8 research outputs found
๋ค์ค ๊ท๋ชจ LiDAR ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ ๋์์ํ๊ณ ๊ตฌ์กฐ ๋ฐ ์ฐ๊ฒฐ์ฑ ํ๊ฐ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ํ๊ฒฝ๋ํ์ ํ๋๊ณผ์ ์กฐ๊ฒฝํ, 2021.8. ์ก์๊ทผ.Integrated multiscale light detection and ranging (LiDAR) datasets are required for managing urban ecosystems because 1) LiDAR datasets can represent various spatial structures across the urban landscape and 2) the multitemporal LiDAR approach can derive the changes of urban landscape structures. This dissertation aimed to find the various spatiotemporal availabilities (i.e., from the tree-level spatial scale to the city-level regional scale with the multitemporal approach) of LiDAR or laser scanning (LS) datasets for monitoring urban ecosystems in the following three chapters.
Chapter 2: Collecting tree inventory data in urban areas is important for managing green areas. Surveying using airborne laser scanning (ALS) is effective for collecting urban tree structures but less efficient regarding the economic costs and its operation. Terrestrial laser scanning (TLS), and mobile laser scanning (MLS) datasets could have the potential in complementing those of ALS in the respect to efficiency. However, to the best of my knowledge, there were limited studies for seeking the similarities and variations among the canopy metrics derived from various LiDAR platforms. In Chapter 2, I compared structural canopy metrics among ALS, TLS, and MLS datasets in the urban parks. The purpose of Chapter 2 was to test whether the estimates of tree metrics differed depending on single or clustered trees and to test whether the errors in LiDAR-derived metrics were related to the tree structures. Small, urban parks were selected for surveying trees using the three LiDAR platforms. The ALS datasets were acquired on 14 May, 2017. The TLS and MLS datasets were acquired from 10โ11 May, 2017, and 21โ25 April, 2020, respectively. The tree point clouds were classified into single and clustered trees. The structural metrics were compared in each pair (i.e., ALS and TLS, ALS and MLS, and TLS and MLS pairs). The heights related metrics (e.g., percentile heights and the distribution of the heights values), the complexity metric (e.g., the Rumple index) and area were calculated for comparisons. The root mean square error (RMSE), bias, and the Pearsonโs correlation coefficient (r) were calculated to evaluate the difference in each metric among the LiDAR platforms. The results showed that ZMAX, max and mean CHM, and area showed good consistencies (RMSE% 0.900). Especially, the biases of CHM-derived metrics did not present significant differences (p > 0.05) regardless of single or clustered trees. Moreover, the biases from the comparisons in each pair showed linear relations with the tree heights and vertical canopy complexity (i.e., Pearsonโs correlation coefficient showed significant; r >0.29, p < 0.05). My results could be references when combining multiple LiDAR systems to estimate the canopy structures of urban park areas.
Chapter 3: Understanding forest dynamics is important for assessing the health of urban forests, which experience various disturbances, both natural (e.g., treefall events) and artificial (e.g., making space for agricultural fields). Therefore, quantifying three-dimensional (3D) changes in canopies is a helpful way to manage and understand urban forests better. Multitemporal ALS datasets enable me to quantify the vertical and lateral growth of trees across a landscape scale. The goal of Chapter 3 is to assess the annual changes in the 3-D structures of canopies and forest gaps in an urban forest using annual airborne LiDAR datasets for 2012โ2015. The canopies were classified as high canopies and low canopies by a 5 m height threshold. Then, I generated pixel- and plot-level canopy height models and conducted change detection annually. The vertical growth rates and leaf area index showed consistent values year by year in both canopies, while the spatial distributions of the canopy and leaf area profile (e.g., leaf area density) showed inconsistent changes each year in both canopies. In total, high canopies expanded their foliage from 12 m height, while forest gap edge canopies (including low canopies) expanded their canopies from 5 m height. Annual change detection with LiDAR datasets might inform about both steady growth rates and different characteristics in the changes of vertical canopy structures for both high and low canopies in urban forests.
Chapter 4: Although many studies have considered urban structure when investigating urban ecological networks, few have considered the 3D structure of buildings as well as urban green spaces. In Chapter 4, I examined an urban ecological network using the 3D structure of both green spaces and buildings. Using breeding-season bird species observations and ALS data collected, I assessed the influence of 3D structural variables on species diversity. I used correlation analyses to determine if vertical distribution, volume, area, and height of both buildings and vegetation were related to bird species diversity. Then I conducted circuit theory-based current flow betweenness centrality (CFBC) analysis using the LiDAR-derived structural variables. I found that the volumes of buildings and 8โ10 m vegetation heights were both highly correlated with species richness per unit area. There were significant differences between 2D and 3D connectivity analysis using LiDAR-derived variables among urban forest patches, boulevards, and apartment complexes. Within urban forest patches and parks, 3D CFBC represented canopy structural characteristics well, by showing high variance in spatial distributions. The 3D CFBC results indicated that adjacent high-rise buildings, dense apartment complexes, and densely urbanized areas were isolated, as characterized by low centrality values, but that vegetation planted in open spaces between buildings could improve connectivity by linking isolated areas to core areas. My research highlights the importance of considering 3D structure in planning and managing urban ecological connectivity.
In this dissertation, the availability of integrated multiscale LiDAR datasets was found via three standalone studies. It was revealed that 3D information could enhance the quality of urban landscape monitoring and ecological connectivity analysis by elaborately explaining spatial structures. However, the spatiotemporal scales of each standalone study were limited to the city scale and to five years. The recently launched Global Ecosystem Dynamics Investigation (GEDI) would help to solve these limitations. Furthermore, the GEDI dataset could help researchers understand the relationship between ecosystem structures and their functions.๋ณธ ํ์๋
ผ๋ฌธ์ ๋ค์ํ ์๊ณต๊ฐ ์ค์ผ์ผ์์ ๋์์ํ๊ณ ๋ชจ๋ํฐ๋ง์ ์ํ LiDAR ๋ฐ์ดํฐ์ ํ์ฉ๊ณผ ์ํ์ ์๋ฏธ ๋์ถ์ ๊ดํ ๋ด์ฉ์ ๋ค๋ฃฌ๋ค. LiDAR๋ Light Detection and Ranging์ ์ฝ์ด๋ก, LiDAR ์ผ์์์ ๋ฐ์ฌ๋ ๋ ์ด์ ๊ฐ ๋์์ ๋๋ฌํ ๋ค ๋ฐ์ฌ๋์ด ๋์์ค๋ ๋ ์ด์ ์ ์ธ๊ธฐ์ ์๊ฐ์ ๊ณ์ฐํ์ฌ ๋์์ ์์น ์ ๋ณด๋ฅผ 3์ฐจ์ ์ ๊ตฐ ๋ฐ์ดํฐ๋ก ๋ณํํด์ฃผ๋ ๋ฅ๋ํ ์๊ฒฉํ์ฌ ๋๊ตฌ์ด๋ค. LiDAR ์๊ฒฉํ์ฌ ๋๊ตฌ์ ๋ฑ์ฅ์ผ๋ก ์์ฐ๊ณผ ๋์์ 3์ฐจ์ ๊ณต๊ฐ์ ๋ณด์ ์ทจ๋์ด ๊ธฐ๋ฅํด์ง์ ๋ฐ๋ผ, ์์์ง์ 3์ฐจ์ ๊ณต๊ฐ์ ๋ณด์ ์๋ฌผ ์ข
์ฌ์ด์ ๊ด๊ณ ๋์ถ, ์๊ณ์ด LiDAR ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ ๋
น์ง ๋ชจ๋ํฐ๋ง ์ฐ๊ตฌ ๋ฑ์ด ์ด๋ค์ง๊ณ ์๋ค. ๋ํ ํญ๊ณต LiDAR(ALS), ์ง์ LiDAR(TLS), ์ด๋ํ LiDAR(MLS) ๋ฑ ๋ค์ํ LiDAR ์์คํ
์ ๊ฐ๋ฐ๋ก ์ฐ๊ตฌ ๋ชฉ์ ์ ์๋ง์ ์๊ณต๊ฐ ํด์๋์ 3์ฐจ์ ๊ณต๊ฐ์ ๋ณด๋ฅผ ์ทจ๋ํ ์ ์๊ฒ ๋์๋ค. ๋ณธ ํ์๋
ผ๋ฌธ์์๋ ๋์๋
น์ง๋ฅผ ๋์์ผ๋ก LiDAR ์๊ฒฉํ์ฌ ๋๊ตฌ์ ๋ค์ํ ์๊ณต๊ฐ ์ค์ผ์ผ ์ ์ฉ ์ธก๋ฉด์์, Chapter 2 ํญ๊ณต, ์ง์, ์ด๋ํ LiDAR ์์คํ
์ฌ์ด ์๋ชฉ๊ตฌ์กฐ๊ด๋ จ ๋ณ์๋ค์ ์ผ์น์ฑ ํ๊ฐ, Chapter 3 ์๊ณ์ด ๋ถ์์ ํตํ ๋์๋
น์ง ๋ํ ๋ชจ๋ํฐ๋ง, Chapter 4 ๋์์ ์ํ์ ์ฐ๊ฒฐ์ฑ ๋ถ์์ ์งํํ์๋ค.
Chapter 2: ๋์์ ์๋ชฉ์ ๋ณด๋ฅผ ์ทจ๋ํ๋ ๊ฒ์ ๋์๋
น์ง ๊ด๋ฆฌ์ ์์ด ํ์์ ์ด๋ค. LiDAR ๊ธฐ์ ์ ๋ฐ๋ฌ๋ก ๋์์๋ชฉ์ 3์ฐจ์ ์ ๋ณด๋ฅผ ์ทจ๋ํ ์ ์๊ฒ ๋์์ผ๋ฉฐ, ์ด๋ฅผ ํตํด ์๋ชฉ๋์ด์ ์๋ชฉ๊ตฌ์กฐ, ์ง์ ๋ฐ์ด์ค๋งค์ค ๋ฑ์ ๋์ ์ ํ๋๋ก ์ฐ์ถํ ์ ์๊ฒ ๋์๋ค. ํญ๊ณต LiDAR๋ ๋์ ๋ฒ์์ ๊ณต๊ฐ์ ๋ณด๋ฅผ ๋์ ์ ํ๋๋ก ์ธก์ ํ๋ ํน์ฑ์ ์ง๋
์ฐ๋ฆผ ๋ชจ๋ํฐ๋ง ๋ถ์ผ์์ ํ๋ฐํ ํ์ฉ๋๊ณ ์๋ค. ํ์ง๋ง ํญ๊ณต LiDAR ๋ฐ์ดํฐ์ ์ทจ๋์ ํญ๊ณต๊ธฐ ์ด์ฉ๋น, ์ฅ๋น๊ด๋ จ ๋ง๋ํ ๋น์ฉ์ด ๋ฐ์ํ๊ณ ์ด์ฉ์ ์์ด ์ ๋ฌธ์ฑ์ ์๊ตฌํ๋ฉฐ ๋์์ ์ ๊ตฐ๋ฐ๋๊ฐ ์๋์ ์ผ๋ก ๋ฎ๋ค๋ ๋จ์ ์ ์ง๋๋ค. ๋ฐ๋ฉด ์ง์ LiDAR์ ์ด๋ํ LiDAR๋ ์ด์ฉํ๊ธฐ ํธ๋ฆฌํ๊ณ ๋์ ์ ๊ตฐ๋ฐ๋๋ฅผ ์ถ๋ ฅํ๋ค๋ ์ ์์ ํญ๊ณต LiDAR์ ๋จ์ ์ ๊ทน๋ณตํ ์ ์๋ค. ์ด์ฒ๋ผ ๋ค์ํ LiDAR ์์คํ
์ ๋ฑ์ฅ๊ณผ ์ด๋ฅผ ํ์ฉํ ์ํ๊ณ ๋ชจ๋ํฐ๋ง ์ฐ๊ตฌ ์๋๊ฐ ์ฆ๊ฐํ๋ฉด์ LiDAR ์์คํ
๊ฐ ํจ์จ์ ์ธ ์ด์ฉ๊ณผ ๋ฐ์ดํฐ์ ๋ณด์ ๋ฐฉ๋ฒ๋ค์ด ์๊ตฌ๋๊ณ ์๋ค. ํ์ง๋ง ํ์ฌ๊น์ง ALS, TLS, MLS์ 3๊ฐ์ ์์คํ
