12 research outputs found
μ λ°©μ’ μλ―ΈμΈνκ²½μμ λμμΈν¬μ μ μΈν¬μ μνΈμμ©μ μν μΈνλΌλ§μ’μ νμ±ν
νμλ
Όλ¬Έ(λ°μ¬)--μμΈλνκ΅ λνμ :μ½νλν μ½νκ³Ό,2020. 2. μμμ€.μ’
μλ―ΈμΈνκ²½μ μμΈν¬, λ΄νΌμΈν¬, μ¬μ μμΈν¬, 골μμ λμΈν¬, μ-μ°κ΄ μ¬μ μμΈν¬, λ©΄μμΈν¬ λ± λ€μν μΈν¬λ€λ‘ μ΄λ£¨μ΄μ Έ μκ³ , μ΄λ¬ν μ’
μλ―ΈμΈνκ²½ λ΄μμμ μ΄μ§μ±(heterogeneity)μ μ’
μμ΄ κ°λ νΉμ§ μ€ νλμ΄λ€. κ·Έμ€ λμ λΉμ¨μ μΌμ¦μ± μΈν¬μ μΌμ¦ λ§€κ° λ¬Όμ§λ€μ μ‘΄μ¬μ λ°λ₯Έ μΌμ¦μ± μ’
μλ―ΈμΈνκ²½μ λ§μ μ’
λ₯μ μμ΄ κ°μ§λ λ λ€λ₯Έ νΉμ§ μ€ νλμ΄λ©°, μ΄λ€μ΄ λΆλΉνλ μ¬μ΄ν μΉ΄μΈ(cytokine), ν€λͺ¨μΉ΄μΈ(chemokine), μ±μ₯μΈμ(growth factor) λ±μ ν΅ν μνΈμμ©μ μ’
μμ μ¦μ λ° λ°λ¬, μ μ΄μ μ€μν μν μ μννλ€κ³ μλ €μ Έ μλ€.
μΈνλΌλ§μ’(inflammasome)μ κ±°λ λ¨λ°±μ§ 볡ν©μ²΄λ‘μ μΈλΆλ‘λΆν°μ λ³μκ· μ κ°μΌμ μν pathogen-associated molecular patterns (PAMPs), νΉμ μμλ μ‘°μ§μ΄λ μΈν¬λ€μ΄ λΆλΉνλ damage-associated molecular patterns (DAMPs)κ³Ό κ°μ λΉ λ―Έμλ¬Ό μ±λΆμ μκ·Ήμ μν΄ IL-1Ξ²λ₯Ό λΆλΉν¨μΌλ‘μ¨ μΌμ¦λ°μμ μ΄μ§μν¨λ€. IL-1Ξ²λ κ°λ ₯ν μ μΌμ¦μ± μ¬μ΄ν μΉ΄μΈ μ€ νλλ‘ κ°μΌ λΆμλ‘ λ€μν μΌμ¦μ± μΈν¬λ€μ λΆλ¬λ€μ¬ μ μ²λ©΄μλ°μμ μ¦νμν΄μΌλ‘μ¨, μ체 νμμ± μ μ§μ λ°©μ΄κΈ°μ μΌλ‘ νμμ μΈ μν μ μννλ€. λ©΄μλ°μμ μμ΄μ μΈνλΌλ§μ’κ³Ό IL-1Ξ²κ° κ°μ§ μ΄λ¬ν νμμ μΈ μν λ‘ μΈν΄, λΉ νΉμ΄μ μΈ λ°νμ μΈνλΌλ§μ’κ³Ό IL-1Ξ²λ μμ λΉλ‘―ν λ€μν λ©΄μκ΄λ ¨ μ§νκ³Ό λ°μ ν κ΄λ ¨μ΄ μλ€κ³ λ³΄κ³ λμλ€. νμ§λ§ μ΄λ¬ν λΉ νΉμ΄μ μΈ λ°νμ μΈνλΌλ§μ’κ³Ό IL-1Ξ²κ° μ λ°© μ’
μμ λ°λ¬ λ° μ¦μ, μ μ΄μ λ―ΈμΉλ μν₯ λ° κ·Έ μν μ κ΄ν΄μλ μμ§ λ
Όλμ΄ μμΌλ©°, μ λ°© μ’
μ λ―ΈμΈνκ²½μμ λΉ νΉμ΄μ μΈ μΈνλΌλ§μ’κ³Ό IL-1Ξ²μ λ°ν κΈ°μμ κ΄ν΄μλ μμ§ μ°κ΅¬κ° λ―ΈλΉν μ€μ μ΄λ€. λ°λΌμ, λ³Έ λ
Όλ¬Έμμλ IL-1Ξ²κ° μ λ°©μμ μ¦μ λ° μ μ΄μ λ―ΈμΉλ μν₯κ³Ό μ λ°© μ’
μ λ―ΈμΈνκ²½μμ IL-1Ξ²μ λΆλΉ κΈ°μμ κ΄ν΄ μ°κ΅¬λ₯Ό μ§ννμλ€.
