23 research outputs found

    Purification of acetyl CoA carboxylase and change of enzyme activities by trypsin treatment

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] Acetyl CoA carboxylase๋Š” ์ƒ์ฒด ๋‚ด์—์„œ ๋‹จ๊ธฐ์ ์œผ๋กœ๋Š” cirtrate ๋ฐ isocitrate์— ์˜ํ•ด์„œ ํ™œ์„ฑํ™”๋˜๋ฉด ์žฅ๊ธฐ์ ์œผ๋กœ๋Š” nutritional ๋˜๋Š” hormonal state์— ๋”ฐ๋ผ์„œ ์กฐ์ ˆ๋œ๋‹ค๊ณ  ๋ณด๊ณ ๋˜์–ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ƒ์ฒด ์™ธ์—์„œ๋Š” cirtrate๋‚˜ isocitrate์— ์˜ํ•ด์„œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ tryspin์ฒ˜๋ฆฌ์‹œ ๋˜๋Š” ์˜ค๋žœ ์‹œ๊ฐ„ ๋™์•ˆ์˜ ๋ƒ‰์žฅ๊ณ  ๋‚ด ๋ณด๊ด€์‹œ์—๋„ ๊ทธ ํ™œ์„ฑ๋„๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค๋„ ๋ณด๊ณ ๋˜์–ด ์žˆ์œผ๋‚˜ ๊ทธ ๊ธฐ์ „์€ ์•„์ง ์ž˜ ๋ฐํ˜€์ ธ ์žˆ์ง€ ์•Š๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” trypsin์ฒ˜๋ฆฌ์‹œ ๋˜๋Š” ์˜ค๋žซ๋™์•ˆ ๋ƒ‰์žฅ๊ณ  ๋ณด๊ด€์‹œ์— ์ด ํšจ์†Œํ™œ์„ฑ์ด ์ฆ๊ฐ€ํ•˜๋Š” ์‚ฌ์‹ค์„ ๊ตฌ๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์žฅ์‹œ๊ฐ„ ๊ตถ๊ธด ๋ฐฑ์„œ์— ๋ฌด์ง€๋ฐฉ ๊ณ ํ•จ์ˆ˜ํƒ„์†Œ์‹์ด๋ฅผ ์žฌํˆฌ์—ฌํ•˜์—ฌ ์ด ๋ฐฑ์„œ ๊ฐ„์žฅ์„ธํฌ๋กœ๋ถ€ํ„ฐ polyethylene glycol, ammonium sulfate, Sepharose 2B gel filtration, DEAE-Sephacel column chromatography๋ฅผ ์ด์šฉํ•˜์—ฌ actyl CoA carboxylase๋ฅผ ๋ถ„๋ฆฌ ์ •์ œํ•˜์—ฌ ์ด ํšจ์†Œ ํ™œ์„ฑ๋„์™€ ์ด๋•Œ ์ด ํšจ์†Œ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์†Œ๋‹จ์œ„ ๋‹จ๋ฐฑ์งˆ์˜ ๋ถ„์ž๋Ÿ‰๊ณผ์˜ ์ƒํ˜ธ๊ด€๊ณ„๋ฅผ ๋ฐํžˆ๊ณ  ๋ถ€๋ถ„์ •์ œ๋œ acetyl CoA carboxylase์— trypsin์„ ์ฒ˜๋ฆฌํ•˜์—ฌ ์ด ํšจ์†Œ์˜ ํ™œ์„ฑ๋„๋ณ€ํ™”๋ฅผ ๋น„๊ต ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋ฐฑ์„œ์„ 3์ผ๊ฐ„ ๊ตถ๊ธด ๋‹ค์Œ ๊ณ ํ•จ์ˆ˜ํƒ„์†Œ ์‹์ด๋ฅผ 3์ผ๊ฐ„ ์žฌํˆฌ์—ฌํ•œ ํ›„ ๊ฐ„์žฅ์„ธํฌ์—์„œ acetyl CoA carboxylase๋ฅผ polyethylene glycol ๋ฐ ammonium sulfate๋ฅผ ์ฒ˜๋ฆฌํ•œ ํ›„ Sepharose 2B gel filtration์„ ์‹œํ–‰ํ•˜์—ฌ 1,522๋ฐฐ ๋ถ„๋ฆฌ ์ •์ œ ํ•˜์˜€์œผ๋ฉฐ ์ด ํšจ์†Œ์˜ specific activity๋Š” ๋‹จ๋ฐฑ์งˆ mg๋‹น 3.88units์ด์—ˆ๋‹ค. ์ด๋•Œ SDS-PAGE๋ฅผ ์‹œํ–‰ํ•˜์—ฌ ๋ถ„์ž๋Ÿ‰ 220,000 ๋ฐ 120,000์— ํ•ด๋‹นํ•˜๋Š” ์ฃผ๋œ ๋‹จ๋ฐฑ์งˆ๋Œ€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ํšจ์†Œ์šฉ์•ก์„ DEAE-Sephacel column chromatography๋ฅผ ์‹œํ–‰ํ•˜์˜€๋˜ ๋ฐ” ์•ฝ 12,000๋ฐฐ ๋ถ„๋ฆฌ ์ •์ œํ•˜์˜€์œผ๋ฉฐ ์ด ํšจ์†Œ์˜ specific activity๋Š” ๋‹จ๋ฐฑ์งˆ mg ๋‹น 30 units์ด์—ˆ๋‹ค. ์ด๋•Œ SDS-PAGE๋ฅผ ์‹œํ–‰ํ•˜์—ฌ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ Sepharose 2B gel filtration ์‹œํ–‰ ํ›„ SDS-PAGE ์ƒ์—์„œ ๋‚˜ํƒ€๋‚ฌ๋˜ ๋ถ„์ž๋Ÿ‰ 220,000์— ํ•ด๋‹นํ•˜๋Š” ๋‹จ๋ฐฑ์งˆ๋Œ€๊ฐ€ ์†Œ์‹ค๋˜๋ฉด์„œ ๋ถ„์ž๋Ÿ‰ 120,000 ๋ฐ 110,000์— ํ•ด๋‹นํ•˜๋Š” ๋‹จ๋ฐฑ์งˆ๋Œ€๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ ์ด๋Š” ๋ถ„๋ฆฌ ๊ณผ์ • ์ค‘ proteolytic enzyme์— ์˜ํ•˜์—ฌ ๊ฐ€์ˆ˜๋ถ„ํ•ด๋œ ๊ฒฐ๊ณผ๋กœ ์‚ฌ๋ฃŒ๋˜๋ฉฐ ์ด๋•Œ ํšจ์†Œ ํ™œ์„ฑ๋„๊ฐ€ 7.55๋ฐฐ ์ฆ๊ฐ€๋˜์—ˆ๋‹ค. Sepharose 2B gel filtration ์‹œํ–‰ ํ›„ ์–ป์€ ํšจ์†Œ๋ฅผ ํ† ๋ผ์— ์ฃผ์‚ฌํ•˜์—ฌ ์–ป์€ ํ•ญ ํ˜ˆ์ฒญ๊ณผ ๊ฐ„์žฅ์„ธํฌ ๊ท ๋“ฑ์•ก์„ 20,000xg๋กœ ์›์นจํ•˜์—ฌ ์–ป์€ ์ƒ์ธต์•ก์˜ 3% polyethylene glycol ์ถ”์ถœ์•ก๊ณผ ์ž‘์šฉ์‹œ์ผœ Ouchterlony double immunodiffusion ์‹คํ—˜์„ ํ•œ ๊ฒฐ๊ณผ ํ•ญ ํ˜ˆ์ฒญ 15ฮผl๋Š” ๊ฐ„์žฅ์„ธํฌ ๊ท ๋“ฑ์•ก๊ณผ ๋ฐ˜์‘ํ•˜์—ฌ ์„œ๋กœ ์—ฐ๊ฒฐ๋œ ํ•˜๋‚ด์˜ ์นจ์ „๋Œ€๊ฐ€ ํ˜•์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ์ด ํ•ญ ํ˜ˆ์ฒญ์„ ๊ฐ€์ง€๊ณ  protein A Sepharose column chromatography๋ฅผ ์‹œํ–‰ํ•˜์—ฌ ์–ป์€ IgG ๋†๋„๋ฅผ ์ฆ๊ฐ€์‹œ์ผœ ์ฒจ๊ฐ€ํ•˜๋ฉด acetyl CoA carboxylase ํ™œ์„ฑ์€ IgG ๋†๋„์— ๋น„๋ก€ํ•˜์—ฌ ์–ต์ œ๋œ ์‚ฌ์‹ค๋กœ ๋ฏธ๋ฃจ์–ด ๊ฐ€ํ†  ํ˜ˆ์ฒญ์—์„œ ๋ถ„๋ฆฌํ•œ IgG์—๋Š” acetyl CoA carboxylase์— ๋Œ€ํ•œ ํ•ญ์ฒด๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ์Œ์„ ์žฌ ํ™•์ธํ•˜์˜€๋‹ค. ๋ถ€๋ถ„์ •์ œ๋œ acetyl CoA carboxylase ํšจ์†Œ ์šฉ์•ก์— trypsin์„ ๋‹จ๋ฐฑ์งˆ mg๋‹น 0.625, 1.25, 1.875ฮผg์”ฉ ๊ฐ€ํ•˜์—ฌ 1๋ถ„ ๋™์•ˆ ๋ฐ˜์‘์‹œํ‚จ ํ›„์˜ ๊ฐ ํšจ์†Œ ํ™œ์„ฑ๋„๋Š” ๊ฐ๊ฐ 375%, 382%, 173%๋กœ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋‚˜ trypsin ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํšจ์†Œํ™œ์„ฑ์€ 0.625ฮผg์‹œ์— ๋น„ํ•˜์—ฌ 75.2%, 46.1%๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋˜ํ•œ trypsin์„ ์ผ์ •๋Ÿ‰(1.5ฮผg) ๊ฐ€ํ•œ ๋’ค ๋ฐ˜์‘์‹œ๊ฐ„์„ ์ฆ๊ฐ€์‹œํ‚ด์— ๋”ฐ๋ผ ๊ทธ ํ™œ์„ฑ๋„๊ฐ€ 1๋ถ„์—์„œ 2๋ถ„๊นŒ์ง€๋Š” 250%, 194%๋กœ ์ฆ๊ฐ€ํ•˜๋‚˜ 5๋ถ„, 10๋ถ„ ํ›„์—๋Š” 92%, 34%๋กœ ์ ์ฐจ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋Ÿฐ ๊ฒฐ๊ณผ๋Š” trypsin์— ์˜ํ•ด ์ด ํšจ์†Œ ๋‹จ๋ฐฑ์งˆ์ด ๋ถ„์ž๋Ÿ‰ 110,000 ๋˜๋Š” 120,000 ์ดํ•˜๋กœ ์ ˆ๋‹จ๋˜๋ฉด ํšจ์†Œํ™œ์„ฑ์ด ์†Œ์‹ค๋˜๋Š” ์‚ฌ์‹ค์„ ์‹œ์‚ฌํ•˜๋ฉฐ ์ด ์‚ฌ์‹ค์€ SDS-PAGE์ƒ์— ๋‚˜ํƒ€๋‚œ ๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•œ๋‹ค. [์˜๋ฌธ] On the contrary to the report that acetyl CoA carboxylase is a single polypetide of MW 220,000-260,000 that contains 2-6 moles of phosphate and 1 mole of biotin, the enzyme has been suggested to have a MWs of 220,000-260,000 composed of 2 subunits with MWs of 220,000 and 108,000. It has been known that acetyl CoA carboxylase activity is stimulated by citrate or isocitrate temporarily and also regulated by nutritional and hormonal state for a long term in vivo. It has been reported that acetyl CoA carboxylase activity was stimulated by trypsin treatment or by the prolonged storage in the refrigerator as well ascitrate or isocitrate in vitro. In the present study, acetyl CoA carboxylase was purified from the liver of rats refed with a fat free high cabohydrate diet after the 3 days fasting, through polyethylene glycol, ammonium sulfate precipitation, Sepharose 2B gel filtration and DEAE-Sphacel column chromatorgraphy, and the MWs of subunits and the change in the enzyme activity were measured. Acetyl CoA carboxylase purified 1,522 folds from the liver of rats fasted for 3 days then by refed with a fat free high carbohydrate diet and had a specific activity of 3.88 Units/mg protein. SDS-polyacrylamide gel electrophoresis of this enzyme showed two protein bands corresponding MWs of 220,000 and 120,000. Specific activity of acetyl CoA carboxylase obtained after the DEAE-Sephacel column chromatography was 30 Units/mg protein and the enzyme was purified 12,000 folds. Upon SDS-polyacrylamide gel electrophoresis, only two protein bands corresponding MWs of 120,000 and 110,000 were appeared with the disappearance of a protein band having MWs of 220,000, indicating that proteolytic hydrolysis of the enzyme into two subunits during purification. The reason for the dramatic increase of the enzyme activity by proteolysis is not known. Ouchterlony double immunodiffusion between rabbit antiserum against acetyl CoA carboxylase prepared through Sepharose 2B gel filtration step and 3% polyethylene glycol extract of the 20,000xg supernatant of liver homogenate was carried out. 15ml of antiserum cross-reacted with liver homogenate and formed a sharp hexagonal precipitin. Addition of IgG prepared from the antiserum by protein A Sepharose column chromatography to the 5% polyethylene glycol precipitate of liver homogenate inhibited the actyl CoA carboxylase activity in parallal to the IgG concentration indicating the presence of antibody against acetyl CoA carboxylase in the IgG. Treatment of 0.625, 1.25, 1.875 mg of trypsin to 1 mg of partially purified actyl CoA carboxylase resulted in the increase of the enzyme activity in the order of 375, 282, 178%, respectively. The inhibition of acetyl CoA carboxylase by trypsin(1.5ฮผg/mg protein) was dependent on the incubation time indicating that the extensive hydrolysis of the enzyme by trypsin decreased the enzyme activity.restrictio

    Application of antisense RNA against the RBC type glucose transporter (GLUT1) in the change of glucose uptake in tumor cells

    No full text
    ์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[ํ•œ๊ธ€] ํฌ๋„๋‹น์€ ํฌ์œ ๋™๋ฌผ์˜ ์ค‘์š”ํ•œ ๋Œ€์‚ฌ์—ฐ๋ฃŒ์ด๋ฉฐ, ์„ธํฌ ์›ํ˜•์งˆ๋ง‰์— ์กด์žฌํ•˜๋Š” ํฌ๋„๋‹น ์šด๋ฐ˜์ฒด(glucose transporters, GLUTs)๋Š” facilitative diffusion ๊ธฐ์ „์— ์˜ํ•ด ์„ธํฌ์™ธ๋ถ€์— ๊ณ ๋†๋„๋กœ ์กด์žฌํ•˜๋Š” ํฌ๋„๋‹น์„ ์„ธํฌ๋‚ด๋กœ ์šด๋ฐ˜ํ•˜๋Š” ๋ง‰ ๋‹จ๋ฐฑ์งˆ๋กœ์„œ ๋™์ผ์ข…๋‚ด์—์„œ ๊ฐ ์กฐ์ง์— ๋”ฐ๋ผ ๋ถ„ ํฌํ•˜๋Š” ํ˜•(type)์ด ์–‘์ ์œผ๋กœ๋Š” ๋ฏธ๋Ÿ‰์ด์ง€๋งŒ ์ค‘๋ณต๋˜๊ธฐ๋„ ํ•˜๋‚˜ ๊ทธ ์ฃผ์š” ๋ถ„ํฌํ˜•์€ ์„œ๋กœ ๋‹ค๋ฅด๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ตœ๊ทผ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด ํฌ๋„๋‹น ์šด๋ฐ˜์ฒด๋Š” 5์ข…๋ฅ˜๊ฐ€ ๋ณด๊ณ ๋˜์–ด ์žˆ์œผ๋ฉฐ ์ด ์ค‘ ์„ธํฌ์„ฑ์žฅ ์ƒํƒœ์™€ ๋งค์šฐ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ๋Š” ํ˜•์ด ์ ํ˜ˆ๊ตฌํ˜• ํฌ๋„๋‹น ์šด๋ฐ˜์ฒด(GLUTI)๋กœ์„œ ์•”์œ ์ „์ž ํ™œ์„ฑ์ด๋‚˜ ๊ณผ๋„ํ•œ ์„ฑ์žฅ์ธ์ž(growth factor) ํ‘œํ˜„์— ์˜ํ•ด ์œ ๋„๋˜๋Š” ์ฆ์‹์ƒํƒœ์— ์žˆ๋Š” ์„ธํฌ์— ํฌ๋„๋‹น ๊ณต ๊ธ‰์„ ๋‹ด๋‹นํ•˜๋Š” ์ค‘์š”ํ•œ ์„ธํฌ๋ง‰ ๋‹จ๋ฐฑ์งˆ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” GLUTI mRNA์— ๋Œ€ํ•œ antisense RNA๋ฅผ ํ‘œํ˜„ํ•˜๋Š” GLUTI antisense RNA ๊ตฌ์„ฑ์ฒด๋ฅผ pMAM vector์— ์‚ฝ์ž…ํ•˜์—ฌ pMAM-GLUTI(rev)์„ ์ œ์กฐํ•˜์—ฌ N-ras ์•”์œ ์ „์ž์— ์˜ํ•ด ์•”์„ธํฌ๋กœ ๋ณ€ํ˜•๋œ NIH 3T3์„ธํฌ๋‚ด์— transfection ์‹œํ‚จ ๋‹ค์Œ dexamethasone์œผ๋กœ GLUTI์— ๋Œ€ํ•œ antisense RNA์˜ ํ‘œํ˜„์„ ์œ ๋ฐœ์‹œํ‚ค๋ฉด์„œ ์•”์„ธํฌ๋กœ ๋ณ€ํ˜•๋œ NIH 3T3 ์„ธํฌ์˜ ์„ฑ์žฅ ๋ฐ ํŠน์„ฑ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. 1. pBN-ras๋กœ transfection ์‹œํ‚จ NIH 3T3 ์„ธํฌ๋Š” ๋ฐฐ์–‘์‹œ ํ˜•ํƒœํ•™์ ์œผ๋กœ ์ „ํ˜•์ ์ธ ์•”์„ธํฌ์˜ ๋ชจ์–‘์„ ๋ณด์ด๊ณ , soft agar์ƒ์—์„œ colony๋ฅผ ํ˜•์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ด ์„ธํฌ์˜ ์—ผ์ƒ‰์ฒด๋‚ด์— N-ras์˜ exon 2๋ถ€์œ„๊ฐ€ PCR๋ฒ•์— ์˜ํ•ด ์ฆํญ๋˜๋Š” ์‚ฌ์‹ค๋กœ ๋ฏธ๋ฃจ์–ด ๋ณด์•„ ์ด ์„ธํฌ๋Š” N-ras ์•”์œ ์ „์ž์— ์˜ํ•ด ์•”์„ธํฌ๋กœ ๋ณ€ํ˜•๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. 2. N-ras์— ์˜ํ•ด ์•”์„ธํฌ๋กœ ๋ณ€ํ˜•๋œ NIH 3T3 ์„ธํฌ์˜ 2-deoxy-D-[1- (3)**H]-glucose ์šด๋ฐ˜๋Šฅ๋ ฅ์€ ๋Œ€์กฐ๊ตฐ NlH 3T3 ์„ธํฌ์— ๋น„ํ•˜์—ฌ ๋ฐ˜์‘์‹œ์ž‘ 4๋ถ„ ํ›„์— 2.5๋ฐฐ, 5๋ถ„ ํ›„ 4.5๋ฐฐ, 6๋ถ„ ํ›„ 6.0๋ฐฐ ์ฆ๊ฐ€๋˜์—ˆ์œผ๋ฉฐ ์•”์„ธํฌ๋‚ด GLUTI mRNA์–‘์€ ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•ด 2.5๋ฐฐ ์ฆ๊ฐ€๋˜์—ˆ๋‹ค. 3. GLUTI์— ๋Œ€ํ•œ antisense RNA๋ฅผ ์ „์‚ฌ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” DNA๋ฅผ ์ œ์กฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ GLUTlcDNA(1.8kb)๋ฅผ ํฌ์œ ๋™๋ฌผ ์„ธํฌ์—์„œ dexamethasone์— ์˜ํ•ด ํ‘œํ˜„์ด ์œ ๋„๋˜๋Š” MMTV-LTR์„ promoter๋กœ ๊ฐ€์ง„ vector์ธ pMAM์˜ SalI ์ ˆ๋‹จ๋ถ€์œ„์— ์—ญ๋ฐฉํ–ฅ์œผ๋กœ subcloningํ•˜์—ฌ ์‚ฝ์ž…๋œ ๋ฐฉํ–ฅ์„ KPnI, Ncol, EcoRl ๋ฐ SalI์œผ๋กœ ํ™•์ธํ•˜๊ณ  pMAM-GLUT1 (rev)์ด๋ผ ๋ช…๋ช…ํ•˜์˜€๋‹ค. ์ด vector๋ฅผ N-ras์— ์˜ํ•ด ๋ณ€ํ˜•๋œ NIH 3T3 ์•”์„ธํฌ์— transfection ์‹œํ‚จ ํ›„ dexamethasone์„ ์ฒ˜๋ฆฌํ•˜์—ฌ GLUT1 antisense RNA ํฌ๊ธฐ(2.4kb)์— ํ•ด๋‹นํ•˜๋Š” RNA๊ฐ€ ํ‘œํ˜„๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. 4. pMAM-GLUTI(rev)์„ transfection ์‹œํ‚จ NIH 3T3 ์•”์„ธํฌ๋ฅผ ๋‘ ๊ตฐ์œผ๋กœ ๋‚˜๋ˆ„์–ด ํ•œ ๊ตฐ์€ dexamethasone์œผ๋กœ GLUTI antisense RNA์˜ ํ‘œํ˜„์„ ์œ ๋„์‹œํ‚ค๊ณ  ๋‚˜๋จธ์ง€ ๊ตฐ์€ ์œ ๋„์‹œํ‚ค์ง€ ์•Š์€ ๋Œ€์กฐ๊ตฐ์œผ๋กœ ํ•˜์—ฌ, ํฌ๋„๋‹น์ด ์šด๋ฐ˜๋˜๋Š” ์–‘์€ ์œ ๋„๊ตฐ์—์„œ๋Š” 1.97ยฑ0.13pmo1e glucose/10* *5 cells(2021ยฑ106cpm/10**5 cells)๋กœ ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•ด (3.36ยฑ0.54pmole glucose/10**5 cells, 3692ยฑ591cpm/10**5 cells) 45% ๊ฐ์†Œ๋˜์—ˆ๋‹ค. 5. Soft agar์ƒ์—์„œ antisense RNA ํ‘œํ˜„์„ ์œ ๋„์‹œํ‚จ ๊ตฐ์—์„œ๋Š” ์ง๊ฒฝ์ด 50ใŽ› ์ด์ƒ์ธ colony ์ˆ˜๊ฐ€ 20ยฑ3.4๊ฐœ/60 mm**2๋กœ antisense RNA์˜ ํ‘œํ˜„์„ ์œ ๋„์‹œํ‚ค์ง€ ์•Š์€ ๋Œ€์กฐ๊ตฐ(32ยฑ2.8๊ฐœ/60mm**2 )์— ๋น„ํ•ด 40% ๊ฐ์†Œ๋˜์—ˆ์œผ๋ฉฐ, ์œ ๋„๊ตฐ์—์„œ ๊ด€์ฐฐ๋œ colony์˜ ํฌ๊ธฐ๊ฐ€ ๋Œ€์กฐ๊ตฐ์— ๋น„ ํ•ด ์ „์ฒด์ ์œผ๋กœ ์ž‘์•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•ด ๋ณผ ๋•Œ GLUTI antisense RNA๊ฐ€ ํ‘œํ˜„๋จ์œผ๋กœ์จ ์•”์„ธํฌ๋‚ด๋กœ ํฌ๋„๋‹น ์šด๋ฐ˜์ด ๊ฐ์†Œ๋˜๊ณ , soft agar assay์—์„œ ๋ณ€ํ˜•๋Šฅ๋ ฅ์ด ๊ฐ์†Œ๋˜๋Š” ์‚ฌ์‹ค๋กœ ๋ฏธ๋ฃจ์–ด ๋ณด์•„ ์„ธํฌ๋‚ด์—์„œ GLUTI antisense RNA๊ฐ€ GLUTI mRNA์™€ ๊ฒฐํ•ฉํ•˜์—ฌ GLUTI mRNA๊ฐ€ translationํ•˜๋Š” ๊ณผ์ •์ด ์–ต์ œ๋˜์–ด ์•”์„ธํฌ๊ฐ€ ํ•„์š”๋กœ ํ•˜๋Š” ํฌ๋„๋‹น์„ ์šด๋ฐ˜์‹œํ‚ค๋Š” ํฌ๋„๋‹น ์šด๋ฐ˜์ฒด์˜ ์–‘์ด ๊ฐ์†Œ๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค. [์˜๋ฌธ] Sereval studies have shown that transport of glucose in all tissues is mediated by a family of structurally related facilitative glucose carriers that have distinct but overlaping tissue distributions. Recently, five types of glucose transporter were