mmμ˜€μœΌλ©°, T2μ—μ„œμ˜ κ·Όμ‹¬κ³¨νŽΈμ˜ λ°˜μ‹œκ³„ λ°©ν–₯으둜의 νšŒμ „λŸ‰μ€ 2.63Β±1.95Β°μ˜€λ‹€. T1μ—μ„œ νŠΈλ ˆμ΄μ‹±ν•œ ν•˜μ•… 전체 이미지λ₯Ό T2μ—μ„œμ˜ ν•˜μ•… κ·Όμ‹¬κ³¨νŽΈμ— 맞게 쀑첩을 ν•œ κ²°κ³Ό, ν•˜μ•… B μ μ—μ„œμ˜ νšŒκ·€λŸ‰μ€ 1.55Β±1.71 mmμ˜€κ³ , μ›μ‹¬κ³¨νŽΈμ˜ 독립적인 μ‹œκ³„λ°©ν–₯ νšŒμ „μ΄ κ΄€μ°°λ˜μ—ˆλ‹€. 4. κ²°λ‘  μ €μž‘κ·Όμ˜ μš΄λ™μ€ 수술 ν›„ ν•˜μ•…κ³¨ νšŒκ·€ ν˜„μƒμ˜ 주된 원인이고, 근심 골편 및 원심 골편의 독립적 이동은 수술 ν›„ ν•˜μ•…κ³¨μ˜ νšŒκ·€μ™€ 관련이 μžˆμœΌλ―€λ‘œ, 두 골편의 독립적 이동은 μ €μž‘κ·Όμ˜ νž˜μ— 영ν–₯을 λ°›λŠ”λ‹€κ³  ν•  수 μžˆλ‹€. λ³Έ μ—°κ΅¬μ˜ 결과에 κ·Όκ±°ν•˜λ©΄ κ·Όμ‹¬κ³¨νŽΈκ³Ό μ›μ‹¬κ³¨νŽΈμ€ 수술 ν›„ 각각 독립적인 μ›€μ§μž„μ΄ μžˆμ—ˆμœΌλ©°, μ΄λŠ” κΈˆμ†νŒ 및 κΈˆμ†λ‚˜μ‚¬μ˜ 고정에도 λΆˆκ΅¬ν•˜κ³  κ·Όμ‹¬κ³¨νŽΈκ³Ό μ›μ‹¬κ³¨νŽΈ 사이에 λ―Έλ„λŸΌ 이동이 λ°œμƒν•˜μ˜€μŒμ„ μ œμ‹œν•œλ‹€. λ”°λΌμ„œ 수술 ν›„ νšŒκ·€λŸ‰μ„ 쀄이기 μœ„ν•΄ 근심 골편이 수술 쀑에 μ‹œκ³„λ°©ν–₯으둜 νšŒμ „ν•˜μ§€ μ•Šλ„λ‘ μ‘°μ ˆν•΄μ•Ό ν•œλ‹€. λ˜ν•œ 수술 ν›„ κ·Όμ‹¬κ³¨νŽΈμ˜ λ°˜μ‹œκ³„ λ°©ν–₯의 νšŒμ „μ—λ„ λΆˆκ΅¬ν•˜κ³  μ›μ‹¬κ³¨νŽΈμ—μ„œλŠ” 일뢀 μ‹œκ³„λ°©ν–₯의 νšŒμ „μ΄ λ°œν–‰ν•˜λ―€λ‘œ κ°œλ°©κ΅ν•©μ΄ λ°œμƒν•˜μ§€ μ•Šλ„λ‘ μœ μ˜ν•΄μ•Ό ν•œλ‹€. κ·Όμ‹¬κ³¨νŽΈκ³Ό μ›μ‹¬κ³¨νŽΈ 사이에 λ―Έλ„λŸΌ 이동이 λ°œμƒν•¨μ„ κ³ λ €ν•˜μ—¬ 골편의 독립적인 μ›€μ§μž„μ„ ν—ˆμš©ν•  수 μžˆλŠ” λ°˜κ³ μ •(semi-rigid) λ°©μ‹μ˜ κΈˆμ†νŒμ„ μ‚¬μš©ν•΄ 전체 ν•˜μ•…κ³¨μ˜ νšŒκ·€λŸ‰μ„ μ€„μ΄λŠ” 것이 λ°”λžŒμ§ν•˜λ‹€.1. Objectives The purpose of this present study was to evaluate the isolated movement (IM) of the proximal segment (PS) and distal segment (DS) during postoperative period after orthognathic surgery for mandibular prognathism. In addition, the IM was analyzed depending on the different fixation type of the mandible. 2. Methods The study included data from 40 patients who underwent Le Fort I osteotomy and setback surgery of the mandible via sagittal split ramus osteotomy (SSRO) with or without genioplasty. Lateral cephalograms were taken before surgery (T0), immediately after surgery (T1), 1 year after surgery (T2). To evaluate the IM of PS and DS, the acetate paper traced with the whole mandible at T1 was overlaid on T2. The overlaid acetate paper of mandible at T1 was rotated until mandibular central incisor at T1 reached cingulum of maxillary central incisor at T2. Landmarks at this position of mandible were marked in T2, and they were defined as T3. To measure the IM of PS, the traced mandible at T1 was overlaid on T2, and Mandible at T1 was rotated until the posterior border of PS at T1 was aligned with the posterior border of PS at T2 (T3). The differences of cephalometric parameters and the SN-ArGo angle between T2 and T3 were measured. The linear and angular changes of landmarks and parameters between T0 and T1, T1 and T2, T3 and T2 was evaluated. In group I, a four-hole miniplate was used on both sides of mandible for fixation of PS and DS. In group II, at least one positional screw was additionally used to fix PS and DS because of lack of bone contact in retromolar area. Mann-Whitney test