λ¨Όμ μ λ°©μκ³Ό μΌμ¦μ± λ―ΈμΈνκ²½μ¬μ΄μ κ΄λ ¨μ±μ νμΈνκΈ° μνμ¬, μ λ°©μ νμμ μ μ λμ‘°κ΅°μ νμ² λ΄ μΌμ¦μ± μ¬μ΄ν μΉ΄μΈμ νμΈν κ²°κ³Ό, μ μΌμ¦μ± μ¬μ΄ν μΉ΄μΈμΈ IL-1Ξ², IL-6, IL-18, TNF- λͺ¨λ μ λ°©μ νμμ νμ² λ΄μμ μ μ λμ‘°κ΅°μ λΉν΄μ μλ±ν λμ μμΉλ₯Ό 보μκ³ , νΉν, κ·Έ μ€μμ IL-1Ξ²μ κ²½μ°μλ μ μ λμ‘°κ΅° λ³΄λ€ μ½ 40λ°° μ΄μμ μ¦κ°λ νκ· μμΉλ₯Ό 보μλ€. μ΄μ μ μ¬νκ², 4T1-BALB/c λμμ μ λ°©μ λ§μ°μ€ λͺ¨λΈμμ 4T1 μΈν¬λ₯Ό μ΄μνμ§ μμ μ μ λ§μ°μ€μ λΉκ΅νμμ λ, μ λ°©μμ΄ λ°μν λ§μ°μ€μ νμ² λ΄ IL-1Ξ²κ° μ μ λ§μ°μ€μ λΉν΄ μ¦κ°λλ κ²μ νμΈνμλ€. λν, IL-1μμ©μ²΄κ° κ²°νλ 4T1 μΈν¬λ₯Ό μ΄μ©ν 4T1-BALB/c λμμ μ λ°©μ λ§μ°μ€ λͺ¨λΈμμ κ°μλ μλ°μ± μ λ°© μ’
μμ μ¦μκ³Ό ν μ μ΄κ° νμΈλμλ€. μ κ²°κ³Όλ€μ λ―Έλ€λ³΄μμ λ, μ λ°©μμ λ°λ¬ λ° μ§ν, μ μ΄λ IL-1Ξ²-IL-1μμ©μ²΄λ₯Ό ν΅ν μ νΈμ λ¬ μ²΄κ³μ λ°μ ν κ΄λ ¨μ΄ μλ€λ κ²μ μμ¬νλ€. μ λ°© μ’
μ λ―ΈμΈνκ²½μμ μ¦κ°λ IL-1Ξ²μ μΆμ²λ₯Ό νμΈνκΈ° μν΄ μ€μν λμ λ°°μ μ€νκ³Ό μ λ°©μμΈν¬μ£Ό λ°°μμ‘ μ²λ¦¬ μ€νμ ν΅ν΄μ μΌμ€ μμ± μ λ°©μ μΈν¬(triple negative breast cancer)κ° λΆλΉν μμ©μ± λ¬Όμ§μ μν΄ λμμΈν¬μ μΈνλΌλ§μ’ νμ±νλ₯Ό ν΅ν΄ IL-1Ξ²μ λΆλΉκ° μ¦κ°λ κ²μ νμΈνμλ€. λν, 4T1-BALB/c λμμ μ λ°©μ λ§μ°μ€ λͺ¨λΈμμ λμμΈν¬λ₯Ό κ²Ήν μμΌ°μ λ, λ§μ°μ€ νμ² λ΄ IL-1Ξ² λλκ° κ°μνμκ³ , μλ°μ± μ λ°© μ’
μμ ν¬κΈ°μ ν μ μ΄κ° λͺ¨λ κ°μνμλ€. μ΄λ μ λ°© μ’
μ λ―ΈμΈνκ²½μμ μ¦κ°λ IL-1Ξ²λ μ λ°©μ μΈν¬κ° λΆλΉνλ μμ©μ± λ¬Όμ§μ μν΄ λμμΈν¬μμ IL-1Ξ²μ λΆλΉκ° μ΄μ§λ κ²μμ μμ¬νλ€.