์ ํตํด ์ทจ๋๋ ์๋ชฉ ์ ๋ณด๋ฅผ ์๋ก ๋น๊ตํ๊ณ , ์๋ก ๋์ฒด๊ฐ๋ฅํ ์๋ชฉ์ ๋ณด๋ฅผ ๋์ถํ ์ฐ๊ตฌ๋ ๋ง์ด ์งํ๋ ๋ฐ ์๋ค. ๋ฐ๋ผ์ ๋ณธ ํ์๋
ผ๋ฌธ์ Chapter 2์์๋ ALS, TLS, MLS ํตํด ์ทจ๋๋ ๋์์ ์๋ชฉ์ ๋ณด๋ฅผ ์๋ก ๋น๊ตํ์ฌ ์ผ์น์ฑ์ ํ๊ฐํ๊ณ , ์ด๋ ํ ์๋ชฉ๊ตฌ์กฐ๊ด๋ จ ์งํ๊ฐ ์ธ LiDAR ์์คํ
์ฌ์ด์์ ๋์ฒด๊ฐ๋ฅํ์ง ๋ค๋ฃจ๊ณ ์๋ค. ์ธ๋ถ์ ์ผ๋ก Chapter 2๋ ์๋ชฉ๊ตฌ์กฐ๊ด๋ จ ์งํ๊ฐ ๋จ๋ชฉ์ฐจ์๊ณผ ๊ตฐ์ง์ฐจ์, ์๋ชฉ๊ตฌ์กฐ์ ๋ฐ๋ผ ALS, TLS, MLS ์์คํ
์์ ์ฐจ์ด๊ฐ ๋ฐ์ํ๋์ง์ ๋ํ ๋ด์ฉ์ ๋ด๊ณ ์๋ค. ์ฒ์์ ๋์๊ณต์ 9๊ฐ์์์ ALS ๋ฐ์ดํฐ๋ 2017๋
5์ 14์ผ, TLS ๋ฐ์ดํฐ๋ 2017๋
5์ 10์ผ๊ณผ 11์ผ, MLS ๋ฐ์ดํฐ๋ 2020๋
4์ 21์์ 25์ผ ์ทจ๋๋์๋ค. ์ทจ๋๋ ๋ฐ์ดํฐ์
์ ์๊ด์ ๊ฒน์นจ ์ฌ๋ถ์ ๋ฐ๋ผ ๋จ๋ชฉ๊ณผ ๊ตฐ์ง์ผ๋ก ๋ถ๋ฅ๋์์ผ๋ฉฐ, 3๊ฐ์ ํ์ด(ALS-TLS, MLS-TLS, ALS-MLS)๋ก ์๊ด์ ํผ์ผํ์ผ ๋์ด, ์๊ด๋ณต์ก์ฑ, ๋ฉด์ ๋ฑ์ ์๋ชฉ๊ตฌ์กฐ๊ด๋ จ ๋ณ์๋ค์ 1:1 ๋น๊ตํ์๋ค. ํญ๊ณต LiDAR ๋ฐ์ดํฐ๋ฅผ ํตํด ๋์ถ๋ ์๋ชฉ๊ตฌ์กฐ๊ด๋ จ ๋ณ์๋ค์ ์ฐธ์กฐ๋ก ํ์ฌ ํ๊ท ์ ๊ณฑ๊ทผ์ค์ฐจ(RMSE), ํธํฅ(bias), ํผ์ด์จ ์๊ด๊ณ์(r) ๋ฑ์ ๊ณ์ฐํ๊ณ ์ธ LiDAR ์์คํ
์ฌ์ด์ ์ผ์น์ฑ์ ํ๊ฐํ์๋ค. ํ๊ฐ ๊ฒฐ๊ณผ ZMAX, CHM๊ด๋ จ ์๊ด๋์ด ๊ด๋ จ ๋ณ์๋ค, ๊ทธ๋ฆฌ๊ณ ์๊ด๋ฉด์ ์ด ๋์ ์ผ์น์ฑ์ ๋ณด์๋ค(RMSE% 0.900). ํนํ CHM์ ํตํด ๋์ถ๋ ์๊ด๋์ด ๊ด๋ จ ๋ณ์๋ค์ ๋จ๋ชฉ๊ณผ ๊ตฐ์ง์์ ์ธ๊ฐ์ LiDAR ์์คํ
๊ฐ ํต๊ณ์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง ์์๋ค(p > 0.05). ๋ฐ๋ฉด ํผ์ผํ์ผ ์๊ด๋์ด์ ํ๊ท ์๊ด๋์ด ๋ฑ์ ๋งค์ฐ ๋ฎ์ ์ผ์น์ฑ์ ๋ํ๋์ผ๋ฉฐ, ์ธ ํ์ด์์ ๋์ถ๋ ํธํฅ์ ์๊ณ , ์๊ด๋ณต์ก์ฑ๊ณผ ์ฝํ ์ ํ๊ด๊ณ๋ฅผ ๋ํ๋๋ค(r >, p < 0.05).
Chapter 3: ์๊ด๋ํ๋ ์ฒ์ ๊ฑด๊ฐ์ฑ์ ๋ฐ์ํ๋ค. ํนํ, ์์ฐ์ ยท์ธ์์ ์ธ ๊ต๋์ ์ํด ๋ฐ์ํ ์ฒํ์ ์ฒ ๋ด๋ถ์ ๋น์ ํฌ๊ณผ์จ, ์จ๋, ์ต๋ ๋ฑ์ ์ํฅ์ ๋ผ์ณ ์ฃผ๋ณ ํ๊ฒฝ์ ๋ณํ๋ฅผ ์ผ๊ธฐํ๋ค. ๋ฐ๋ผ์ ์ฒํ์ ํ์งํ๊ณ ๋ชจ๋ํฐ๋งํ๋ ๊ฒ์ ์ฒ์ ๋ํ๋ฅผ ์ดํดํ๋๋ฐ ์์ด ๋งค์ฐ ์ค์ํ๋ค. ํญ๊ณต LiDAR ์ผ์๋ฅผ ํ์ฉํ ๊ฒฝ์ฐ ์์ฑ์์์ด๋ ํญ๊ณต์ฌ์ง ๋ฑ 2์ฐจ์ ๋ฐ์ดํฐ๋ก ํ์งํ๊ธฐ ์ด๋ ค์ด ์ฒํ ๋๋ ๊ฐ๋ฐฉ๊ณต๊ฐ์ ํ์ง์ ์๊ด์ 3์ฐจ์ ํ์์ ์ทจ๋์ด ๊ฐ๋ฅํ๋ค. Chapter 3์์๋ 2012๋
๋๋ถํฐ 2015๋
๋ 4๊ฐ๋
์ ํญ๊ณต LiDAR๋ฅผ ํ์ฉํ์ฌ ์์ฐํ ๋์๊ณต์(๋ด์์ฐ)์ ์๊ด๊ณผ ์ฒํ์ ์ํ์ ์์ง์ ๋ณํ์์์ ์ถ์ ํ์๋ค. ์๊ด์ ๋์ด 5m๋ฅผ ๊ธฐ์ค์ผ๋ก ์์ธต๋ถ์ ํ์ธต๋ถ ์๊ด์ผ๋ก ๋ถ๋ฅ๋์์ผ๋ฉฐ, ์๊ด๋์ด๋ชจ๋ธ(canopy height model, CHM)์ ์์ฑํ์ฌ ์ฐ๊ฐ๋ณํ๋ฅผ ํ์งํ์๋ค. ์ฐ๊ตฌ๊ฒฐ๊ณผ ์์ธต๋ถ ๋ฐ ํ์ธต๋ถ ์๊ด์ ์์ง์์ฅ๋๊ณผ ์ฝ๋ฉด์ ์ง์๋ ์ผ์ ํ ์ฐ๊ฐ ๋ณํ์์์ ๋ณด์ธ ๋ฐ๋ฉด, ์ํ์ ๋ณํ์ ์ฝ๋ฉด์ ๋ฐ๋๋ ๋ถ๊ท์น์ ์ธ ์ฐ๊ฐ ๋ณํ์์์ ๋ณด์๋ค. ์ ๋ฐ์ ์ผ๋ก ์์ธต๋ถ ์๊ด์ ๋์ด 12m์์ ์ธก๋ฐฉํฅ ์์ฅ์ ํ๋ ๊ฒ์ผ๋ก ๋ํ๋ฌ์ผ๋ฉฐ, ํ์ธต๋ถ ์๊ด ์ค ์ฒํ์์๋ ๋์ด 5m์์ ์ธก๋ฐฉํฅ ์์ฅ์ด ํ๋ฐํ๊ฒ ๋ํ๋ฌ๋ค. LiDAR ๋ฐ์ดํฐ์ ์ฐ๊ฐ ๋ณํ ํ์ง๋ฅผ ํตํด ์์ฐ์ ์ผ๋ก ํ์ฑ๋ ์ฒํ์ ๊ฒฝ์ฐ ์์ฅ๊ณผ ๊ต๋ ์ธก๋ฉด์์ ๋งค์ฐ ํ๋ฐํ ๋ํ๊ฐ ๋ฐ์ํ๊ณ ์์ผ๋ฉฐ, ์ธ์์ ์ผ๋ก ํ์ฑ๋ ๊ฐ๋ฐฉ๊ณต๊ฐ์ ๊ฒฝ์ฐ ์๊ด์ ๋ํ๊ฐ ๋ค์ ์นจ์ฒด๋จ์ ๋์ถํ์๋ค.