and independent student t test were used to determine statistically significance between two groups. Pearsons correlation coefficient was used to assess the relation of surgical changes, postoperative relapses, and IM. 3. Results The postoperative IM of PS (counterclockwise rotation) and DS (clockwise rotation) were observed in all patients. However, the use of additional positional screws didnt significantly affect the amount of IM of PS and DS. The amount of perioperative mandibular setback was proportional to the amount of the perioperative clockwise rotation of PS. The amount of postoperative counterclockwise rotation (CCWR) of PS (Group I : -2.53 Β± 1.84Β° / Group II : -2.72 Β± 2.05Β°) was less than that of perioperative clockwise rotation (CWR) of PS (Group I : +4.27 Β± 1.89Β° / Group II : 4.22 Β± 1.84Β°). When the posterior border of PS at T1 aligned with that at T2, the difference of horizontal point B was 1.55 Β± 1.71 mm. The total amount of horizontal relapse (T2-T1) at point B was 2.01 Β± 1.69 mm. 4. Conclusion All patients showed IM of PS and DS, and postoperative IM of PS and DS were significantly correlated with postoperative relapse of mandible. In order to prevent postoperative relapse, PS should not be rotated clockwise perioperatively. Different from CCWR of PS postoperatively, CWR happens in DS postoperatively. Therefore, adequate care is necessary to prevent open bite during postoperative period.I. Introduction 2 II. Materials and methods 1. Patients 3 2. Cephalometric analysis 5 3. Statistical analysis 6 III. Results 1. Overbite and overjet 7 2. Surgical changes 7 3. Relapse 8 4. Isolated movement of proximal segment and distal segment 9 5. The correlation of surgical change, postoperative relapse, and isolated movements 10 IV. Discussion 11 V. Conclusion 15 VI. References 16Maste

    Studies on dihydropyrimidine dehydrogenase mRNA expression as a predictor of 5-fluorouracil chemosensitivity and toxicity in head and neck cancer

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜ν•™κ³Ό μž„μƒλ³‘λ¦¬ν•™μ „κ³΅,2002.Docto

    Position-controlled selective growth of wide bandgap semiconductor nano- and microstructures for light-emitting device applications

    No full text
    DoctorSemiconductor nano- and microstructures fabricated by bottom-up approach have been considered as ideal building blocks for electronic and optoelectronic device applications due to the high crystallinity of the nanomaterials and easy miniaturization of the devices. Recently developed catalyst-free metal-organic vapor phase epitaxy (MOVPE) growth of ZnO nanostructures demonstrated their high purity and crystallinity with few extended crystal defects, thus the method provide the desirable method for nano- and micrometer scale devices. Despite of successful demonstration of ZnO nanorod-based device