43 research outputs found

    ์† ์›€์ง์ž„์˜ ๊ทผ์œก ํ™œ์„ฑ๋„ ๋ถ„์„์„ ์œ„ํ•œ ๋‹ค์ž์œ ๋„ ์† ๊ทผ, ๊ณจ๊ฒฉ ๋ชจ๋ธ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2016. 8. ์ด๊ฑด์šฐ.Biomechanics is an academic field that understands the biological system by mechanical principles. There have been progresses in the study of computer modeling and simulation for biomechanics. Especially, musculoskeletal models of lower extremity have been developed for analysis of gait motion. However, there has been little research about the musculoskeletal model of upper limbs for the simulation analysis. No validated model is provided in freely available simulation software and commercial simulation programs. The aim of this study was to develop a hand musculoskeletal model for biomechanical analysis about various and complicated hand motions using AnyBody Modeling System and validate the model. The skeletal hand model was created based on the anatomical data to implement degrees of freedom of hand. The musculoskeletal hand model included the hill-type muscle models which made hand movements. The origin and the insertion attachment points of the muscles were founded using an optimization method to create moment arms of muscles from cadaveric study. The distance between motion capture markers and virtual markers was compared to validate the skeletal model. Muscles were validated through the comparison between the experimentally-measured moment arms of muscles and calculated moment arms of muscles in the musculoskeletal model. The developed hand musculoskeletal model could be used to analyze musculoskeletal diseases in the hand such as carpal tunnel syndrome. This study will help understanding of pathological causes and improving the pathological diagnosis.Chapter 1. Introduction 1 Chapter 2. Configuration of the hand model 5 2.1. Anatomy of the hand 5 2.1.1. Bones and joints of the hand 5 2.1.2. Muscles of the hand 8 2.2. Musculoskeletal model of the hand 10 2.2.1. Base model 10 2.2.2. Joint configuration of the hand model 11 2.2.3. Muscle modeling of the hand model 12 Chapter 3. Methods 14 3.1. Data acquisition 14 3.2. Scaling of the hand skeleton model 15 3.3. Determination of muscle attachment point 19 Chapter 4. Results 21 4.1. Comparison of the kinematics data 21 4.2. Comparison of muscle moment arms 30 Chapter 5. Discussion 33 Chapter 6. Conclusion 35 Bibliography 36 Abstract in Korean 40Maste

    A Framework for Remaining Useful Life Prediction of Steam Turbines Applicable to Various Data Types