Chapter 4๋ ๋์ ๋ด ๊ฑด๋ฌผ๊ณผ ๋
น์ง์ 3์ฐจ์ ๊ตฌ์กฐ๋ฅผ ์
๋ ฅ์๋ฃ๋ก ํ์ฉํ์ฌ ๋์์ ์ํ์ ์ฐ๊ฒฐ์ฑ์ ํ๊ฐํ๋ ์ฐ๊ตฌ๋ฅผ ๋ค๋ฃฌ๋ค. ๋์ ๋ด ์ํ์ ์ฐ๊ฒฐ์ฑ ๋์ถ๊ณผ ๊ด๋ จํ ์ฐ๊ตฌ๋ ๋์์ ๋
น์ง์ ํํ ๋ฑ์ ์ฃผ์ ๋ณ์๋ก ํ์ฌ ์งํ์ด ๋๊ณ ์๋ค. ๊ทธ๋ฌ๋ 3์ฐจ์์ ์ธ ํน์ฑ์ธ ๋์ ๊ฑด๋ฌผ์ ๋ถํผ, ์๋ชฉ์ ์์ง์ ์ธ ๊ตฌ์กฐ ๋ฑ์ ๊ณ ๋ คํ ์ฐ๊ฒฐ์ฑ ๋ถ์์ ๋ง์ด ์งํ๋ ๋ฐ ์๋ค. ์ฐ๊ตฌ ๋์์ง๋ ์ฒ์์ ์์ฒญ์ ์ค์ฌ์ผ๋กํ 4 km ร 4 km ์ง์ญ์ผ๋ก, 2015๋
์ ์ทจ๋๋ ํญ๊ณต LiDAR์ ๊ฐ์ ํด ์ทจ๋๋ ์กฐ๋ฅ ์ข
์กฐ์ฌ ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ์ฌ 1)๋์ ๋ด ๊ฑด๋ฌผ๊ณผ ๋
น์ง์ 3์ฐจ์ ๊ตฌ์กฐ์ ์กฐ๋ฅ ์ข
๋ค์์ฑ ์ฌ์ด ๊ด๊ณ๋ฅผ ์ดํผ๊ณ , 2)์กฐ๋ฅ ์ข
๋ค์์ฑ๊ณผ ์๊ด๊ด๊ณ๋ฅผ ๊ฐ์ง๋ 3์ฐจ์ ๊ตฌ์กฐ๋ณ์๋ฅผ ํ์ฉํ์ฌ ์ ๋ฅํ๋ฆ๊ธฐ๋ฐ ๋งค๊ฐ์ค์ฌ์ฑ ์ฐ๊ฒฐ์ฑ ๋ถ์(CFBC)์ ์งํํ์๋ค. ์ฐ๊ตฌ๊ฒฐ๊ณผ ๊ฑด์ถ๋ฌผ์ ๋ถํผ์ ์๋ชฉ๋์ด 8-10m์ ๋
น์ง ๋ถํผ๋น๊ฐ ๋ฉด์ ๋น ์กฐ๋ฅ ์ข
ํ๋ถ๋์ ์คํผ์ด๋ง ์์์๊ด๊ด๊ณ์์ ๋์ ์๊ด๊ด๊ณ(ฯ> 0.6)๋ฅผ ๋ํ๋๋ค. ์ฐ๊ฒฐ์ฑ ๋ถ์์ ๊ฒฐ๊ณผ๋ ์
๋ ฅ๋ณ์์ ๊ณต๊ฐ์ฐจ์(2D ๋ฐ 3D)์ ๋ฐ๋ผ ๋ค๋ฅด๊ฒ ๋ํ๋ฌ๋ค. ํนํ ๋์์ฒ, ๋๋ก๋ณ, ์ํํธ๋จ์ง๋ด ๋
น์ง ๋ฑ์์ 2D ๊ธฐ๋ฐ CFBC์ 3D๊ธฐ๋ฐ CFBC๋ ํต๊ณ์ ์ผ๋ก ์ ์๋ฏธํ ์ฐจ์ด๋ฅผ ๋ณด์๋ค. ๋ํ ๋์๋
น์ง์ 3D ๊ธฐ๋ฐ CFBC์ ๊ฒฝ์ฐ ๊ฐ์ ๋
น์ง ๋ฉด์ ์์๋ ์๊ด์ ๊ตฌ์กฐ์ ์ธ ํน์ฑ์ ๋ฐ๋ผ ๋์ ์ฐจ์ด๊ฐ ๋ํ๋จ์ ํ์ธํ์๋ค. 3D CFBC ๋ถ์๊ฒฐ๊ณผ๋ฅผ ํตํด ๊ณ ์ธต ๊ฑด๋ฌผ ์ฃผ๋ณ๋ถ, ๊ณ ๋ฐ๋ ์ํํธ๋จ์ง, ๊ณ ๋ฐ ์๊ฐํ์ง์ญ ๋ฑ์ด ๋ฎ์ ์ค์ฌ์ฑ์ ๋ณด์ฌ ๊ณ ๋ฆฝ์ง์ญ์ผ๋ก ๋ํ๋ฌ์ผ๋ฉฐ, ๊ฑด๋ฌผ ์ฌ์ด ๊ณต์ง ๋ด ์์์ ์ฐ๊ฒฐ์ฑ์ด ๊ณ ๋ฆฝ๋ ์ง์ญ๊ณผ ํต์ฌ์ง์ญ์ ์ฐ๊ฒฐํ๋ ๊ธฐ๋ฅ์ ๋ํ๋๋ค.