μ λ°©μ μΈν¬μ£Όκ° λΆλΉνλ μμ©μ± λ¬Όμ§ μ€ λμμΈν¬μμ IL-1Ξ²μ λΆλΉλ₯Ό μ¦κ°μν€λ λ¬Όμ§μ λμ νκΈ° μνμ¬ μΈκ° μ λ°©μ μΈν¬μ£Όμ secretomeμ λΆμν κ²°κ³Ό, CD44κ° λΉ μΌμ€μμ±μ λ°©μ μΈν¬μ£Όμ λΉκ΅νμμ λ μΌμ€ μμ± μ λ°©μ μΈν¬μ£Όμμ κ°μ₯ λ§μ΄ λΆλΉλλ κ²μ νμΈνμκ³ , λν μ λ°©μ νμμ νμ² λ΄ CD44μ λλκ° μ μ λμ‘°κ΅°μ λΉν΄ μλ±ν λμ μμ€μ 보μλ€. λμμΈν¬μμ IL-1Ξ²μ λΆλΉλ CD44λ₯Ό μ€μ±ν μν¨ μΌμ€ μμ± μ λ°©μ μΈν¬μ£Όμ μΈν¬ λ°°μμ‘μ λμμΈν¬μ μ²λ¦¬νμμ λ μ μλ―Ένκ² κ°μνμκ³ , 4T1-BALB/c λμμ μ λ°©μ λ§μ°μ€ λͺ¨λΈμμ CD44λ₯Ό μ€μ±ν μμΌ°μ λ μλ°μ± μ λ°© μ’
μμ μ¦μκ³Ό ν μ μ΄, κ·Έλ¦¬κ³ νμ² λ΄ IL-1Ξ²μ λλκ° κ°μν κ²μ νμΈνμλ€. μ κ²°κ³Όλ€μ μ’
ν©νμ λ, μ λ°© μ’
μ λ―ΈμΈνκ²½μμ μ λ°©μ μΈν¬μ£Όμ μΈν¬λ§μΌλ‘λΆν° λΆλΉλ CD44λ λμμΈν¬μμ μΈνλΌλ§μ’μ νμ±νλ₯Ό μΌμΌν€κ³ , κ·Έλ‘ μΈν΄ μ¦κ°λ IL-1Ξ²μ λΆλΉλ‘μΈνμ¬ μ λ°©μμ λ°λ¬ λ° μ§ν, κ·Έλ¦¬κ³ μ μ΄κ° μ΄μ§λλ€λ κ²μ μ μ μλ€. λ°λΌμ CD44μ νμ μΉλ£λ CD44κ° μ§λ μ λ°© μ’
μμ μ
μ±νμ λ―ΈμΉλ μν₯λΏλ§ μλλΌ, IL-1Ξ²μμν΄ μ λλ μΌμ¦μ± μ’
μλ―ΈμΈνκ²½μ μ‘°μ μ ν΅ν μ λ°© μ’
μμ μ¦μ λ° μ μ΄ μ΅μ ν¨κ³ΌκΉμ§ κΈ°λν μ μλ€.Similar to heterogeneous tumor mass made up of multiple subtypes of cancer cells, stromal cells are also highly variable and heterogeneous. Heterogeneity of tumor is considered to be a major cellular feature of cancer due to the presence of not only different populations of cancer cells, but also distinct composition of stromal cells and their expression signatures within the tumor microenvironment. Stromal cells in the tumor microenvironment include lymphatic endothelial cells, T and B lymphocytes, tumor-associated macrophages, cancer-associated fibroblast, adipocytes, etc. These cells interact with cancer cells as well as each other through complex and dynamic network of cytokines, chemokines, growth factors, and hormones. Crosstalk among the cells in the tumor microenvironment exerts fate-determining roles in many types of cancer.
