26 research outputs found

    Experimental Investigation of Sedimentation at Multi-purposed Weir

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2014. 2. ์„œ์ผ์›.4๋Œ€๊ฐ• ์‚ด๋ฆฌ๊ธฐ ์‚ฌ์—…์˜ ์ผํ™˜์œผ๋กœ ์ˆ˜ํ–‰๋œ ํ•˜๋„ ์ค€์„ค ๋ฐ ๋‹ค๊ธฐ๋Šฅ๋ณด์˜ ์„ค์น˜๋Š” ํ•˜์ฒœ์˜ ํ๋ฆ„ ๋ฐ ์œ ์‚ฌ ํŠน์„ฑ ๋“ฑ์˜ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์™”์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ํ•˜๋„ ๋‚ด์˜ ํ‡ด์  ๋ฐ ์นจ์‹ ์–‘์ƒ์ด ๊ณผ๊ฑฐ์— ๋น„ํ•ด ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€๊ณ  ํ•˜์ƒ์žฌ๋ฃŒ ํŠน์„ฑ, ํ•˜์ฒœ๋‹จ๋ฉด ํ˜•ํƒœ, ํ•˜์ƒ๊ฒฝ์‚ฌ์˜ ๋ณ€ํ™”๊ฐ€ ์˜ˆ์ƒ๋œ๋‹ค. ๋˜ํ•œ ๋‚™๋™๊ฐ• ๋“ฑ์— ์„ค์น˜๋œ ๋‹ค๊ธฐ๋Šฅ๋ณด๋Š” ๊ด€๋ฆฌ์ˆ˜์œ„์˜ ์œ ์ง€์™€ ์œ ๋Ÿ‰ ์กฐ์ ˆ ๋“ฑ์œผ๋กœ ์ธํ•ด ๋ฐฐ์ˆ˜์œ„ ํšจ๊ณผ๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ ์ ์ฐจ์ ์œผ๋กœ๋Š” ์ €์ˆ˜์ง€ ์‚ผ๊ฐ์ฃผ(Reservoir delta)์˜ ํ˜•์„ฑ์„ ์•ผ๊ธฐํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ €์ˆ˜์ง€ ์‚ผ๊ฐ์ฃผ๋Š” ์ƒ๋ฅ˜์—์„œ๋ถ€ํ„ฐ ํ˜๋Ÿฌ์˜จ ํ•˜์ฒœ์ด ์ €์ˆ˜์ง€๋ฅผ ๋งŒ๋‚˜๋ฉด์„œ ์œ ์†์ด ๊ธ‰๊ฒฉํžˆ ์ค„์–ด๋“ฌ์— ๋”ฐ๋ผ ํ•˜์ฒœํ๋ฆ„์„ ๋”ฐ๋ผ ํ˜๋Ÿฌ์˜ค๋˜ ์œ ์‚ฌ๊ฐ€ ํ•˜์ƒ์— ํ‡ด์ ๋˜์–ด ํ˜•์„ฑ๋˜๋Š” ์ง€ํ˜•์œผ๋กœ์„œ ์ด๋Š” ์ €์ˆ˜์ง€ ์œ ํšจ์šฉ๋Ÿ‰์˜ ๊ฐ์†Œ์™€ ํ•˜์ฒœ์˜ ํ™์ˆ˜์œ„ ์ƒ์Šน์„ ์œ ๋ฐœํ•˜๋ฉฐ ํ™์ˆ˜๊ธฐ์˜ ๋ฒ”๋žŒ ์œ„ํ—˜์„ฑ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค(์šฐํšจ์„ญ, 2001). ์ €์ˆ˜์ง€ ์‚ผ๊ฐ์ฃผ๋Š” ๋‹จ๊ธฐ์ ์ธ ์ธก๋ฉด์—์„œ๋Š” ํฐ ์ง€ํ˜•๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค์ง€๋Š” ์•Š์ง€๋งŒ, ์žฅ๊ธฐ์ ์œผ๋กœ๋Š” ๋งค์šฐ ํฐ ์ €์ˆ˜์šฉ๋Ÿ‰์˜ ๊ฐ์†Œ๋ฅผ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๊ถ๊ทน์ ์œผ๋กœ ํ™์ˆ˜์œ„ ์ €ํ•˜, ์•ˆ์ •์ ์ธ ์šฉ์ˆ˜ ๊ณต๊ธ‰ ๋“ฑ์— ๋Œ€ํ•œ ์ด์šฉ ํŽธ์ต์„ ์ €๊ฐ์‹œํ‚ค๊ฒŒ ๋œ๋‹ค. ์ €์ˆ˜์ง€ ์œ ์‚ฌํ‡ด์ ์œผ๋กœ ์ธํ•œ ์ €์ˆ˜์ง€ ์ €์ˆ˜์šฉ๋Ÿ‰ ๊ฐ์†Œ๋Š” ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ๋งค๋…„ ์•ฝ 0.5 ~ 1 %๊ฐ€ ํ•ด๋‹น๋˜๋Š” ๊ฒƒ์œผ๋กœ ์—ฐ๊ตฌ๋œ ๋ฐ” ์žˆ๋‹ค(White, 2001). ์ด๋Ÿฌํ•œ ์œ ์‚ฌํ‡ด์ ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ๋ฐฉ์•ˆ์œผ๋กœ๋Š” ์œ ์—ญ์นจ์‹ ์ œ์–ด, ๊ธฐ๊ณ„์ ์ธ ์ค€์„ค, ๋ฐฐ์‚ฌ, ์‚ฌ์ดํŽ€ ๋“ฑ์ด ์žˆ์œผ๋ฉฐ ์œ ์‚ฌ๊ด€๋ฆฌ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ค€์„คํ† , ๊ฒฝ์ œ์ ์ธ ๊ด€์ ์—์„œ์˜ ํšจ์œจ์„ฑ์„ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ ๋ฐฐ์‚ฌ๋ฅผ ํ†ตํ•œ ์ €์ˆ˜์šฉ๋Ÿ‰ ํ™•๋ณด๊ฐ€ ์ ์ ˆํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ˆ˜์ง€ ๋‚ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์œ ์‚ฌํ‡ด์ ์— ๋Œ€ํ•œ ๋ณด๋‹ค ์‹ฌ๋„์žˆ๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 1์ฐจ์› ์ˆ˜์น˜ํ•ด์„ ๋ชจ์˜์™€ ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜์„ ํ†ตํ•ด ์ €์ˆ˜์ง€ ์‚ผ๊ฐ์ฃผ ํ‡ด์ ์–‘์ƒ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ํ•˜์ƒ๋ณ€๋™ ์ˆ˜์น˜ํ•ด์„ ๋ชจ์˜๋Š” 1์ฐจ์› Exner ๋ฐฉ์ •์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋‹ค๊ธฐ๋Šฅ๋ณด ์ƒ๋ฅ˜ ์œ ์‚ฌ์˜ ํ‡ด์ ๋Ÿ‰ ๋ฐ ๊ณต๊ฐ„์  ๋ถ„ํฌ๋ฅผ ์˜ˆ์ธกํ•˜์˜€์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ €์ˆ˜์ง€ ์‚ผ๊ฐ์ฃผ ์ƒ์„ฑ์–‘์ƒ๊ณผ ์ˆ˜๋ฆฌ์ธ์ž๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์œ„ํ•ด ํญ 78 ร— ๊ธธ์ด 1,550 ร— ๋†’์ด 110 mm ์ด๋™์ƒ ์‹คํ—˜์ˆ˜๋กœ๋ฅผ ์ด์šฉํ•œ ๊ธฐ์ดˆ ์ˆ˜๋ฆฌ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹คํ—˜์— ์‚ฌ์šฉ๋œ ์œ ์‚ฌ์˜ ๊ฒฝ์šฐ ๊ท ๋“ฑํ•œ ์ž…๊ฒฝ(d = 0.2 mm)์˜ ๋ชจํ˜•์‚ฌ์™€ d50 = 0.62, 1.2 mm์˜ ์‹คํ—˜์‚ฌ๋ฅผ ์ด์šฉํ•˜์˜€์œผ๋ฉฐ, ์œ ๋Ÿ‰์˜ ๊ฒฝ์šฐ 0.215์™€ 0.368 l/sec 2๊ฐ€์ง€ ์กฐ๊ฑด์— ๋Œ€ํ•ด ํ•˜๋ฅ˜๋‹จ ์ˆ˜์‹ฌ, ํ•˜์ƒ๊ฒฝ์‚ฌ ๋“ฑ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜์„ ํ†ตํ•ด ์ €์ˆ˜์ง€ ํ‡ด์ ์–‘์ƒ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹ค์ œ ์ž์—ฐํ•˜์ฒœ์˜ ์ˆ˜๋ฆฌ๋ชจํ˜• ์ƒ์‚ฌ๋ฒ•์น™์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ํญ 300 ร— ๊ธธ์ด 10,000 ร— ๋†’์ด 600 mm์˜ ์ค‘๊ทœ๋ชจ ์œ ์‚ฌ์ˆ˜๋กœ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ถ”๊ฐ€์ ์ธ ํ‡ด์ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ž์—ฐํ•˜์ฒœ์—์„œ์˜ ์ €์ˆ˜์ง€ ํ‡ด์ ์–‘์ƒ์— ๋Œ€ํ•œ ์ˆ˜์น˜ํ•ด์„ ๋ชจ์˜ ๋ฐ ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ, ์œ ์‚ฌ์ž…๊ฒฝ, ์œ ๋Ÿ‰, ํ•˜์ƒ๊ฒฝ์‚ฌ, ๊ด€๋ฆฌ์ˆ˜์œ„, ํ•˜๋ฅ˜๋‹จ ์ˆ˜์‹ฌ ๋“ฑ์˜ ๋งค๊ฐœ๋ณ€์ˆ˜๋“ค ์ค‘ ๋ฌด์ฐจ์› ๋‹จ์œ„์ˆ˜๋ฅ˜์ผ๋ฅ (Dimensionless unit stream power)๊ณผ Shields ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ํ•˜๋„๋‚ด ํ‡ด์ ๋Ÿ‰๊ณผ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๊ฐ€์žฅ ๋šœ๋ ทํ•œ ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ† ๋Œ€๋กœ ๋‹จ์œ„์ˆ˜๋ฅ˜์ผ๋ฅ ๊ณผ Shields ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ ํ† ๋Œ€๋กœ ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„์„ ํ†ตํ•ด ์ €์ˆ˜์ง€ ์‚ผ๊ฐ์ฃผ ์ƒ์„ฑ์— ๋”ฐ๋ฅธ ํ‡ด์ ๋Ÿ‰์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝํ—˜์‹์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค.์ดˆ๋ก i ํ‘œ ๋ชฉ์ฐจ iii ๊ทธ๋ฆผ ๋ชฉ์ฐจ iv ์ œ 1 ์žฅ ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 1 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๋‚ด์šฉ 2 1.2.1 ์—ฐ๊ตฌ์˜ ๋ชฉ์  3 1.2.2 ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• 3 1.3 ์—ฐ๊ตฌ๋™ํ–ฅ 5 ์ œ 2 ์žฅ ์ด๋ก ์  ์—ฐ๊ตฌ 8 2.1 ์ €์ˆ˜์ง€ ํ‡ด์ ๊ฑฐ๋™ 8 2.2 ์ˆ˜๋ฆฌ๋ชจํ˜•์‹คํ—˜ ์ด๋ก  12 2.2.1 ์ƒ์‚ฌ๋ฒ•์น™ 12 2.2.1.1 ๊ฐœ์š” 12 2.2.1.2 ์ผ๋ฐ˜ ์ƒ์‚ฌ๋ฒ•์น™ 13 2.2.2 ์ด๋™์ƒ ๋ชจํ˜• ์ด๋ก  15 2.2.3 ํ๋ฆ„์˜ ์ƒ์‚ฌ 15 2.2.3.1 ์œ ์‚ฌ์ด๋™์˜ ์ƒ์‚ฌ 18 2.2.3.2 ํ•˜์ƒ๋ณ€๋™์˜ ์ƒ์‚ฌ 19 2.3 1์ฐจ์› ์ˆ˜์น˜๋ชจํ˜• 23 2.3.1 ๋ชจํ˜•์˜ ๊ฐœ์š” 23 2.3.2 ์ง€๋ฐฐ ๋ฐฉ์ •์‹ 24 ์ œ 3 ์žฅ ์ˆ˜๋ฆฌ ์‹คํ—˜ 27 3.1 ๊ธฐ์ดˆ ์ˆ˜๋ฆฌ์‹คํ—˜ 27 3.1.1 ์‹คํ—˜์‹œ์„ค ๋ฐ ๊ณ„์ธก๊ธฐ๊ธฐ 27 3.1.2 ์‹คํ—˜์กฐ๊ฑด์˜ ์ˆ˜๋ฆฝ 32 3.1.3 ์‹คํ—˜๊ฒฐ๊ณผ ๋ถ„์„ 36 3.1.3.1 AS ์‹œ๋ฆฌ์ฆˆ 36 3.1.3.2 AM ์‹œ๋ฆฌ์ฆˆ 37 3.1.3.3 AL ์‹œ๋ฆฌ์ฆˆ 37 3.2 ํ‡ด์ ์‹คํ—˜ 41 3.2.1 ์‹คํ—˜์‹œ์„ค ๋ฐ ๊ณ„์ธก๊ธฐ๊ธฐ 41 3.2.2 ์‹คํ—˜์กฐ๊ฑด์˜ ์ˆ˜๋ฆฝ 50 3.2.3 ์‹คํ—˜๊ฒฐ๊ณผ ๋ถ„์„ 52 ์ œ 4 ์žฅ ๊ฒฝํ—˜์‹ ์œ ๋„ 56 4.1 ์ฐจ์›ํ•ด์„ 56 4.2 ํ‡ด์ ๋Ÿ‰์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ธ์ž ๋ถ„์„ 56 4.3 ํšŒ๊ท€์‹ ์œ ๋„ 72 4.3.1 ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„ 72 4.3.2 ๊ฒฝํ—˜์‹ ์œ ๋„ 73 4.4 ๊ฒฝํ—˜์‹ ๊ฒ€์ฆ 75 ์ œ 5 ์žฅ ๊ฒฐ๋ก  79 ๋ถ€๋ก 82 ์ฐธ๊ณ ๋ฌธํ—Œ 118 Abstract 122 ๊ฐ์‚ฌ์˜ ๊ธ€ 