์ด ํ์๋
ผ๋ฌธ์ ์๋ก ๋ค๋ฅธ LiDAR ์์คํ
์ ํ์ฉํ์ฌ ๋จ๋ชฉ, ๊ฒฝ๊ด ์ง์ญ๋จ์ ๋ฑ ๋ค์ํ ๊ณต๊ฐ ์ค์ผ์ผ์์์ ๋์๊ฒฝ๊ด๊ตฌ์กฐ ๋ถ์, ๋์๋
น์ง๊ตฌ์กฐ์ ํ ์ง์ด์ฉ ๋ฑ์ ๋ฐ๋ฅธ ์๊ฐ์ ๋ณํ์์, ๋์๊ฒฝ๊ด๊ตฌ์กฐ๊ฐ ๊ฐ์ง๋ ์ํ์ ์๋ฏธ ๋ฑ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ๋ค๋ฃจ๊ณ ์๋ค. ํฅํ Global Ecosystem Dynamics Investigation(GEDI) ๋ฏธ์
์ ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ์ฌ ๋ณธ ํ์๋
ผ๋ฌธ์์ ๋ค๋ฃจ๋ ์ง์ญ๊ท๋ชจ์ ์ฐ๊ตฌ๋ฅผ ๊ตญ๊ฐ๋จ์, ๋๋ฅ๋จ์ ๋ฑ์ผ๋ก ํ์ฅํ ์ ์์ ๊ฒ์ด๋ฉฐ ์ด๋ฅผ ํตํด ๋์์ํ๊ณ ๊ตฌ์กฐ์ ๊ทธ ๊ธฐ๋ฅ ์ฌ์ ๊ด๊ณ๋ฅผ ์ดํดํ๋๋ฐ ๋์์ ์ค ์ ์์ ๊ฒ์ด๋ค.Chapter 1. Introduction 1
1. Background 1
1.1. Urbanization and the importance of urban green spaces 1
1.2. Urban landscape and Light detection and ranging application 1
2. Purpose 6
Chapter 2. Comparing tree structures derived among multiple LiDAR systems in urban parks 10
1. Introduction 10
2. Methods and materials 12
2.1. Study site and tree classification 12
2.2. LiDAR survey and processing 14
2.3. Deriving the structural variables of the parks 17
2.4. Assessing the accuracy of the LiDAR-derived indices 18
3. Results 19
3.1. Comparing height metrics among the three LiDAR systems 19
3.2. Comparing CHM-derived canopy height metrics from each LiDAR systems 22
3.3. Comparing the area and the Rumple index determined using the LiDAR systems 23
4. Discussion 25
4.1. LiDAR configurations and data acquisition time intervals 25
4.2. Uncertainty of the structural indices derived from the three LiDAR systems 28
Chapter 3. Urban forest growth and gap dynamics detected by yearly repeated airborne LiDAR 31
1. Introduction 31
2. Methods and Materials 33
2.1. Field survey 33
2.2. Canopy opening detection 34
2.3. Airborne LiDAR dataset acquisition and registration 35
2.4. Generation of height models and change detection 36
2.5. Gap detection and classification 38
2.6. Estimating changes of vertical canopy distribution and canopy complexity 38
3. Results 39
3.1. Pixel and hexagon height model-based change detection 39
3.2. Continuous one-year vertical growth area 41
3.3. Open canopy change detection 42
3.4. Changes in vertical canopy structures in High Canopy and Open Canopy 43
4. Discussion 45
4.1. What are the differences between the canopy structural changes derived from annual change detections and three-year interval change detection? 45
4.2. What are the characteristics of the structural changes according to the different canopy classes (e.g., high canopies and low canopies) in the urban forest? 46
Chapter 4. LiDAR-derived three-dimensional ecological connectivity mapping 49
1. Introduction 49
2. Materials and Methods 51
2.1. Study area and avian species observation 52
2.2. Airborne LiDAR acquisition, preprocessing and classification and deriving structural variables 53
2.3. Correlation analysis and selection of structural variables 55
2.4. 2D and 3D ecological networks 55
3. Results 56
3.1. Avian species survey 56
3.2. Correlation analyses and variable selection 56
3.3. Connectivity analysis results 58
3.4. Correlation between connectivity results with bird species diversity 59
3.5. Differences between 2D- and 3D-based CFBCs 60
4. Discussion 61
4.1. Vegetation and building structures and bird species diversity 61
4.2. 3D-based connectivity results 62
4.3. Differences between 2D and 3D network analyses 64
4.3.1. Forest and artificial green area 65
4.3.2. Roads and residential areas 66
Appendix 67
Chapter 5. Conclusion 70
1. Combination with multiple LiDAR data for surveying structures of urban green spaces 70
2. Multi-temporal urban forest gap monitoring 71
3. Ecological connectivity analysis using LiDAR 71
4. LiDAR application to Urban ecosystem monitoring 72
5. Expanding spatiotemporal scale and further works 73
Acknowledgments 75
Reference 76
Abstract in Korean 85๋ฐ
Estimation of the Urban Forest Growth Using Multi-temporal LiDAR Dataset
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ํ๊ฒฝ๋ํ์ ํ๊ฒฝ์กฐ๊ฒฝํ๊ณผ, 2018. 2. ์ก์๊ทผ.์ค๋๋ ์๋ฌผ๋ค์์ฑ ๋ณด์ ๊ณผ ์ํ๊ณ ์๋น์ค์ ์ธก๋ฉด์์ ๋์๋ฆผ์ ์ค์์ฑ์ด ๋๋๋๊ณ ์๋ค. ํ์ง๋ง, ๋์ํ์ ์งํ์ ์ฐ๋ฆผ์ ๊ณ ๋ฆฝํ, ์ธ์์ ๊ต๋์ ๋น๋ฒํ ๋ฐ์์ ์ผ๊ธฐํ๊ณ ์์ผ๋ฉฐ, ๊ทธ์ ๋ฐ๋ผ ๋์๋ฆผ์ ๊ฑด๊ฐ์ฑ์ ํ๊ฐํ๊ณ ๊ด๋ฆฌํ๋ ํ๋์ ํ์์ฑ์ด ์ ๊ธฐ๋๊ณ ์๋ค. ๋์๋ฆผ์ ๊ฑด๊ฐ์ฑ์ ์๊ด์ ์์ฅ์ ํตํด ์ ๋ํํ์ฌ ๋ํ๋ผ ์ ์๋๋ฐ, ์ด๋ ์๊ด์ ์์ฅ์ด ์๋ชฉ์ ์ฐ๋ น, ์ข
์กฐ์ฑ, ๊ต๋ ๋ฑ ์ฃผ๋ณ ํ๊ฒฝ์ ์ํฅ์ ๋ฐ๊ธฐ ๋๋ฌธ์ด๋ค. ์๊ด์ ์์ฅ๋ ์ถ์ ๋ฑ ์ฐ๋ฆผ์ ๋์์ผ๋ก ํ ์ฐ๊ตฌ ๋ฐฉ๋ฒ์ผ๋ก 1990๋
๋๋ถํฐ LiDAR(Light Detection and Ranging)๋ผ๋ ์๊ฒฉํ์ฌ ์ผ์๋ฅผ ์ด์ฉํ ์ธก๋ ๋ฐฉ๋ฒ์ด ์ฐ๊ตฌ๋๊ณ ์๋ค. ํนํ, ํญ๊ณต LiDAR ๋ฐ์ดํฐ์ ํ์ฉ์ ์ ํต์ ์ธ ์๊ณ ์ถ์ ๋ฐฉ๋ฒ์ ํ๊ณ์ ์ ๊ทน๋ณตํ๊ณ ํจ์จ์ ์ผ๋ก ๋์ ๋์์ง์ ๋ถ์์ ๊ฐ๋ฅ์ผ ํ๋ฉฐ ํญ๊ณต์ฌ์ง๊ณผ ์์ฑ์์์ 2์ฐจ์์ ์ธ ์ ์ฝ์ ๋ฒ์ด๋ 3์ฐจ์์ ์ธ ๊ณต๊ฐ๋ถํฌ์ ์ ๋ฐํ ์ถ์ ์ ๊ฐ๋ฅ์ผ ํ๋ค.