applications, there remains a huge challenge for self-assembled positioning the devices in a designed fashion for not only addressable fabrication process but also practical device applications. This thesis presents the position-controlled selective growth of wide bandgap semiconductor-based nano and microstructures on substrates and their light-emitting device applications. The strategy for the selective growth of wide bandgap semiconductor nano- and microstructures is (i) utilizing catalyst-free MOVPE methods for high purity material growth, (ii) utilizing GaN micropatterns or amorphous growth mask for large gradient in surface formation energy, (iii) GaN films/Si or c-Al2O3 as a conducting and epitaxial seed layer, and (iv) well-established GaN-based MOVPE techniques for heteroepitaxy and light-emitting device applications.Firstly, epitaxial growth modes of ZnO nanostructures were investigated in terms of anisotropic surface formation energy. For the controlled growth modes, various epitaxial substrates such as single crystalline GaN and Al2O3 were employed, which provide large differences in surface formation energy, depending on different fundamental crystal planes of substrates. The surface morphology of ZnO nanostructures were determined mainly by the crystal orientation of the epitaxial substrate, which is consistent with theoretical calculation results of the anisotropic surface and the interface formation energies. The controlled growth modes of ZnO crystal extended into the position-controlled selective growth of ZnO nanorods by utilizing facet-controlled GaN micropatterns with highly anisotropic surface energies. The large gradient in surface energies of GaN micropatterns allowed control of the surface morphology and growth position concurrently during growth of ZnO nanorods and nanotubes. Electron microscopy and high-resolution synchrotron-radiation and high-resolution x-ray diffractometry (XRD) revealed that single crystal ZnO nanorods were heteroepitaxially grown only on a (0001)-top surface of GaN with uniform distributions in their diameters and lengths. Furthermore, these selectively grown ZnO nanorods exhibited excellent photoluminescent (PL) characteristics with a free exciton PL peak as well as well-resolved bound exciton PL peaks. Although facet-controlled GaN micropatterns were only used for selective MOVPE growth in this thesis, many other micropatterns can be employed where the difference in surface energies between a top surface and the sidewalls of a micropattern is large enough to affect heteroepitaxial selective growth of the nanorods. The controlled epitaxial growth modes can be a general route to control the surface morphologies of the nanostructures as well as their positions in a designed fashion, which would be crucial to develop practical integrated circuits of