124 ํ‘œ ๋ชฉ์ฐจ ํ‘œ 3.1 AS ์‹œ๋ฆฌ์ฆˆ ์‹คํ—˜์กฐ๊ฑด (์œ ์‚ฌ์ž…๊ฒฝ d50: 0.2 mm) 33 ํ‘œ 3.2 AM ์‹œ๋ฆฌ์ฆˆ ์‹คํ—˜์กฐ๊ฑด (์œ ์‚ฌ์ž…๊ฒฝ d50: 0.62 mm) 34 ํ‘œ 3.3 AL ์‹œ๋ฆฌ์ฆˆ ์‹คํ—˜์กฐ๊ฑด (์œ ์‚ฌ์ž…๊ฒฝ d50: 1.2 mm) 35 ํ‘œ 3.4 SMI ์‹œ๋ฆฌ์ฆˆ ์‹คํ—˜์กฐ๊ฑด (์œ ์‚ฌ์ž…๊ฒฝ d50: 0.62 mm) 51 ํ‘œ 3.5 SMO ์‹œ๋ฆฌ์ฆˆ ์‹คํ—˜์กฐ๊ฑด (์œ ์‚ฌ์ž…๊ฒฝ d50: 0.62 mm) 51 ํ‘œ 4.1 ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜๊ฒฐ๊ณผ ๋ฌด์ฐจ์› ๋งค๊ฐœ๋ณ€์ˆ˜ (AS ์‹œ๋ฆฌ์ฆˆ) 58 ํ‘œ 4.2 ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜๊ฒฐ๊ณผ ๋ฌด์ฐจ์› ๋งค๊ฐœ๋ณ€์ˆ˜ (AM ์‹œ๋ฆฌ์ฆˆ) 60 ํ‘œ 4.3 ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜๊ฒฐ๊ณผ ๋ฌด์ฐจ์› ๋งค๊ฐœ๋ณ€์ˆ˜ (AL ์‹œ๋ฆฌ์ฆˆ) 63 ํ‘œ 4.4 ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜๊ฒฐ๊ณผ ๋ฌด์ฐจ์› ๋งค๊ฐœ๋ณ€์ˆ˜ (SMO ์‹œ๋ฆฌ์ฆˆ) 66 ํ‘œ 4.5 ๊ธฐ์ดˆ ์ˆ˜๋ฆฌ์‹คํ—˜ ๋งค๊ฐœ๋ณ€์ˆ˜ 74 ํ‘œ 4.6 ์‹คํ—˜๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ํ†ต๊ณ„์  ๋ถ„์„ 77 ๊ทธ๋ฆผ ๋ชฉ์ฐจ ๊ทธ๋ฆผ 1.1 ์—ฐ๊ตฌ๋ฐฉ๋ฒ• ํ๋ฆ„๋„ 4 ๊ทธ๋ฆผ 2.1 ํ•˜๋„ ๋‚ด ์œ ์‚ฌ๊ฑฐ๋™ ๊ฐœ๋…๋„ 9 ๊ทธ๋ฆผ 2.2 ๋‹ค๊ธฐ๋Šฅ๋ณด ํ‡ด์ ์–‘์ƒ ๋ฐ ๊ด€๋ฆฌ์ˆ˜์œ„ ๊ฐœ๋…๋„ 11 ๊ทธ๋ฆผ 3.1 ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜ ์ˆ˜๋กœ ์ธก๋ฉด๋„ 29 ๊ทธ๋ฆผ 3.2 ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜ ํ˜„์žฅ ์‚ฌ์ง„ 30 ๊ทธ๋ฆผ 3.3 ์ˆ˜๋ฆฌ๋ชจํ˜• ์‹คํ—˜์ˆ˜๋กœ์˜ ์ธก๋ฉด ์‚ฌ์ง„ 30 ๊ทธ๋ฆผ 3.4 ๋ชจ๋ˆˆ๊ธˆ ์„ค์น˜ ์ดํ›„ ์ˆ˜๋กœ ์šฐ์ธก๋ฉด ์‚ฌ์ง„ 31 ๊ทธ๋ฆผ 3.5 ์‹คํ—˜์ˆ˜ํ–‰์— ๋”ฐ๋ฅธ ์ €์ˆ˜์ง€ ์‚ผ๊ฐ์ฃผ 31 ๊ทธ๋ฆผ 3.6 ํ•˜์ƒ๊ฒฝ์‚ฌ์— ๋”ฐ๋ฅธ ํ•˜์ƒ๋ณ€๋™ ํŠน์„ฑ (AS ์‹œ๋ฆฌ์ฆˆQ= 0.215 l/secH= 30 mm) 38 ๊ทธ๋ฆผ 3.7 ๊ฐ€๋ณ€๊ฒฝ์‚ฌ ์œ ์‚ฌ์ˆ˜๋กœ ์ธก๋ฉด๋„ 43 ๊ทธ๋ฆผ 3.8 ํ๋ฆ„์˜ ์ •๋ฅ˜๋ฅผ ์œ„ํ•œ ์ƒ๋ฅ˜ํƒฑํฌ์˜ ์ •๋ฅ˜์žฅ์น˜ 44 ๊ทธ๋ฆผ 3.9 ์ˆ˜๋กœ ํ†ตํ•ฉ์ œ์–ด๋ฅผ ์œ„ํ•œ ์กฐ์ ˆ ํŒจ๋„ 44 ๊ทธ๋ฆผ 3.10 ์ˆ˜๋กœ์œ„์— ์„ค์น˜๋œ ๋ ˆ์ผ๊ณผ ๋Œ€์ฐจ 45 ๊ทธ๋ฆผ 3.11 ํ•˜๋ฅ˜๋‹จ ์ˆ˜์‹ฌํ™•๋ณด๋ฅผ ์œ„ํ•œ ์ „๋ฉด ๊ณ ์ •๋ณด ๋ชจํ˜• ์„ค์น˜ 45 ๊ทธ๋ฆผ 3.12 ์œ ์‚ฌ์ด์†ก ์‹คํ—˜์„ ์œ„ํ•œ ์Šฌ๋Ÿฌ๋ฆฌ ํŽŒํ”„ 46 ๊ทธ๋ฆผ 3.13 ์ƒ๋ฅ˜ ์œ ์‚ฌ ์•ˆ์ •ํ™” ์žฅ์น˜ 46 ๊ทธ๋ฆผ 3.14 Auto traverse๋ฅผ ์ด์šฉํ•œ ์ž๋™์ด์†ก์žฅ์น˜ 47 ๊ทธ๋ฆผ 3.15 Auto traverse์™€ ํ•˜์ƒ๊ณ  ๋ฐ ์ˆ˜์‹ฌ ๊ณ„์ธก์žฅ๋น„ 47 ๊ทธ๋ฆผ 3.16 ์œ ์‚ฌ ์„ค์น˜๋ฅผ ์œ„ํ•œ ํ•˜์ƒ ํ‰ํƒ„ํ™” ์žฅ์น˜ 48 ๊ทธ๋ฆผ 3.17 ํฌ์ธํŠธ ๊ฒŒ์ด์ง€๋ฅผ ์ด์šฉํ•œ ๊ณ„์ธก 48 ๊ทธ๋ฆผ 3.18 ํ•˜์ƒ๊ณ  ๋ฐ ์ˆ˜์‹ฌ ๊ณ„์ธก์žฅ๋น„ 49 ๊ทธ๋ฆผ 3.19 ๊ณ„์ธก์žฅ๋น„ ์„ค์น˜ ์ดํ›„ ์ˆ˜๋กœ ๋ชจ์Šต 49 ๊ทธ๋ฆผ 3.20 ํ•˜์ƒ๊ฒฝ์‚ฌ์— ๋”ฐ๋ฅธ ํ•˜์ƒ๋ณ€๋™ ํŠน์„ฑ (SMO ์‹œ๋ฆฌ์ฆˆH= 100 mm) 53 ๊ทธ๋ฆผ 4.1 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (S) 68 ๊ทธ๋ฆผ 4.2 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (ฯ‰t/D) 68 ๊ทธ๋ฆผ 4.3 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (D/d) 69 ๊ทธ๋ฆผ 4.4 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (U*/ฯ‰) 69 ๊ทธ๋ฆผ 4.5 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (ฯ‰d/ฮฝ) 70 ๊ทธ๋ฆผ 4.6 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (H/D) 70 ๊ทธ๋ฆผ 4.7 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (VS/ฯ‰) 71 ๊ทธ๋ฆผ 4.8 ํ‡ด์ ๋Ÿ‰๊ณผ ๋ฌด์ฐจ์›๋ณ€์ˆ˜์™€์˜ ์ƒ๊ด€๊ด€๊ณ„ (ฯ„*) 71 ๊ทธ๋ฆผ 4.9 ๊ฒฝํ—˜์‹ ๊ฒ€์ฆ์„ ์œ„ํ•œ ์‹ค์ธก๊ฐ’๊ณผ ์˜ˆ์ธก๊ฐ’์˜ ๋น„ 76 ๊ทธ๋ฆผ 4.10 ๊ธฐ์ดˆ ์ˆ˜๋ฆฌ์‹คํ—˜์˜ ๋ถˆ์ผ์น˜์œจ 78 ๊ทธ๋ฆผ 4.11 ํ‡ด์ ์‹คํ—˜์˜ ๋ถˆ์ผ์น˜์œจ 78Maste

    ๋น„๊ท ๋“ฑ ๋ฐ์ดํ„ฐ ํ•™์Šต ๊ธฐ๋ฒ• ๋ฐ ์‘์šฉ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์œค์„ฑ๋กœ.Machine learning techniques, including deep learning, are renewing state-of-arts across many disciplines. However, many issues exist that need to be addressed for the application of these techniques to actual problems, such as medical diagnosis. A typical issue is imbalanced data, which refers to a state in which the distribution of a specific class among the accumulated data is much larger or smaller than that of the other classes. In the case of learning with imbalanced data, there is a risk of deterioration of the performance of the minority class because the learning is biased toward a majority class. In this paper, we discuss the existing methods that address the issue of imbalanced data, and propose a new methodology using a generative adversarial neural network. The key idea of this method is a cooperative training loop of the generator and classifier, wherein the generator and classifier are trained alternately to gradually expand the decision region of the minority class. Additionally, three application studies in the biomedical field are conducted to discuss the effects and solutions of the imbalanced data, along with the significance of each study. Each applied study corresponds to the early diagnosis of dementia using neuropsychological assessment, extreme drowsiness detection based on brain waves, and electrocardiogram based biometric authentication. In summary, this paper examines the difficulties of learning caused by imbalanced data through practical application studies, and explores methodologies to solve them.๋”ฅ๋Ÿฌ๋‹์„ ํฌํ•จํ•œ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ•๋“ค์€ ์—ฌ๋Ÿฌ ๋ถ„์•ผ ์ „๋ฐ˜์— ๊ฑฐ์ณ ์ตœ๊ณ ์˜ ์„ฑ๋Šฅ์„ ๊ฐฑ์‹ ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์˜๋ฃŒ ์ง„๋‹จ ๋“ฑ๊ณผ ๊ฐ™์€ ์‹ค์ œ ๋ฌธ์ œ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ•ด๊ฒฐํ•ด์•ผํ•  ์‚ฌ์•ˆ๋“ค์ด ์—ฌ์ „ํžˆ ๋‚จ์•„ ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‚ฌ์•ˆ ์ค‘ ํ•˜๋‚˜๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ๊ณ ์ž ํ•˜๋Š” ์‚ฌ์•ˆ์€ ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ฑ์ด๋‹ค. ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ฑ์ด๋ž€, ์ถ•์ ๋œ ๋ฐ์ดํ„ฐ๋“ค ์ค‘ ํŠน์ •๊ตฐ์˜ ๋ถ„ํฌ๊ฐ€ ๋งค์šฐ ๋งŽ๊ฑฐ๋‚˜ ๋งค์šฐ ์ ์€ ์ƒํƒœ๋ฅผ ์ง€์นญํ•œ๋‹ค. ๋ถˆ๊ท ํ˜•์„ฑ์ด ์กด์žฌํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต์ด ์ง„ํ–‰๋  ๊ฒฝ์šฐ, ๋‹ค์ˆ˜ ๋ฐ์ดํ„ฐ์— ์น˜์šฐ์นœ ํ•™์Šต ๊ฒฝํ–ฅ์„ ๋ณด์ด๊ธฐ ๋•Œ๋ฌธ์— ์†Œ์ˆ˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์œ„ํ—˜์„ฑ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ฑ์„ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์„ ๋…ผํ•˜๊ณ , ์ด๋“ค์˜ ์ƒ์„ฑ์  ์ ๋Œ€ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ํ•ด๋‹น ๊ธฐ๋ฒ•์€ ์ƒ์„ฑ ๋ชจ๋ธ๊ณผ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์˜ ์œ ๊ธฐ์  ํ•™์Šต์„ ํ†ตํ•ด ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋“ค์ด ์†Œ์ˆ˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ ๋„ํ•˜๋„๋ก ํ•œ๋‹ค. ๋ถ€๊ฐ€์ ์œผ๋กœ ์‹คํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฐ”์ด์˜ค๋ฉ”๋””์ปฌ ๋ถ„์•ผ์˜ ์„ธ ๊ฐ€์ง€ ์‘์šฉ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ฐ๊ฐ ์—ฐ๊ตฌ์˜ ์œ ์˜์„ฑ๊ณผ ํ•จ๊ป˜ ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ฑ์˜ ์˜ํ–ฅ๊ณผ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์— ๋Œ€ํ•ด ๋…ผํ•˜์˜€๋‹ค. ๊ฐ๊ฐ์˜ ์‘์šฉ ์—ฐ๊ตฌ๋Š” ์‹ ๊ฒฝ์‹ฌ๋ฆฌ๊ฒ€์‚ฌ๋ฅผ ํ™œ์šฉํ•œ ์น˜๋งค ์กฐ๊ธฐ ์ง„๋‹จ, ๋‡ŒํŒŒ ๊ธฐ๋ฐ˜์˜ ๊ทน๋„ ์กธ์Œ ํƒ์ง€, ์‹ฌ์ „๋„ ๊ธฐ๋ฐ˜ ์ƒ์ฒด ์ธ์ฆ์— ํ•ด๋‹นํ•œ๋‹ค. ์š”์•ฝํ•˜์ž๋ฉด, ๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•œ ํ•™์Šต์˜ ์–ด๋ ค์›€์„ ์‹ค์ œ ์‘์šฉ ์—ฐ๊ตฌ๋“ค์„ ํ†ตํ•˜์—ฌ ํ™•์ธํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์„ ํƒ๊ตฌํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivation 1 1.2 Contents of Dissertation 3 2 Background 6 2.1 Definition of Imbalanced Data 6 2.2 Approaches for Imbalanced Data Learning 8 2.2.1 Conventional Data-level Balancing Approach 8 2.2.2 Cost-sensitive Loss-based Balancing Approach 8 2.2.3 GAN-based Balancing Approaches 9 2.3 Evaluation Metrics 10 3 GAN-based Imbalanced Data Learning Technique 14 3.1 Introduction 14 3.2 Proposed Method 17 3.2.1 Three-Player Structure for Imbalanced Data Learning 17 3.2.2 Training Scheme 22 3.3 Experimental Results 25 3.3.1 Evaluation Setup 25 3.3.2 Self-analysis 26 3.3.3 Comparative Analysis 33 3.4 Conclusions 36 4 Application I: Dementia Diagnosis Data Learning 40 4.1 Introduction 40 4.2 Background 42 4.3 Methods 43 4.3.1 Subjects 45 4.3.2 Diagnostic Assessments 45 4.3.3 Neuropsychological Assessments 46 4.3.4 Missing Data Imputation 46 4.3.5 Constructing