๊ฒฝ๋
ํญ๊ณต LiDAR ๋ฐ์ดํฐ๋ฅผ ์ด์ฉํ ์ฐ๋ฆผ์ ์ฐ๊ตฌ๋ ๊ด์ญ๋จ์ ๋์์ง ๋ด ์๊ด์ ๋ณํ๋์ ์์ญ ์ผํฐ๋ฏธํฐ ๋จ์์ ์ ํ๋๋ก ์ ๋ฐํ๊ฒ ํ์งํด ๋ผ ์ ์๋ค๋ ์ ์ฌ์ฑ์ด ์์์๋, ๊ด๋ จ ์ฐ๊ตฌ๋ ๋ถ๋ฏธ์ง์ญ๊ณผ ๋ถ์ ๋ฝ์ง์ญ์ ์๋ก์๊ฐ ์ฐ์ ํ๋ ํ๋์๋ฆผ์ง์ญ ๋๋ ๋ณด์ ์ง์ญ์ ์ค์ฌ์ผ๋ก ์งํ์ด ๋์ด์์ผ๋ฉฐ, ์จ๋ ๊ธฐํ๋์ ์์นํ ๋์ ๋ด ์ฐ๋ฆผ(๋์๋ฆผ)์ ๋์์ผ๋ก ์งํ๋ ์ฐ๊ตฌ๋ ๋ถ์กฑํ ์ค์ ์ด๋ค. ๊ธฐํ๋ณํ, ๋์ํ ๋ฑ ๋ค์ํ ํ๊ฒฝ ๋ฌธ์ ์ ๋ฐ๋ฅธ ๋์๋ฆผ์ ๊ฑด๊ฐ์ฑ ๋ฌธ์ ๊ฐ ์ง์์ ์ผ๋ก ์ ์๋จ์ ๋ฐ๋ผ ๋์๋ฆผ์ ๊ฑด๊ฐ์ฑ์ ์ ๋์ ์ผ๋ก ๋ํ๋ผ ์งํ๊ฐ ํ์ํ๋ฉฐ, ์ด๋ ๋์๋ฆผ์ ๊ตฌ์ฑํ๋ ์๊ด์ ์ฐ๊ฐ ์์ฅ๋ ๋ฑ์ ํตํด ๋ํ๋ผ ์ ์์ ๊ฒ์ผ๋ก ํ๋จ๋๋ค. ๋ฐ๋ผ์ ๋น๊ต์ ๋์ ๋ฉด์ ์ธ ๋์๋ฆผ์ ํจ์จ์ ์ธ ๊ฑด๊ฐ์ฑ ํ๊ฐ๋ฅผ ์ํด ํญ๊ณต LiDAR ์ผ์๋ฅผ ์ด์ฉํ ์๊ด์ ์์ฅ๋์ ์ ๋ํํ ํ์์ฑ์ด ์๋ค.
๋ณธ ์ฐ๊ตฌ์ ๋ชฉ์ ์ 2012๋
๋์ 2015๋
๋์ ์ดฌ์๋ ํญ๊ณต LiDAR ๋ฐ์ดํฐ๋ฅผ ์ด์ฉํ์ฌ ๋์์ง์ธ ๋์๋ฆผ์ ์ ์ฒด ์ฐ๊ฐ ์์ฅ๋๊ณผ ์๊ด ๋ณํ๋์ ์ถ์ ํ๋๋ฐ ์๋ค. ์ธ๋ถ์ ์ธ ๋ชฉํ๋ก ์๊ด์ ๋ณํ๋์ ํตํด ๋์๋ฆผ ์๊ด์ ์ฐ๊ฐ ์์ฅ๋๊ณผ ์์ฅ์ง์ญ๋ถํฌ, ๊ต๋์ง์ญ๋ถํฌ๋ฅผ ์ถ์ ํ๊ณ ์ ํ๋ค.
๋ณธ ์ฐ๊ตฌ์ ๋์์ง๋ ์ถฉ์ฒญ๋จ๋ ์ฒ์์ ์์ชฝ์ ์์นํ ๋ด์์ฐ(158m)์ผ๋ก ์๊ฐํ ์ง์ญ ๋ด ์์นํ ๋์๋ฆผ์ด๋ค. ํญ๊ณต LiDAR ๋ฐ์ดํฐ๋ 2012๋
10์ 9์ผ, 2015๋
10์ 30์ผ ๋ ์๊ธฐ์ ์ทจ๋๋์์ผ๋ฉฐ, ๋ฐ์ดํฐ์ ์ ๊ตฐ๋ฐ๋๋ ๋ ์๊ธฐ ๋ชจ๋ 9 points/ใก ์ผ๋ก ์ ์ฌํ๋ค. ๋ด์์ฐ์ ๋ถํฌํ๋ ์์ข
์ผ๋ก, ์์๋ฆฌ๋๋ฌด(44.8%), ๋ฆฌ๊ธฐ๋ค์๋๋ฌด(29.7%), ๋์ฝ์ก(7.43%) ๋ฑ์ด ์ฐ์ธํ ๊ฒ์ผ๋ก ์กฐ์ฌ๋์์ผ๋ฉฐ, ์ ์ฒด์ ์ธ ๋์๋ฆผ์ ์ด๋ฃจ๋ ์๋ชฉ์ ํ๊ท ์๊ธ์ด 3.8์๊ธ์ผ๋ก ์ฑ์ํ ์ฒ์ ์ด๋ฃจ๋ ๊ฒ์ผ๋ก ์กฐ์ฌ๋์๋ค.