nanostructures in near future.Next, simple, easy but well-controlled selective growth method is further presented. As a novel method for nanoarchitecturing, arbitrary shape formation of vertical ZnO nanowalls was artificially controlled by using the selective growth of ZnO nanowalls. In order to control both the shape and the position of ZnO nanowalls, a patterned SiO2 growth-mask layer was prepared, as a growth mask, by lithography on Si substrates with a thin GaN epitaxial seed layer, and subsequently ZnO nanowalls were grown selectively only along the pattern edges by MOVPE. Fabrications of nanoarchitectures were further demonstrated for shape- and dimension-controlled ZnO nanotubes by employing the selective growth method of ZnO nanowalls. The origin of shape-controlled nanoarchitectures was discussed with the theoretically calculated surface formation energies of ZnO crystal and high-resolution scanning electron microscopy (SEM) inspections. Further, the effect of hole spacing on growth rate of ZnO nanoarchitectures was investigated in terms of diffusion of gas-phase species via surface collection area. High-resolution transmission electron microscopy (TEM) revealed high-quality ZnO nanoarchitectures with single crystallinity. Based on the position-controlled ZnO nanotube arrays, high quality GaN/ZnO coaxial nanotube heterostructures arrays and GaN-based coaxial nanotube multiple quantum wells (MQWs) were fabricated by conventional MOVPE method. First, the GaN/ZnO nanotube heterostructures were fabricated by growing a GaN layer on the entire surface of position-controlled ZnO nanotube arrays using low-pressure MOVPE. As determined by TEM analyses, an abrupt and coherent interface between the core ZnO and the GaN overlayer was observed without the formation of dislocation. The cathodoluminescence (CL) spectroscopy exhibited high optical quality of heteroepitaxial GaN/ZnO nanotube heterostructures. This position-controlled growth of high quality single crystalline GaN/ZnO coaxial nanotube heterostructures allowed the fabrication of artificial arrays of high-quality GaN-based coaxial quantum structures by the heteroepitaxial growth of GaN/InxGa1&#8211xN MQWs along the circumference of the GaN/ZnO nanotubes. The optical and structural characteristics of the position-controlled GaN/InxGa1&#8211xN coaxial nanotube quantum structures were investigated by using CL spectroscopy and TEM analysis, respectively. The spatial resolved CL image showed the excellent luminescent characteristics of GaN/InxGa1&#8211xN MQWs. The HR-TEM results revealed that coaxial nanotube quantum structures with smaller heterostructured wall thickness have few extended crystal defects while those with greater one have many defects such as stacking faults and misfit dislocations. Both CL and PL spectroscopy exhibited that greater nanotube