Deep Learning Classifiers 48 4.3.6 Input Variable Selection 50 4.3.7 Two-stage Classification 51 4.4 Results 53 4.4.1 Missing Data Imputation 53 4.4.2 Classifier Validation 54 4.4.3 Input Variable Selection 56 4.4.4 Two-stage Classifications 58 4.4.5 Imbalanced Data Classifications 61 4.5 Discussion 62 5 Application II: Drowsiness EEG Data Learning 65 5.1 Introduction 65 5.2 Background 68 5.2.1 Task Performance-based Drowsiness Detection Methods 68 5.2.2 EOG-based Drowsiness Detection Methods 68 5.2.3 EEG-based Drowsiness Detection Methods 69 5.2.4 Feature Extraction for EEG Signals 70 5.2.5 Machine Learning Methods for Drowsiness Detection 70 5.3 Methods 71 5.3.1 Data Acquisitions 73 5.3.2 Feature Extraction 76 5.3.3 Drowsiness Labeling 77 5.3.4 Drowsiness Detection 79 5.3.5 Applicability in a Wireless EEG environment 81 5.4 Results 82 5.4.1 Evaluation of Drowsiness Label 82 5.4.2 Compatibility as Instantaneous Drowsiness Detection 83 5.4.3 Comparative Analysis 84 5.4.4 Feature Importance 86 5.4.5 Channel Reduction 88 5.4.6 Results on Wired and Wireless EEG 90 5.4.7 Imbalanced Data Classifications 92 5.5 Discussion 93 6 Application III: ECG-based Authentication Data Learning 96 6.1 Introduction 96 6.2 Background 100 6.2.1 Electrocardiogram 100 6.2.2 Mobile Devices for Cardiogram Monitor 101 6.2.3 Classification Algorithms 102 6.3 Method 105 6.3.1 ECG Acquisition 105 6.3.2 Noise Cancellation 106 6.3.3 Fiducial Feature Extraction 106 6.3.4 Classification-Based Authentication 107 6.4 Results 109 6.4.1 Single-Beat Authentication Performance 109 6.4.2 Actual Authentication Scenario 110 6.4.3 Imbalanced Data Classifications 111 6.5 Discussion 112 7 Conclusions 114 Bibliography 118 Abstract in Korean 146Docto

    EITC (Earned Income Tax Credit) ์ œ๋„์˜ ๋นˆ๊ณค๊ฐ์†Œํšจ๊ณผ ๋ฐ ์†Œ๋“์žฌ๋ถ„๋ฐฐํšจ๊ณผ ๋ถ„์„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฌํšŒ๋ณต์ง€ํ•™๊ณผ,2001.Maste
    corecore