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2018. 8. ์œค๋ณ‘๋™.์ตœ๊ทผ ๋ฐœ์ „์‚ฌ๊ฐ„ ๊ฒฝ์Ÿ์ด ์น˜์—ดํ•ด์ง์— ๋”ฐ๋ผ ๋ฐœ์ „ ์‚ฐ์—…์—์„œ๋Š” ์šด์ „ ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๊ณ  ํ•ต์‹ฌ ์„ค๋น„์˜ ์ˆ˜๋ช…์„ ์—ฐ์žฅํ•˜๋Š”๋ฐ ๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์ด๊ณ  ์žˆ๋‹ค. ํ•œํŽธ ์šด์ „ ์‹œ๊ฐ„์ด ์„ค๊ณ„ ์ˆ˜๋ช…์— ๊ทผ์ ‘ํ•จ์— ๋”ฐ๋ผ ์ฆ๊ธฐํ„ฐ๋นˆ๊ณผ ๊ฐ™์€ ํ•ต์‹ฌ ์„ค๋น„์˜ ์—ดํ™”๊ฐ€ ๊ฐ€์†๋˜๊ณ  ํฌ๊ณ  ์ž‘์€ ๊ณ ์žฅ์ด ๋งŽ์ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ๊ฐ€์†ํ™”๋œ ์—ดํ™”๋‚˜ ์˜ˆ๊ธฐ์น˜ ๋ชปํ•œ ์†์ƒ์œผ๋กœ ๋ฐœ์ „์†Œ๊ฐ€ ์ •์ง€๋˜๋ฉด ๋ง‰๋Œ€ํ•œ ๊ฒฝ์ œ์  ์†์‹ค๊ณผ ๊ตญ๊ฐ€์ ์ธ ์žฌํ•ด๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ์•ˆ์ •์ ์ธ ์„ค๋น„์˜ ์šด์ „์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๋“ค์ด ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์ตœ๊ทผ ๋“ค์–ด ๋”์šฑ ๋งŽ์€ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋Š” ์‹œ์Šคํ…œ ๊ฑด์ „์„ฑ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์€ ํšจ๊ณผ์ ์œผ๋กœ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๋ฅผ ๊ฐ์ง€, ์ง„๋‹จ, ๊ทธ๋ฆฌ๊ณ  ์˜ˆ์ง€ํ•˜์—ฌ ๊ด€๋ฆฌ์ž๊ฐ€ ์œ ์ง€ ๋ณด์ˆ˜์— ์žˆ์–ด ํ•„์š”ํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ค€๋‹ค. ํŠนํžˆ ์ตœ์  ์œ ์ง€์ •๋น„ ๊ด€์ ์—์„œ ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ์˜ˆ์ธก๋œ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์€ ์„ค๋น„ ์ˆ˜๋ช…์— ์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํšจ๊ณผ์ ์ธ ์œ ์ง€ ์ •๋น„๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ฆ๊ธฐ ํ„ฐ๋นˆ์€ ๋ฐœ์ „์†Œ ์ˆ˜๋ช…์„ ๊ฒฐ์ •ํ•˜๋Š” ํ•ต์‹ฌ ์„ค๋น„์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ์ „์†Œ์˜ ์ตœ์  ์šด์˜์„ ์œ„ํ•ด ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜์—ฌ ์šด์ „ ์ค‘์ธ ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์ด์— ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” (1) ์ฆ๊ธฐ ํ„ฐ๋นˆ์— ๋Œ€ํ•œ ๊ณ ์žฅ๋ชจ๋“œ์˜ํ–ฅ๋ถ„์„๊ณผ ์—ฐ๊ณ„ํ•œ ์ž”์กด์œ ํšจ์ˆ˜๋ช… ์˜ˆ์ธก ํ”„๋ ˆ์ž„์›Œํฌ, ๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ (2) ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ (๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ), (3) ํฌ๋ฆฌํ”„-ํ”ผ๋กœ ์†์ƒ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•œ ๋ชจ๋“œ ์˜์กด ์†์ƒ ๋ชจ๋ธ (๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ) ๋“ฑ์˜ ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์žฅ๋ชจ๋“œ์˜ํ–ฅ๋ถ„์„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ์˜ˆ์ธกํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ธก์ •๋œ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ๋ฐฉ๋ฒ•๋ก ๊ณผ ์†์ƒ ๋ชจ๋ธ์— ๊ธฐ๋ฐ˜ํ•œ ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์˜คํ”„๋ผ์ธ์ด๋‚˜ ์˜จ๋ผ์ธ๊ณผ ๊ฐ™์ด ๋‹ค๋ฅธ ๋ชฉ์ ์œผ๋กœ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ์˜ˆ์ธกํ•  ๋•Œ ๋ถˆํ™•์‹ค๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ๋ถˆํ™•์‹ค๋„๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ์ ˆ์ฐจ๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•ด ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ž”์กด์œ ํšจ์ˆ˜๋ช…์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ž”์กด์œ ํšจ์ˆ˜๋ช…์€ ์†์ƒ ์ธ์ž๋กœ๋ถ€ํ„ฐ ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ์„ ์—ฐ๊ณ„ํ•˜์—ฌ ์˜ˆ์ธกํ•œ๋‹ค. ํ˜„์žฅ์—์„œ ์ธก์ •๋œ ๊ฒฝ๋„๊ฐ’์œผ๋กœ๋ถ€ํ„ฐ ์†์ƒ์ธ์ž์˜ ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ์ถ”์ •ํ•˜๊ณ  ์†์ƒ์˜ ์„ฑ์žฅ์„ ํ‰๊ฐ€ํ•  ๋•Œ ๋ถˆํ™•์‹ค๋„๋ฅผ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋ฒ ์ด์ง€์•ˆ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์†์ƒ ์„ฑ์žฅ ๋ชจ๋ธ์„ ํ†ตํ•ด ๊ธฐ์ €๋ถ€ํ•˜๋‚˜ ์ฒจ๋‘๋ถ€ํ•˜์— ์‚ฌ์šฉ๋˜๋Š” ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ์ข…๋ฅ˜์— ์ƒ๊ด€์—†์ด ์ •ํ™•ํ•œ ์ž”์กด์œ ํšจ์ˆ˜๋ช… ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•ด ํฌ๋ฆฌํ”„์™€ ํ”ผ๋กœ ์ƒํ˜ธ์ž‘์šฉ์ด ๊ณ ๋ ค๋œ ๋ชจ๋“œ ๊ธฐ๋ฐ˜ ์†์ƒ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์†์ƒ๊ธฐ๊ตฌ์— ๋”ฐ๋ฅธ ์žฌ๋ฃŒ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ์‹ค ์ฆ๊ธฐํ„ฐ๋นˆ์˜ ํ˜•์ƒ ์ •๋ณด์™€ ์šด์ „์ •๋ณด๋ฅผ ์ด์šฉํ•ด ๊ธฐ์ €๋ถ€ํ•˜์™€ ์ฒจ๋‘๋ถ€ํ•˜ ํ„ฐ๋นˆ์„ ๋Œ€์ƒ์œผ๋กœ ํฌ๋ฆฌํ”„ ๋ฐ ํ”ผ๋กœ ์†์ƒ์œจ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ฐ๊ฐ ๊ณ„์‚ฐ๋œ ์†์ƒ์œจ ๊ฒฐ๊ณผ์™€ ํฌ๋ฆฌํ”„-ํ”ผ๋กœ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ์„ ํ†ตํ•ด ์šด์ „๋ชจ๋“œ ๋˜๋Š” ์†์ƒ๋ชจ๋“œ์— ๋”ฐ๋ฅธ ์ฆ๊ธฐํ„ฐ๋นˆ์—์„œ์˜ ํฌ๋ฆฌํ”„์™€ ํ”ผ๋กœ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. Abstract i List of Tables viii List of Figures x Nomenclatures xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 8 2.1 Life Prediction Methodologies of Steam Turbine 8 2.1.1 Destructive Method 11 2.1.2 Non-destructive Method 11 2.1.3 Analytical Method 13 2.1.4 Summary and Discussion 13 2.2 Data-driven and Model-based Life Prediction 15 2.2.1 Data-driven Approach 21 2.2.2 Model-based Approach 21 2.3 Empirical Model-based Life Prediction 15 2.3.1 On-site Data Measurement 18 2.3.2 Bayesian Inference 19 2.3.3 Summary and Discussion 20 2.4 Damage Model-based Life Prediction 21 2.4.1 Creep or Fatigue Damage Model Analysis 22 2.4.2 Creep-Fatigue Damage Summation Model analysis 23 2.4.3 Summary and Discussion 27 Chapter 3 A Practical RUL Prediction Framework of Steam Turbine with FMEA Analysis 28 3.1 Overview of Steam Turbines 28 3.2 FMEA for Steam Turbines 31 3.3 A Framework for RUL Prediction of Steam Turbine 34 3.4 Summay and Discussion 38 Chapter 4 A Bayesian Approach for RUL Prediction of Steam Turbines with Damage Growth Model 39 4.1 Characteristics of On-site Measurement Data 40 4.2 Measured Data based Damage Indices 46 4.3 Damage Growth Model using Sporadically Measured and Heterogeneous On-site Data 51 4.3.1 Proposed Damage Growth Model 51 4.3.2 Bayesian Updating Scheme of the Damage Growth Model 58 4.3.3 Damage Growth Model Updating 60 4.4 Predicting the Remaining Useful Life(RUL) of Steam Turbines 68 4.4.1 Damage Threshold 68 4.4.2 Validation of the Proposed Damage Growth Model 72 4.4.3 RUL Prediction 74 4.5 Summary and Discussion 78 Chapter 5 Mode-Dependent Damage Assessment for Steam