The presence of inflammatory cells and pro-inflammatory mediators in the tumor microenvironment has been considered as another hallmark of cancer. The inflammatory tumor microenvironment has both tumor progressive and tumor suppressive aspects, and such interchangeable roles of the inflammatory tumor microenvironment mainly depend on the stages of cancer development and types of cancer.
Inflammasomes are multi-protein complexes, which play essential roles in maintaining bodys homeostasis as the first line of host defense against infections and damaged tissues by releasing interleukin (IL)-1Ξ² and IL-18 in innate immunity. IL-1Ξ², one of the most potent pro-inflammatory cytokines, is involved in establishment of inflammatory conditions by mediating a systemic pro-inflammatory cascade. Overexpression/secretion of IL-1Ξ², as a consequence of aberrant activation of inflammasomes mainly in tumor-associated macrophages, has been observed in many types of human malignancies, such as liver, lung, gastric, and colorectal cancer. However, the roles of IL-1Ξ² in the breast tumor microenvironment, especially in the context of interplay between cancer cells and tumor-associated macrophages, are still unclear.
In the present study, increased serum levels of IL-1, IL-6, IL-18, and TNF- were observed in breast cancer patients. Secretion of IL-1Ξ² was increased by the co-culture of human monocyte-like cells and triple negative breast cancer (TNBC) cells. Additionally, the conditioned-media from TNBC cells potently induced IL-1Ξ² secretion by macrophages. Consistent with these observations, macrophage depletion reduced the serum levels of IL-1Ξ², and alleviated breast cancer progression in a murine orthotopic breast tumor model. Profiling the secretome of human breast cancer cells revealed that the CD44 antigen was the most differentially released protein in basal conditions of TNBC cells. Antibody neutralization of CD44 abrogated IL-1Ξ² production in macrophages, and inhibited the growth and metastasis of primary tumors. These results suggest that IL-1Ξ²-mediated oncogenic signaling is stimulated, at least in part, by soluble CD44 (sCD44) derived from breast cancer cell membrane, and targeting sCD44 antigen may hence provide an alternative therapeutic strategy for breast cancer treatment by modulating the inflammatory tumor microenvironment.Chapter β