spacing results in thicker InxGa1&#8211xN QWs through the position-controlled growth of GaN/InxGa1&#8211xN coaxial nanotube quantum structures, implying that the absolute control of position or density of nanotubes must be very important for vertical heterostructured nanoarchitecture design relying on very closely spaced vertical nanotube-based lighting devices for high emission color purity. The high-quality heteroepitaxial GaN/ZnO nanotube heterostructures enabled to greater tunability in the thickness and composition of the QW as well as GaN-based p&#8211n homojunction diodes in the heterostructures, which will significantly enhance the versatility of the components for nanoscale electronics and photonics.For the applications of large-area lighting source as a competing counterpart of conventional thin film LEDs, epitaxial lateral overgrowth of Mg-doped GaN layer were performed on (GaN/InxGa1&#8211xN) coaxial nanorod MQWs. The p-GaN film on (GaN/InxGa1&#8211xN) coaxial nanorod MQWs were demonstrated as a hybrid structure for high-efficiency LEDs with easy and reliable process for p-electrode. Without the lateral growth of p-GaN layer, the geometry of both nanostructure arrays and metal contact are important for the device efficiency and reliability. For example, vertical nanorod arrays enabled large emitting-area LEDs with a high-bright electroluminescence (EL). Conformal and good ohmic contacts at the nanostructure tips are of particular interest. Especially for coaxial nanorod p&#8211n junction LEDs, the area of p-electrode on the circumference of nanorod LED structure should be larger to reduce the resistance due to the high resistivity of p-type III&#8211V compound semiconductors. The difficulties in large area contact formation on p-type shell layer may be circumvented by growing lateral overgrown p-type film on vertical n-type core nanorod arrays for easy p-electrode formations. The position-controlled coaxial nanorod heterostructures combined with the epitaxial lateral grown thin films offer the method for easy and reliable contact formations for large area lighting devices.In addition, the accurate position and dimension-controlled growth of high-quality ZnO nanotubes on Si substrates was used to optimize their field-emission characteristics by controlling their spatial arrangement. The ZnO nanotube electron-emitter arrays grown on Si substrates enabled to utilize the emitters for high bright field-emission lighting-devices. This controlled selective growth of ZnO nanowalls and nanotubes presents significant opportunities for the fabrication of artificial one- and two-dimensional nanomaterials as functional components with diverse arrangements and morphologies required for various nanodevice applications.Position-controlled MOVPE growth of wide bandgap semiconductor nanostructures enabled