Turbines with Creep-Fatigue Interaction Model 80 5.1 Dominant Damage Mechanisms of Steam Turbine 82 5.2 Typical Opeation Data of Steam Turbine 83 5.3 Dominant Damage Model of Steam Turbine 86 5.3.1 Creep Damage Model 86 5.3.2 Fatigue Damage Model 88 5.3.3 Creep-Fatigue Damage Model 90 5.4 Statiatical Damage Calculation for Steam Turbine 91 5.4.1 Statistical Characterization of Creep-Fatigue Damage Data 91 5.4.2 Creep Damage Calculation with Steady State Stress 94 5.4.3 Fatigue Damage Calculation with Transient Strain 95 5.5 Mode-Dependent Multiple Damage Interaction Model 100 5.5.1 Estimation of Damage Interaction Parameters 100 5.5.2 Validation of Mode-Dependent Model 101 5.5.3 Effect of Mode-dependence Effects on Multiple Damage 104 5.5.4 Case Study : Risk Assessment 108 5.6 Summary and Discussion 111 Chapter 6 Conclusions 113 6.1 Contributions and Impacts 113 6.2 Suggestions for Future Research 116 References 119 ๊ตญ๋ฌธ ์ดˆ๋ก 142Docto

    A Study on Development of Automatic Temperature Control System in Blast Furnace

    No full text
    Maste

    Stretchable Triboelectric Multimodal Tactile Interface Exclusively Recognizing Various Dynamic Stimuli and Its Applications

    No full text
    MasterIn this paper, multifunctional sensors capable of distinguishing different stimuli are introduced, which is inspired by human mechanoreceptors. Human cutaneous tactile receptors are deformable, and can sense temperature, pressure, shear force, and rate of stimuli. However, they can distinguish various stimuli. In addition, the tactile potential is self activated when external stimulation is exerted and the potential is transmitted to the nerve system, resembling the wake-up function in electronic devices. Through mimicking such characteristics of the human tactile receptors, I designed a stretchable triboelectric nanogenerator (TENG) for the stimuli-responsive potential generator. The TENG device has a multilayer structure independently recognizing lateral strain by the sliding mode, touch by the contact mode, the relative moving distance, and the relative moving velocity. In addition, the device design allows simultaneous sensing of strain and touch without signal interference. The self-triggered potentials generated by various body motions such as touching, joint bending, and the combinations turn on a sleeping microcontroller unit (MCU) and are used as the distinct motion signals. This study demonstrates a wearable low-power remote tactile interface that controls the 3D movements of a mobile device (drone) by the body motions.