์ ์ฒด์ ์ธ ์ฐ๊ตฌ ๋ฐฉ๋ฒ์ผ๋ก 2012๋
๋์ 2015๋
๋ LiDAR ๋ฐ์ดํฐ์ ์์ง์ ์ธ ๊ฑฐ๋ฆฌ ์ฐจ์ด๋ฅผ ๊ณ์ฐํ์ฌ ๋์์ง ์๊ด์ ๋ณํ๋์ ์ถ์ ํ๋ ๋ฐฉ๋ฒ์ ์ด์ฉํ์๋ค. ์ด๋ฅผ ์ํด ํญ๊ณต LiDAR ๋ฐ์ดํฐ๋ฅผ TerraScan ์ํํธ์จ์ด๋ฅผ ์ด์ฉํ์ฌ ์ ์ฒ๋ฆฌ ํ ๋ค ๊ทธ๋ฆฌ๋์ ํฌ๊ธฐ๊ฐ 0.25*0.25ใก ์ธ ์์นํ๋ฉด๋ชจ๋ธ๊ณผ ์์น์งํ๋ชจ๋ธ์ ์์ฑํ๊ณ ์๊ด๋์ด๋ชจ๋ธ(CHM: Canopy Height Model)์ ์ถ์ถํ์๋ค. ํ๊ท ์๊ด๋์ด์ ์ ๋ฐ์ธ 5m๋ฅผ ๊ธฐ์ค์ผ๋ก, 5m ์ดํ์ง์ญ์ ๊ด๋ชฉ/์ฒํ ์ง์ญ(shrub canopy/gap), 5m ์ด๊ณผ ์ง์ญ์ ๊ต๋ชฉ ์ง์ญ(high canopy)์ผ๋ก ๋ถ๋ฅํ์๋ค.
์ฐ๊ตฌ ๊ฒฐ๊ณผ ๊ต๋ชฉ์ง์ญ์์์ ์ฐํ๊ท ์์ฅ๋์ 24.4 cm/year ์ถ์ ๋์์ผ๋ฉฐ, ๊ด๋ชฉ/์ฒํ ์ง์ญ์์์ ์ฐํ๊ท ์์ฅ๋์ 19.4 cm/year๋ก ์ถ์ ๋์๋ค. ์ฐํ๊ท ์์ฅ๋์ ์์ข
์ ๋ฐ๋ผ ๊ทธ ์ฐจ์ด๊ฐ ๊ฐ์ฅ ๋ช
ํํ๊ฒ ๋ํ๋ฌ๋ค(๋ฐค๋๋ฌด: 27cm/year๋ฆฌ๊ธฐ๋ ์๋๋ฌด: 24cm/year). ๋์์ง ์ ์ฒด ๋ฉด์ ์ 18%๊ฐ ์์ง๋ฐฉํฅ์์ฅ์ง์ญ์ผ๋ก ๋ถ๋ฅ๋์์ผ๋ฉฐ, 42%๊ฐ ์ธก๋ฐฉํฅ์์ฅ์ง์ญ์ผ๋ก ๋ถ๋ฅ๋์๋ค. ๊ต๋ชฉ ์ง์ญ์ ๊ฒฝ์ฐ ์ธก๋ฐฉํฅ์์ฅ์ง์ญ์ด 43.1%๋ก ๊ฐ์ฅ ๋์ ๋ถํฌ๋ฅผ ๋ณด์ด๋ฉฐ, ์์ง๋ฐฉํฅ์์ฅ์ง์ญ 20.0%๋ก ๋ฉด์ ๋ถํฌ๊ฐ ๋ํ๋ฌ๋ค. ๋ฐ๋ฉด, ๊ด๋ชฉ/์ฒํ ์ง์ญ์ ๊ฒฝ์ฐ ์์ง๋ฐฉํฅ์์ฅ์ง์ญ์ด 40.8%๋ก ๊ฐ์ฅ ๋์ ๋ถํฌ๋ฅผ ๋ณด์ด๋ฉฐ, ์ธก๋ฐฉํฅ์์ฅ์ง์ญ 20.0%๋ก ๋ฉด์ ๋ถํฌ๊ฐ ๋ํ๋ฌ๋ค. ์ธก๋ฐฉํฅ์์ฅ์ง์ญ์ ๋ฉด์ ์ ๋๋จํฅ์์ ์๋์ ์ผ๋ก ๊ฐ์ฅ ๋๊ฒ ๋ถํฌํ๋ฉฐ, ์๋ถํฅ์ผ๋ก ๊ฐ์๋ก ์๋์ ์ผ๋ก ์ข์์ง๋ ๊ฒฝํฅ์ ๋ณด์๋ค. ๋์์ง ์ ์ฒด ๋ฉด์ ๋๋น ๊ต๋์ง์ญ ๋ฉด์ ๋น์จ์ 40%๋ก, ๋์ ์ง์ญ์์ ์ฐ๋ฆผ์ ํผํด๊ฐ ๋ฐ์ํ๊ณ ์์์ ์ถ์ ํ ์ ์๋ค. ๊ต๋์ ํนํ ๋์์ง ๊ฒฝ๊ณ, ๊ฒฝ์์ง, ๋ฌ์ง, ์ฐ์ฑ
๋ก ์ฃผ๋ณ 10m ๋ฑ์์ ๊ท๋ชจ์ ๋ฐ์๋น๋๊ฐ ๋๊ฒ ๋ํ๋จ์ ์ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํตํด ์ถ์ ํ ์ ์์๋ค. ๋ํ, ๊ต๋ชฉ ์ง์ญ์ ๊ฒฝ์ฐ ์ํฅ์์ ๋ํฅ๋ณด๋ค ๊ต๋์ด ์๋์ ์ผ๋ก ๋๊ฒ ๋ฐ์ํ๋ ๊ฒฝํฅ์ ๋ณด์๋ค. ์ฒํ์ ๊ฒฝ์ฐ 2012๋
๋์ 2015๋
๋ ์ฌ์ด 21027.85ใก์ ๋ฉด์ ์ด ๊ฐ์ํ์์ผ๋ฉฐ, ํจ์น์ ์ ์ญ์ 530์ง์ญ์ด ๊ฐ์ํ ๊ฒ์ผ๋ก ์ถ์ ๋์๋ค. ๋ํ 2015๋
๋ ์ฒํ ํจ์น๋ค์ ํ๊ท ๋ฉด์ ์ 2012๋
๋ ๋๋น 2.11ใก ์ฆ๊ฐํ ๊ฒ์ผ๋ก ํ์ง๋์๋ค.