coaxial heterostructures and quantum structures with well-defined semicoherent interfaces for LED applications. In particular, the green&#8211violet color LED microarrays were successfully fabricated by the controlled heteroepitaxial coaxial coatings of GaN/InxGa1&#8211xN coaxial nanotube quantum structures and outermost p-GaN layer onto the GaN/ZnO coaxial nanotube heterostructures. Moreover, p-GaN films on (GaN/InxGa1&#8211xN) coaxial nanorod MQWs were demonstrated as a hybrid structure for high-efficiency LEDs with easy and reliable process for p-electrode. The controlled epitaxial growth of wide bandgap semiconductor one-dimensional nanostructures and their heterostructures grown by MOVPE opens up significant opportunities for the fabrication of various practical optoelectronic and electronic devices.μŒ“μ•„κ°€κΈ° λ°©μ‹μ˜ λ°˜λ„μ²΄ λ‚˜λ…Έμ†Œμž¬λŠ” 높은 단결정성과 고밀도 μ§‘μ μ˜ κ°€λŠ₯μ„± λ•Œλ¬Έμ— λ°˜λ„μ²΄ λΆ„μ•Όμ—μ„œ λ§Žμ€ μ£Όλͺ©μ„ λ°›μ•„μ™”λ‹€. 특히, 1차원 λ‚˜λ…Έμ†Œμž¬λŠ” 큰 μ’…νš‘λΉ„μ˜ ꡬ쑰적 νŠΉμ„± λ•Œλ¬Έμ— κ³΅μ •μ‘°μž‘μ΄ μš©μ΄ν•  뿐만 μ•„λ‹ˆλΌ 이쒅ꡬ쑰λ₯Ό μΆ•λ°©ν–₯ λ‚΄μ§€λŠ” λ™μ‹¬λ°°μ—΄λ‘œ μ œμ‘°ν•  수 μžˆμ–΄ μ†Œμž μ‘μš©μ— μžˆμ–΄ μ€‘μš”ν•œ ꡬ쑰λ₯Ό μ œκ³΅ν•œλ‹€. ν˜„μž¬ λ°˜λ„μ²΄ 산업은 λ¦¬μ†Œκ·ΈλΌν”Όμ™€ μ‹κ°μ΄λΌλŠ” 방법을 μ‚¬μš©ν•˜μ—¬ μ›ν•˜λŠ” μœ„μΉ˜μ— μ›ν•˜λŠ” ν˜•νƒœμ˜ λ°˜λ„μ²΄ μ†Œμžλ₯Ό κΉŽμ•„λ‚΄κΈ° λ°©λ²•μœΌλ‘œ μ œμ‘°ν•˜κ³  μžˆλ‹€. μ΄λŸ¬ν•œ 방법은 μ†Œμž 수율이 λ†’κ³  λŒ€λŸ‰μƒμ‚°μ— μžˆμ–΄ μœ λ¦¬ν•œ 방법을 μ œκ³΅ν•œλ‹€. μŒ“μ•„κ°€κΈ° λ°©μ‹μ˜ λ°˜λ„μ²΄ λ‚˜λ…Έμ†Œμž¬λ₯Ό 기쑴의 κΉŽμ•„λ‚΄κΈ° λ°©μ‹μ—μ„œ μ‚¬μš©ν•˜μ˜€λ˜ μ–΄λ“œλ ˆμ„œλΈ” λ°˜λ„μ²΄ 제쑰 곡정을 μ‚¬μš©ν•˜μ—¬ 보닀 μœ μš©ν•œ μ†Œμžλ‘œ μ œμ‘°ν•˜κΈ° μœ„ν•΄μ„œλŠ” 기판의 μ›ν•˜λŠ” μœ„μΉ˜μ— μ›ν•˜λŠ” ν˜•νƒœμ˜ κΈ°λŠ₯μ„± μ†Œμžλ₯Ό μ œμ‘°ν•˜λŠ” 것이 맀우 μ€‘μš”ν•˜λ‹€. 졜근 개발된 비촉맀 μœ κΈ°κΈˆμ† 화학기상증착법은 κ³ μˆœλ„ κ³ ν’ˆμœ„μ˜ μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€λ₯Ό κΈ°νŒμ— 수직으둜 λ°°ν–₯μ‹œμΌœ μ œμ‘°ν•  수 μžˆλŠ” 방법을 μ œκ³΅ν•˜μ˜€μœΌλ‚˜, μ•žμ„œ μ–ΈκΈ‰ν•œ 바와 같이 μœ μš©ν•œ μ „μž 및 κ΄‘μ†Œμžλ₯Ό 기쑴의 λ°˜λ„μ²΄ κ³΅μ •μœΌλ‘œ μ œμ‘°ν•˜λŠ”λ° ν•„μš”ν•œ μœ„μΉ˜μ‘°μ ˆ 선택성μž₯의 원리 및 방법이 아직 κ°œλ°œλ˜μ§€ μ•Šμ•˜λ‹€. 이에 λ³Έ μ—°κ΅¬μ—μ„œλŠ”, 비촉맀 μœ κΈ°κΈˆμ† ν™”ν•™κΈ°μƒμ¦μ°©λ²•μœΌλ‘œ μ‚°ν™”μ•„μ—° λ‚˜λ…Έκ΅¬μ‘°λ¬Όμ„ 기판의 μ›ν•˜λŠ” μœ„μΉ˜μ— 수직으둜 λ°°ν–₯μ‹œμΌœ μ„±μž₯ν•˜λŠ” 방법과 원리λ₯Ό μ—°κ΅¬ν•˜μ˜€κ³ , 이쒅ꡬ쑰λ₯Ό μ œμ‘°ν•˜μ—¬ 결정학적, 광학적 μ„±μ§ˆμ„ κ΄€μ°°ν•˜μ—¬ 선택성μž₯된 κ³ ν’ˆμœ„μ˜ λ°˜λ„μ²΄ λ‚˜λ…Έμ†Œμž¬κ°€ μœ μš©ν•œ μ†Œμžλ‘œ μ‘μš©λ  수 μžˆμŒμ„ μž…μ¦ν•˜κ³ μž ν•˜μ˜€λ‹€. λ˜ν•œ μ†Œμž μ œμ‘°μ— μžˆμ–΄μ„œλŠ” μ‹€λ¦¬μ½˜ κΈ°νŒμ„ μ‚¬μš©ν•˜κ±°λ‚˜ λŒ€λ©΄μ μ˜ 신뒰도가 높은 μ†Œμž ꡬ쑰λ₯Ό μ œμ‘°ν•˜μ—¬ μœ„μΉ˜ 쑰절된 λ‚˜λ…Έμ†Œμž¬λ₯Ό μ΄μš©ν•œ λ°œκ΄‘μ†Œμžκ°€ μ‹€μš©μ μœΌλ‘œ 이용될 수 μžˆλŠ”μ§€ 보이고자 ν•˜μ˜€λ‹€.첫째둜, 기판의 λ©΄λ°©ν–₯에 λ”°λ₯Έ μ‚°ν™”μ•„μ—° λ‚˜λ…Έμ†Œμž¬μ˜ μ—ν”Όν…μ‹œ μ„±μž₯λͺ¨λ“œλ₯Ό κ΄€μ°°ν•˜μ˜€λ‹€. 일반적으둜 μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€λŠ” 기판의 μ’…λ₯˜μ— 관계없이 수직으둜 잘 λ°°ν–₯λ˜λŠ” 것을 κ΄€μ°°ν•˜μ˜€λ‹€. κ·ΈλŸ¬λ‚˜ μ§ˆν™”κ°ˆλ₯¨μ΄λ‚˜ μ‚¬νŒŒμ΄μ–΄μ™€ 같은 μ—ν”Όν…μ‹œ 관계λ₯Ό κ°€μ§€λŠ” 단결정 κΈ°νŒμ„ μ‚¬μš©ν•˜μ˜€μ„ λ•Œμ—λŠ” 기판의 λ©΄λ°©ν–₯에 따라 산화아연이 λ‚˜λ…Έλ§‰λŒ€λ‘œ λ˜λŠ” λ°•λ§‰μœΌλ‘œ μ„±μž₯함을 κ΄€μ°°ν•˜μ˜€λ‹€. 