์ธ๊ฐ„์˜ ํ”ผ๋ถ€ ์ด‰๊ฐ ์ˆ˜์šฉ๊ธฐ๋Š” ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•˜๊ณ  ์˜จ๋„, ์••๋ ฅ, ์ธ์žฅ, ์ „๋‹จ๋ ฅ ๋ฐ ์ž๊ทน์˜ ์†๋„ ๋“ฑ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ๋™์‹œ์— ์ด๋ฅผ ๊ตฌ๋ณ„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ƒ์ฒด ์‹œ์Šคํ…œ์—์„œ ํ™œ๋™ ์ „์œ„๋Š” ์—ญ์น˜ ์ด์ƒ์˜ ์™ธ๋ถ€ ์ž๊ทน์ด ๊ฐ€ํ•ด์ง€๋ฉด ์Šค์Šค๋กœ ํ™œ์„ฑํ™”๋˜์–ด ์ง„๋™์ˆ˜์˜ ํ˜•ํƒœ๋กœ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์œผ๋กœ ์‹ ํ˜ธ๋ฅผ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ์ „์ž ์žฅ์น˜์˜ ์›จ์ดํฌ ์—… ๊ธฐ๋Šฅ๊ณผ ์œ ์‚ฌํ•˜๋ฉฐ ์‹ ํ˜ธ ์ „๋‹ฌ์˜ ์ธก๋ฉด์—์„œ ์œ ๋ฆฌํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๊ฐ„ ์ด‰๊ฐ ์ˆ˜์šฉ์ฒด์˜ ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ๋ชจ๋ฐฉํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ž๊ทน์— ๋ฐ˜ ์‘ํ•˜๋Š” ์ „์œ„ ๋ฐœ์ƒ๊ธฐ๋ฅผ ์—ฐ์‹ ์„ฑ ๋งˆ์ฐฐ ์ „๊ธฐ ๋‚˜๋…ธ ๋ฐœ์ „๊ธฐ (TENG)์˜ ํ˜•ํƒœ๋กœ ์„ค๊ณ„ํ–ˆ๋‹ค. ์ „์ž๊ธฐ ์ฐจํํ˜„์ƒ๊ณผ ๊ตฌ์กฐ์ ์ธ ๋ฌผ์งˆ ์„ค๊ณ„๋ฅผ ํ†ตํ•ด ๋ณธ TENG ์žฅ์น˜๋Š” ์Šฌ๋ผ์ด๋”ฉ ๋ชจ๋“œ, ์ ‘์ด‰ ๋ชจ๋“œ์— ์˜ ํ•œ ์••๋ ฅ, ์ธ์žฅ ๋ฐ ์ด๋™ ์†๋„๋ฅผ ์‹ ํ˜ธ ๊ฐ„์„ญ ์—†์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ธ์‹ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด‰๊ฐ, ๊ด€์ ˆ ๊ตฝํž˜ ๋ฐ ์กฐํ•ฉ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์‹ ์ฒด ๋™์ž‘์— ์˜ํ•ด ์ƒ์„ฑ๋œ ์ „์œ„๋Š” ํšจ์œจ์ ์ธ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ์œ„ํ•ด ์ˆ˜๋ฉด ์ƒํƒœ์˜ ๋งˆ์ดํฌ๋กœ ์ปจํŠธ๋กค๋Ÿฌ ์œ ๋‹› (MCU)์„ ์ผœ๋Š” ์Šค์œ„์น˜๋กœ์จ์˜ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•จ๊ณผ ๋™์‹œ์— ์ž๊ทน์˜ ์ •๋Ÿ‰์ ์ธ ์ธก์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ฐฉ์šฉ ํ•  ์ˆ˜ ์žˆ๋Š” ์ €์ „๋ ฅ ์›๊ฒฉ ์ด‰๊ฐ ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ์‹ ์ฒด ์›€์ง์ž„์œผ๋กœ ๋ชจ๋ฐ”์ผ ์žฅ์น˜ (๋ฌด์ธ ํ•ญ๊ณต๊ธฐ)์˜ 3D ์›€์ง์ž„์„ ์ œ์–ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ์žฅ์น˜์˜ ์•ˆ์ •์„ฑ ์‹œํ—˜์€ ๋ฐ˜๋ณต์ ์ธ ์ŠคํŠธ๋ ˆ์นญ ๋ฐ ์ ‘์ด‰์— ์˜ํ•ด ์ˆ˜ํ–‰๋๋Š”๋ฐ, ์‹ค๋‚ด ํ…Œ ์ŠคํŠธ๋Š” ๋งค์šฐ ์•ˆ์ •์ ์ด์—ˆ๊ณ  ๋งˆ์ฐฐ์— ์˜ํ•œ ๋งˆ๋ชจ ๋˜ํ•œ ์ ์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. TENG ๊ธฐ ๋ฐ˜ ์žฅ์น˜์˜ ์„ฑ๋Šฅ์€ ์Šต๋„, ์˜จ๋„, ์™ธ๋ถ€ ์ „๊ธฐ์žฅ ๋“ฑ์— ์˜ํ–ฅ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋‹ค. ์Šต๋„์˜ ์˜ํ–ฅ์„ - 36 - ํ…Œ์ŠคํŠธํ•˜์ง€๋Š” ์•Š์•˜์ง€๋งŒ, ์†Œ์ˆ˜์„ฑ ๋ฌผ์งˆ๋กœ ์žฅ์น˜๋ฅผ ๋ฐ€ํ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ„๋‹จํžˆ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ ๋‹ค. ๋˜ํ•œ, ์™ธ๋ถ€ ์ „๊ธฐ์žฅ์˜ ๊ฐ„์„ญ์€ ์ ์ ˆํ•œ ์ฐจํ๋ฅผ ํ†ตํ•ด ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์„ญ์”จ 300๋„ ์ด์ƒ์˜ ์˜จ๋„๋ฅผ ๊ฐ€ํ•ด์คฌ์„ ๋•Œ, ์ •์ „๊ธฐ ํšจ๊ณผ๊ฐ€ ํ˜„์ €ํžˆ ์ค„์–ด๋“œ๋Š” ํ˜„์ƒ์ด ๋ณด๊ณ ๋˜๊ณ  ์žˆ ๊ณ  ์ด๋Š” TENG๊ฐ€ ์„ผ์„œ๋กœ ์“ฐ์ผ ๋•Œ ์‹ ํ˜ธ์˜ ์•ˆ์ •์„ฑ์„ ์ €ํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ์š”์ธ์ด ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์™ธ๋ถ€ ์š”์ธ๋“ค์— ์˜ํ•ด ๋ณ€๋™ ๊ฐ€๋Šฅํ•œ ๊ฐ์ง€ ์‹ ํ˜ธ๋ฅผ ์•ˆ์ •๋˜๊ฒŒ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์€ ๋˜ ๋‹ค๋ฅธ ๊ณผ์ œ์ด๋ฉฐ ๋ฌผ์งˆ ๊ฐœ๋ฐœ, ์ ์ ˆํ•œ ์‘์šฉ๋ถ„์•ผ ๋ชจ์ƒ‰ ๋“ฑ์˜ ํ›„์† ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค
    corecore