identified in mammalian cells. One of these GLUTs, the GLUTl, which is known as RBC type g1ucose transporter has been known to be closely related to cellular growth states. GLUTI is expressed in most cells and thought to be responsible for "housekeeping" levels of glucose transport. The rate of glucose transport via GLUTl is known to be increased under conditions such as transformation process or serum stimulation of cells. This unique characteristics of GLUTl expression may Provide one of the possible ways to reduce the growth of the cell undergoing cellular transformation. In this study, NIH 3T3 cell was transformed by ras oncogene and the presence of ras in the host chromosome was confirmed by polymerase chain reaction using primers that will amplify the exon 2 region of ras. This cell line showed increased glucose transport, GLUTI mRNA content and the ability to form colonies in soft agar. An expression vector that will express the antisense RNA against the GLUTl mRNA was constructed and named pMAM-GLUTI (rev). To investigate the possibility of application of antisense RNA against the RBC type GLUT1 for suppression of tumor cell growth, pMAM-GLUTI (rev) was transfected into NIH 3T3 cells transformed by ras. The expression of antisense RNA was induced by dexamethasone and confirmed by Northern blot analysis. The GLUTl antisense RNA reduced the amount of glucose transported into cells by 45% compared to control group. The number of colonies sizing over 50ใŽ› grown in the soft agar in antisense expression group was reduced to 20ยฑ3.4 compared to control group(32 ยฑ2.8/60 mm**2 ). From these results, the expression of GLUTl antisense RNA reduce the glucose transport and transforming potential in soft agar by blocking expression of GLUTl mRNA with in the ras transformed NIH 3T3 cell line.restrictio

    A study of the sorrow of a marginal man and death perception in the poems of Jongโ€•gi Mah.

    No full text
    corecore