즉, 기판의 λ©΄λ°©ν–₯이 μ‚°ν™”μ•„μ—° λ‚˜λ…Έκ΅¬μ‘°λ¬Όμ˜ μ„±μž₯λ°©ν–₯κ³Ό ν˜•μƒμ— 영ν–₯을 λ―Έμ³€λ‹€. μ΄λŸ¬ν•œ κΈ°νŒμ— μ˜ν•œ λ‚˜λ…Έκ΅¬μ‘°λ¬Όμ˜ 선택적 ν˜•μ„±μ€ 기판 및 μ‚°ν™”μ•„μ—°μ˜ 이방적 ν‘œλ©΄μ—λ„ˆμ§€μ— κΈ°μΈν•œλ‹€. 즉, ν‘œλ©΄μ—λ„ˆμ§€λ₯Ό μ΅œμ†Œν™”ν•˜κΈ° μœ„ν•΄ 산화아연은 λ‚˜λ…Έλ§‰λŒ€ λ˜λŠ” 박막 ν˜•νƒœλ‘œ μ„±μž₯ν•˜λŠ” 것이닀. μ΄λŸ¬ν•œ 기판의 λ©΄λ°©ν–₯에 λ”°λ₯Έ 선택적 κ²°μ •μ„±μž₯의 원리λ₯Ό λ°”νƒ•μœΌλ‘œ, μ§ˆν™”κ°ˆλ₯¨ 마이크둜 νŒ¨ν„΄ μ–΄λ ˆμ΄μ™€ 같이 ν‘œλ©΄μ—λ„ˆμ§€ ꡬ배가 큰 νŒ¨ν„΄μ˜ κΈ°νŒμ„ μ œμ‘°ν•˜μ—¬, μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€λ₯Ό μ›ν•˜λŠ” μ˜μ—­μ— 선택성μž₯ν•  수 μžˆμ—ˆλ‹€. 특히, μ§ˆν™”κ°ˆλ₯¨ 마이크둜 νŒ¨ν„΄μ„ ν”ΌλΌλ―Έλ“œ ν˜•νƒœλ₯Ό μ΄μš©ν•˜λ©΄ κ°œλ³„ λ‚˜λ…Έλ§‰λŒ€μ˜ μœ„μΉ˜λ₯Ό 마이크둜 ν”ΌλΌλ―Έλ“œλ₯Ό μ΄μš©ν•˜μ—¬ μ œμ–΄ν•˜μ—¬ μ„±μž₯μ‹œν‚¬ 수 μžˆμ—ˆλ‹€. μ΄λ ‡κ²Œ μ„±μž₯된 μ‚°ν™”μ•„μ—° λ‚˜λ…Έλ§‰λŒ€λŠ” ν•˜λΆ€μ˜ μ§ˆν™”κ°ˆλ₯¨ 마이크둜 νŒ¨ν„΄κ³Ό μ—ν”Όν…μ‹œ 관계λ₯Ό 가짐을 방사광 κ°€μ†κΈ°μ˜ x-μ„  회절 λΆ„μ„μœΌλ‘œ κ΄€μ°°ν•˜μ˜€λ‹€. 보닀 μ€‘μš”ν•˜κ²ŒλŠ” νˆ¬κ³Όμ „μž ν˜„λ―Έκ²½μœΌλ‘œ μ§ˆν™”κ°ˆλ₯¨ 마이크둜 ν”ΌλΌλ―Έλ“œμ˜ μ‚¬λ©΄μ—μ„œλŠ” 박막이, κΌ­μ§€μ μ—μ„œλŠ” λ‚˜λ…Έλ§‰λŒ€ λ˜λŠ” λ‚˜λ…ΈνŠœλΈŒκ°€ μ„±μž₯ν•œ 것을 κ΄€μ°°ν•˜μ˜€κ³ , 이둜써 이방적 ν‘œλ©΄μ—λ„ˆμ§€μ˜ 이둠계산이 μ‹€μ œ λ‚˜λ…Έκ΅¬μ‘°λ¬Όμ˜ κ²°μ •μ„±μž₯의 결과와 μΌμΉ˜ν•¨μ„ μž…μ¦ν•˜μ˜€λ‹€.보닀 쉽고, 또 μ •ν™•ν•˜κ²Œ λ‚˜λ…Έκ΅¬μ‘°λ¬Όμ˜ μœ„μΉ˜μ™€ ν˜•μƒμ„ μ‘°μ ˆν•˜μ—¬ μ„±μž₯ν•˜λŠ” 방법을 μ—°κ΅¬ν•˜μ˜€λ‹€. 2차원 ꡬ쑰의 λ‚˜λ…Έλ²½μ€ κΈ°νŒμ— 수직으둜 λ§μƒκ΅¬μ‘°μ˜ 컀튼 ν˜•μƒμœΌλ‘œ μ„±μž₯λ˜λŠ”λ°, λΉ„μ •μ§ˆ μ„±μž₯λ§ˆμŠ€ν¬μ— λ‹€μ–‘ν•œ 문양을 μ‹κ°ν•˜μ—¬ 삼각, 사각, μ›ν˜•μ˜ λ‚˜λ…ΈνŠœλΈŒλ₯Ό ν¬ν•¨ν•˜λŠ” 보닀 λ³΅μž‘ν•œ ν˜•μƒμ˜ λ‚˜λ…Έκ΅¬μ‘°λ¬Όλ“€μ„ μ‘°μ ˆν•˜μ—¬ μ„±μž₯μ‹œν‚¬ 수 μžˆμ—ˆλ‹€.λ‹€μŒμœΌλ‘œ, μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒμ— μ§ˆν™”κ°ˆλ₯¨ 및 μΈλ“μ§ˆν™”κ°ˆλ₯¨μ„ μ—ν”Όν…μ‹œλ‘œ μ½”νŒ…ν•˜μ—¬ 이쒅ꡬ쑰 λ‚΄μ§€λŠ” μ–‘μžμš°λ¬Όκ΅¬μ‘°λ₯Ό λ™μ‹¬λ°°μ—΄λ‘œ μ œμ‘°ν•˜μ˜€λ‹€. μ—¬κΈ°μ„œ μ§ˆν™”κ°ˆλ₯¨ λ‚΄μ§€λŠ” μΈλ“μ§ˆν™”κ°ˆλ₯¨μ€ λͺ¨λ‘ 기쑴의 MOCVD λ°©λ²•μœΌλ‘œ μ œμ‘°ν•˜μ˜€λ‹€. μ§ˆν™”κ°ˆλ₯¨μ€ μ‚°ν™”μ•„μ—°κ³Ό κ²©μžμƒμˆ˜ 차이가 1.9% μ΄λ‚΄λ‘œ μž‘κ³ , 결정ꡬ쑰가 동일할 뿐만 μ•„λ‹ˆλΌ 이미 기쑴의 μ²­μžμƒ‰ λ°œκ΄‘μ†Œμžλ‘œ 개발된 λ¬Όμ§ˆμ΄λ‹€. μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒμ— λ™μ‹¬λ°°μ—΄μ˜ ꡬ쑰둜 증착된 μ§ˆν™”κ°ˆλ₯¨ 및 μΈλ“μ§ˆν™”κ°ˆλ₯¨μ„ μ΄μ’…κ΅¬μ‘°λŠ” μš°μˆ˜ν•œ 광학적 μ„±μ§ˆμ„ λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 예λ₯Ό λ“€λ©΄ μƒμ˜¨μ—μ„œλ„ κ΄‘λ°œκ΄‘ 및 μ „μžμ„ λ°œκ΄‘ λΆ„κ΄‘ κ΄€μ°°λ‘œ λ”₯레벨의 κ²°ν•¨μ€€μœ„μ˜ λ°œκ΄‘μ„ 거의 κ΄€μ°°ν•  수 μ—†μ—ˆμœΌλ©° 띠간격에 ν•΄λ‹Ήλ˜λŠ” λ°΄λ“œ 엣지 λ°œκ΄‘λ§Œμ΄ κ΄€μ°°λ˜μ—ˆλ‹€. λ˜ν•œ μ§ˆν™”κ°ˆλ₯¨μ„ μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒμ— 7 nm둜 μ–‡κ²Œ μ½”νŒ…ν•˜μ˜€μ„ λ•Œ, μ „μœ„μ™€ 같은 결정결함이 μ „ν˜€ κ΄€μ°°λ˜μ§€ μ•Šμ•˜λ‹€. 일반적으둜 λ‘κ»˜κ°€ 1 &#61549m μ΄λ‚΄μ˜ μ§ˆν™”κ°ˆλ₯¨/μΈλ“μ§ˆν™”κ°ˆλ₯¨μ˜ 이쒅ꡬ쑰가 μ½”νŒ…λœ μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒ κ΅¬μ‘°μ—μ„œλŠ” 1차원 λ‚΄μ§€λŠ” 2μ°¨μ›μ˜ 결정결함이 거의 λ°œκ²¬λ˜μ§€ μ•Šμ•„, λ‚˜λ…Έμ†Œμž¬λ‘œ κ²°μ • ν’ˆμ§ˆμ΄ 맀우 λ›°μ–΄λ‚œ 이쒅ꡬ쑰 λ‚΄μ§€λŠ” μ–‘μžμš°λ¬Ό ꡬ쑰λ₯Ό μ œμ‘°ν•  수 μžˆμŒμ„ μž…μ¦ν•˜μ˜€λ‹€.