๊ฒฝ๋
ํญ๊ณต LiDAR ๋ฐ์ดํฐ๋ฅผ ์ด์ฉํ ๋์๋ฆผ์ ์ฐ๊ตฌ๋ ๊ธฐ์กด ์ฐ๊ตฌ๋ฐฉ๋ฒ์ ํ๊ณ์ ์ ๊ทน๋ณตํ๊ณ ๊ด์ญ๋จ์ ์ฐ๋ฆผ์ ๋ํ๋ฅผ ์ฐ๊ตฌํ๋ ๋ฐ ์์ด ํจ์จ์ ์ผ๋ก ์ ๋์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋์ถํด ๋ผ ์ ์๋ค๋ ์ฅ์ ์ด ์๋ค. ๋ฐ๋ผ์ ๋ณธ ์ฐ๊ตฌ๋ ํฅํ ๋จ๊ธฐ๊ฐ์ ๋ณํ๋ฟ๋ง์ด ์๋ ์ฅ๊ธฐ๊ฐ์ ๋ณํ์์๊น์ง ์ถ์ ํ๊ณ ๋ชจ๋ํฐ๋ง ํ๋ ์ฐ๊ตฌ์ ๊ธฐ์ฌํ ์ ์์ ๊ฒ์ผ๋ก ํ๋จ๋๋ค.์ 1์ฅ ์๋ก 01
1์ . ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ 01
1. ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ 01
2. ์ฐ๊ตฌ์ ๋ชฉ์ ๋ฐ ์์ 03
3. ์ฐ๊ตฌ์ ๋ฒ์ 04
์ 2์ฅ ์ด๋ก ์ ๊ณ ์ฐฐ 06
1์ . ํญ๊ณต LiDAR ๋ฐ์ดํฐ๋ฅผ ์ด์ฉํ ์๊ด์ ๋ณํ๋ ์ถ์ 06
1. LiDAR ๋ฐ์ดํฐ์ ํ์ฉ๊ณผ ๊ธฐ์กด ์ฐ๊ตฌ๋ฐฉ๋ฒ ๊ณ ์ฐฐ 06
์ 3์ฅ ์ฐ๊ตฌ๋ฐฉ๋ฒ 11
1์ . ์ฐ๊ตฌ์ ํ๋ฆ 11
1. ์ฐ๊ตฌ์ ํ๋ฆ 11
2์ . ์ฐ๊ตฌ๋์์ง 12
1. ๋์์ง ๊ฐ์ 12
3์ . ๋ฐ์ดํฐ ์ทจ๋ 15
1. 2์ฐจ์ ๋ฐ์ดํฐ ์ทจ๋ 15
2. ํญ๊ณต LiDAR ๋ฐ์ดํฐ ์ทจ๋ 16
3. ํ์ฅ์กฐ์ฌ ๋ฐ์ดํฐ ์ทจ๋ 17
4. ์ทจ๋ ๋ฐ์ดํฐ ์์ฝ 18
4์ . ํญ๊ณต LiDAR ๋ฐ์ดํฐ ๊ฐ๊ณต 18
1. ํญ๊ณต LiDAR ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ 18
2. TIN ๋ชจ๋ธ ์ ์ 18
5์ . ๋์คํฐ ๋ฐ์ดํฐ ๋ถ๋ฅ 20
1. ์๊ด ๋ถ๋ฅ 20
2. 2012๋
๋์ 2015๋
๋ ์๊ด๋์ด๋ชจ๋ธ ๋น๊ต๋ฅผ ํตํ ์์ฅ, ๊ต๋์ง์ญ ๋ถ๋ฅ 20
6์ . ์์๋, ํ ์ฑ, ํฅ, ๊ฒฝ์ฌ๋๋ณ ์๊ด๋์ด๋ชจ๋ธ ๋น๊ต 20
1. ์๊ด๋์ด๋ชจ๋ธ ๋น๊ต์ ๊ธฐ์ค ๋ฐ์ดํฐ 22
2. ๋์ด์ ๋ฐ๋ฅธ ์๊ด๋์ด๋ชจ๋ธ ๋ถ๋ฅ 24
์ 4์ฅ ๊ฒฐ๊ณผ 26
1์ . ๋ถ์๊ฒฐ๊ณผ 26
1. 2012๋
๋, 2015๋
๋ ์๊ด๋์ด๋ชจ๋ธ ๋ถ๋ฅ ์์ฑ ๊ฒฐ๊ณผ 26
2. ๋์ด์ ๋ฐ๋ฅธ ์๊ด๋์ด๋ชจ๋ธ ๋ถ๋ฅ ๊ฒฐ๊ณผ 27
3. ์์ง๋ฐฉํฅ์์ฅ์ง์ญ๊ณผ ์ฐ๊ฐ ํ๊ท ์์ง๋ฐฉํฅ์์ฅ๋ ์ถ์ 29
4. ์ธก๋ฐฉํฅ์์ฅ์ง์ญ ํ์ง ๊ฒฐ๊ณผ 38
5. ๊ต๋์ง์ญ ํ์ง ๊ฒฐ๊ณผ 46
6. ์ฒํ์ ํ์ง ๊ฒฐ๊ณผ 55
7. ์ด๋ฆฐ ์ง์ญ, ์ฒํ ํ์ฅ๊ฒ์ฆ 56
8. ์ธ์์ ๊ต๋ ๋ฐ์์ง์ญ, ๋์์ง ๊ฒฝ๊ณ์์ฃผ๋ณ์ ์์ฅ๋๊ณผ ๊ต๋ ์ถ์ ๊ฒฐ๊ณผ 58
์ 5์ฅ ๊ณ ์ฐฐ 60
1์ . ๊ฒฐ๊ณผ ๊ณ ์ฐฐ 60
1. ์ฐํ๊ท ์๊ด ์์ฅ๋ 60
2. ์์ฅ์ง์ญ ๋ฉด์ ๋ถํฌ 61
3. ๊ต๋์ง์ญ ๋ฉด์ ๋ถํฌ 64
4. ์ธก์ ์ค์ฐจ 66
์ 6์ฅ ๊ฒฐ๋ก 67
1์ . ์ฐ๊ตฌ ์์ฝ 67
1. ์ฐ๊ตฌ ๊ฒฐ๊ณผ ์์ฝ 67
2์ . ์ฐ๊ตฌ์ ์์์ ํ๊ณ 68
1. ์ฐ๊ตฌ์ ์์ 68
2. ์ฐ๊ตฌ์ ํ๊ณ์ 69
์ฐธ๊ณ ๋ฌธํ 71
Abstract 77Maste
Reptin๊ณผ Bcl3์ ์ํ ์ํ ์กฐ์ ๊ธฐ์์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์๋ช
๊ณผํ๋ถ, 2011.2. ๋ฐฑ์ฑํฌ.Docto
ํดํ์ฑ๊ด์ ์ผ์ ์ฌ๋ ๋ฌด๋ฆ๊ด์ ์คํ๋ง์์ Tenascin ๋ฐํ์ ๋ํ ๋ฉด์ญ์ ์ํ๋ฏธ๊ฒฝ์ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ,2001.Maste
๋ถ๊ท์น ์ผ๊ฐ๋ง ์ต์ ํ ์๊ณ ๋ฆฌ์ฆ์ ์ด์ฉํ ๋นํ๊ฒฝ๋ก ๊ฐ์ํ ์์ค์ ๊ตฌํ
Maste
๋ฐฉ์ฌ ์ ๋ณ์ธก์ ๊ธฐ์์ ํด๋ฆฌ์ํธ๋ ์ฉ์ต์ฒด์ ์ ๋์ ๊ดํ ์์น์ฐ๊ตฌ
Thesis (master`s)--์์ธ๋ํ๊ต ๋ํ์ :ํํ๊ณตํ๊ณผ,1995.Maste