μœ„μΉ˜κ°€ 쑰절된 수직 λ‚˜λ…Έκ΅¬μ‘°λ¬Όλ₯Ό μœ μš©ν•œ μ†Œμžλ‘œ μ‘μš©ν•˜κΈ° μœ„ν•΄ 첫째둜, μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒλ₯Ό μ΄μš©ν•œ μ „κ³„λ°©μΆœ λ°œκ΄‘μ†Œμžλ₯Ό μ œμ‘°ν•˜μ˜€λ‹€. λ‚˜λ…ΈνŠœλΈŒμ˜ 직경 및 간격을 μ‘°μ ˆν•˜μ—¬ μ „κ³„λ°©μΆœ νŠΉμ„±μ„ μΈ‘μ •ν•˜μ˜€κ³ , λ‚˜λ…ΈνŠœλΈŒμ˜ 간격이 λ‚˜λ…ΈνŠœλΈŒμ˜ 길이의 μ•½ 2λ°°κ°€ 될 λ•Œ, 그리고 직경은 κ°€λŠ˜μˆ˜λ‘ 보닀 μš°μˆ˜ν•œ μ „κ³„λ°©μΆœ νŠΉμ„±μ„ λ³΄μ˜€λ‹€. 특히, 산화아연은 μ‚°ν™”λ¬Όλ‘œμ¨, νƒ„μ†Œ λ‚˜λ…ΈνŠœλΈŒμ™€λŠ” λ‹€λ₯΄κ²Œ 진곡 μƒνƒœμ—μ„œ λ―ΈλŸ‰μ˜ μž”λ₯˜ μ‚°μ†Œλ‚˜ λ¬Ό κ°€μŠ€μ— μ˜ν•΄ νŒŒκ΄΄λ˜μ§€ μ•Šμ•„ 였랜 μ‹œκ°„λ™μ•ˆ μ—°μ†μœΌλ‘œ κ°•ν•œ 전계μž₯을 μΈκ°€ν•˜μ—¬ μ „κ³„νš¨κ³Όλ₯Ό μΈ‘μ •ν•˜μ˜€μŒμ—λ„ κ·Έ μ„±λŠ₯이 λ³€ν•˜μ§€ μ•Šμ•˜λ‹€. μ΄λŸ¬ν•œ μš°μˆ˜ν•œ νŠΉμ„±μ˜ μ‚°ν™”μ•„μ—° λ‚˜λ…ΈνŠœλΈŒ μ „μžλ°©μΆœ μ†Œμžλ‘œ 녹색 λ°œκ΄‘μ†Œμžλ₯Ό μ œμ‘°ν•˜μ˜€μœΌλ©°, μ†Œμž 크기가 0.8Γ—0.8 mm2 둜 맀우 μž‘μ•˜λŠ”λ° 일반 μ‹€λ‚΄μ‘°λͺ… ν•˜μ—μ„œλ„ μœ‘μ•ˆμœΌλ‘œ μΆ©λΆ„νžˆ κ΄€μ°° κ°€λŠ₯ν•œ μˆ˜μ€€μ˜ λ°œκ΄‘μ„ λ³΄μ—¬μ£Όμ—ˆλ‹€. λ”°λΌμ„œ 선택성μž₯법이 고효율의 μ „κ³„λ°©μΆœ λ””μŠ€ν”Œλ ˆμ΄λ₯Ό μ œμ‘°ν•˜λŠ”λ° ν•˜λ‚˜μ˜ μ€‘μš”ν•œ κΈ°μˆ μ„ μ œκ³΅ν•œλ‹€κ³  ν•  수 μžˆλ‹€. λ‘˜μ§Έλ‘œ, μ„ νƒμœ„μΉ˜μ— 수직으둜 μ„±μž₯된 λ‚˜λ…Έλ§‰λŒ€ λ°œκ΄‘λ‹€μ΄μ˜€λ“œλ₯Ό μ΄μš©ν•œ λŒ€λ©΄μ μ˜ μ•ˆμ •μ  λ°œκ΄‘μ„ μœ„ν•΄μ„œ μ§ˆν™”κ°ˆλ₯¨/μΈλ“μ§ˆν™”κ°ˆλ₯¨ λ‚˜λ…Έλ§‰λŒ€ 이쒅ꡬ쑰에 p-ν˜• μ§ˆν™”κ°ˆλ₯¨μ„ λ‚˜λ…Έλ§‰λŒ€ μ΄μ’…κ΅¬μ‘°μ˜ μ „ ν‘œλ©΄μ μ— μΈ‘λ©΄μ„±μž₯ (epitaxial lateral overgrowth)을 ν•˜μ—¬ p-ν˜• 박막/동심배열 λ‚˜λ…Έλ§‰λŒ€ μ΄μ’…κ΅¬μ‘°μ˜ λ°œκ΄‘μ†Œμžλ₯Ό μ œμ‘°ν•˜μ˜€λ‹€. μ΄λ ‡κ²Œ 제쑰된 λ°œκ΄‘μ†ŒμžλŠ” λ‹€μ΄μ˜€λ“œ νŠΉμ„±μ„ 가지고 μžˆμ—ˆμœΌλ©° p-전극을 p-ν˜• 박막에 직접 ν˜•μ„±ν•˜λ―€λ‘œ μ „λ₯˜μ£Όμž…이 기쑴의 수직 λ‚˜λ…Έλ§‰λŒ€ν˜• λ°œκ΄‘μ†Œμžμ— λΉ„ν•΄ μš©μ΄ν•˜μ—¬ μ•ˆμ •μ μ΄λ©΄μ„œλ„ μ†Œμž μ „λ©΄μ μ—μ„œ λ°œκ΄‘ν•˜λŠ” κ³ νœ˜λ„μ˜ λŒ€λ©΄μ  λ°œκ΄‘μ†Œμžλ₯Ό μ œμ‘°ν•  수 μžˆμ—ˆλ‹€. 기쑴의 λ°•λ§‰ν˜• λ°œκ΄‘ λ‹€μ΄μ˜€λ“œμ™€ λ™μ‹¬λ°°μ—΄μ˜ λ‚˜λ…Έλ§‰λŒ€ 이쒅ꡬ쑰가 μ ‘λͺ©λœ ν•˜μ΄λΈŒλ¦¬λ“œ ν˜•νƒœμ˜ p-n μ ‘ν•© λ°œκ΄‘ λ‹€μ΄μ˜€λ“œλŠ” λ‚˜λ…Έκ΅¬μ‘°λ¬Όμ„ μ΄μš©ν•œ λ°œκ΄‘ λ‹€μ΄μ˜€λ“œμ˜ μƒˆλ‘œμš΄ ꡬ쑰λ₯Ό μ œμ‹œν•œλ‹€κ³  ν•  수 μžˆλ‹€.μš”μ•½ν•˜λ©΄, 비촉맀 μœ κΈ°κΈˆμ† ν™”ν•™κΈ°μƒμ¦μ°©λ²•μœΌλ‘œ 기판의 μ›ν•˜λŠ” μœ„μΉ˜μ— 넓은 띠간격 λ°˜λ„μ²΄ λ‚˜λ…Έμ†Œμž¬λ₯Ό 선택성μž₯ν•  수 μžˆμ—ˆλ‹€. 선택성μž₯ν•˜κΈ° μœ„ν•΄ ν‘œλ©΄ μ—λ„ˆμ§€ ꡬ배λ₯Ό κ°€μ§€λŠ” κ·œμΉ™μ  νŒ¨ν„΄μ„ κ°€μ§€λŠ” 기판 λ‚΄μ§€λŠ” μ„±μž₯마슀크λ₯Ό μ΄μš©ν•˜μ˜€μœΌλ©°, 특히 λ‚˜λ…Έλ²½μ„ 선택성μž₯ν•˜μ—¬ 보닀 λ³΅μž‘ν•œ ν˜•μƒμ˜ λ‚˜λ…Έκ΅¬μ‘°λ¬Όμ„ μ›ν•˜λŠ” ν˜•νƒœλ‘œ μ œμ‘°ν•  수 μžˆμ—ˆλ‹€. μ΄λ ‡κ²Œ μ„±μž₯된 λ‚˜λ…Έμ†Œμž¬μ— III-μ§ˆν™”λ¬Ό λ°˜λ„μ²΄λ₯Ό λ™μ‹¬λ°°μ—΄μ˜ 이쒅ꡬ쑰 λ‚΄μ§€λŠ” μ–‘μžμš°λ¬Όκ΅¬μ‘°λ‘œ μ œμ‘°ν•˜μ—¬ κ·Έ 광학적 μ„±μ§ˆκ³Ό 결정성이 맀우 μš°μˆ˜ν•¨μ„ κ΄€μ°°ν•˜μ˜€λ‹€. 선택성μž₯된 λ‚˜λ…Έμ†Œμž¬λ₯Ό μ „κ³„λ°©μΆœ λ°œκ΄‘μ†Œμž 및 λ‚˜λ…Έλ§‰λŒ€ λ°œκ΄‘λ‹€μ΄μ˜€λ“œλ₯Ό μ œμ‘°ν•˜μ—¬ 고효율의 μ‹ λ’°μ„±μžˆλŠ” μ†Œμžλ₯Ό μ œμ‘°ν•  수 μžˆμ—ˆλ‹€

    The Effects of Preparation for Aging of the Elderly on Successful Aging & Mediating Effects of Life Satisfaction

    No full text
    corecore