. Role of inflammasomes in tumor microenvironment 1
1. Introduction 2
2. Fundamental roles of inflammasomes 3
3. Involvement of inflammasomes in cancer 7
3 1. Colorectal cancer 7
3 2. Breast cancer 11
3 3. Gastric cancer 15
3 4. Skin cancer 17
3 5. Other malignancies 19
4. Cancer preventive/therapeutic strategies targeting inflammasomes 21
5. Conclusion and perspective 26
6. References 34
PURPOSE OF THE STUDY 50
Chapter β
‘. Inflammasome activation by soluble CD44 released by breast cancer cells: Implications for breast tumor progression 52
1. Abstract 53
2. Introduction 55
3. Materials and Methods 57
4. Results 72
5. Discussion 124
6. References 130
Conclusion 138
Abstract in Korean 141
Biographical Data 144Docto
μ μ λμκ΄ νμ₯μ κ°μ§ νμμμ λ°κ²¬λ λΉμ μμ μΈ μμ΄μ¨ μΌκΈ° μμ‘νλλλ₯Ό 보μ΄λ pendrin λ¨λ°±μ§μ μλ‘μ΄ λμ°λ³μ΄μ λν μ°κ΅¬
νμλ
Όλ¬Έ (λ°μ¬)-- μμΈλνκ΅ λνμ : μνκ³Ό μ΄λΉμΈνκ³Όν μ 곡, 2013. 8. μ΄μ€νΈ.μλ‘ : μμ°λμνμ₯μ¦μ κ°κ°μ κ²½μ± λμ²κ³Ό κ΄λ ¨λμ΄ κ°μ₯ ννκ² λ°κ²¬λλ λ΄μ΄κΈ°νμΌλ‘ μ’
μ’
pendrin λ¨λ°±μ§μ λ°νμν€λ SLC26A4 μ μ μμ λμ°λ³μ΄μ μ°κ΄λμ΄ μλ€. Pendrin λ¨λ°±μ§μ κ°μμ μ¬ν¬μΈν¬, λ΄μ΄μ λΉκ°κ°μνΌμΈν¬, μ μ₯μ Bν κ°μ μΈν¬μ μΈν¬λ§μ κ΄ν΅νμ¬ μμΉνλ©΄μ Cl-μ I-μ HCO3-μ κ΅ννλ μν μ νλ€. μμ°λμνμ₯μ¦κ³Ό λλ°λ κ°κ°μ κ²½μ± λμ²νμμμ κ°μμ μ’
μ΄ κ΄μ°°λλ κ²½μ° Pendred μ¦νκ΅°μ΄λΌ νκ³ κ°μμ μ’
μ΄ μλ κ²½μ° λΉμ¦νκ΅°μ±μμ°λμνμ₯μ¦μ΄λΌκ³ νλ©° λκ°μ§ λͺ¨λ μ΄μ±μΌλ‘ μ μ λλ€. SLC26A4 μ μ μμ λμ°λ³μ΄λ‘ μΈν pendrin λ³μ΄μ μΈν¬λ΄ μμ‘κΈ°λ₯ μ΄μ λ° μμ΄μ¨ κ΅νμ₯μ κ° κ°μ₯ μ£Όλ λ³μΈλ‘ μΌλ‘ μλ €μ Έ μλ€. SLC26A4 μ μ μμ λμ°λ³μ΄λ κ³Όμ€λμ°λ³μ΄ (missense mutation), 골격λ³μ΄ (frame shift), μ ν©μμΉλ³μ΄ (splice site shift)μ ννλ‘ λνλλλ° λ립μ μ μμμμ λμ°λ³μ΄κ°μμ νννκ³Ό μκ΄μ±μ λν μ°κ΅¬κ° μ§μμ μΌλ‘ μ΄λ£¨μ΄μ§κ³ μλ€. λ³Έ μ°κ΅¬μμλ μλ‘μ΄ κ³Όμ€λμ°λ³μ΄μ λ³μΈμ± μ μ¬μ±μ λν΄ μ μ ν λΆμ λ° κΈ°λ₯μ λΆμμ ν΅ν΄ λ°νκ³ μ νλ€.
λμ λ° μ°κ΅¬ λ°©λ²: μμΈ‘ λμ²μΌλ‘ λ΄μν 3μΈ μ¬μ νμλ₯Ό λμμΌλ‘ μνν μ²λ ₯κ²μ¬μ μμΈ‘ μ²λ ₯μ κ°κ° 66 dB HL, 75 dB HLμ΄μκ³ , μΈ‘λ골 μ μ°ν λ¨μΈ΅μ΄¬μμ μμ°λμκ΄μ νμ₯κ³Ό μμ°μ μ 2ν λΆμμ λΆν μΈ Mondini κΈ°νμ΄ μμΈ‘μμ κ΄μ°°λμλ€. νμ λ° λΆλͺ¨μ genomic DNAλ₯Ό μΆμΆνμ¬ SLC26A4 μ μ μμ μμ΄λΆμμ μννμλ€. μ μ SLC26A4cDNAμ pEGFP-N1κ³Ό pGEM-HEλ₯Ό μ΄μ©νμ¬ λμ°λ³μ΄λ₯Ό μ λ°μν¨ ν COS-7 μΈν¬μ λ°°μνμ¬ pendrin λ³μ΄μ°λ¬Όμ μΈν¬λ΄ λΆν¬λ₯Ό κ΄μ°°νμλ€. μ μ pendrinκ³Ό λ³μ΄ pendrin μ°λ¬Όμ HEK 293 μΈν¬μ λ°ννμ¬ Cl-/HCO3-κ΅νλ₯μ μΈ‘μ νμλ€.
κ²°κ³Ό: νμμ μ μ ν λΆμμ ν΅ν΄ μ΄ν SLC26A4 μ μ μμμ, λ κ°μ λμ°λ³μ΄, p.H723Rκ³Ό p.V510Dλ₯Ό λ°κ²¬νμλ€. μ΄ μ€ p.V510Dλ μλ‘μ΄ λ°κ²¬λ λ³μ΄λ‘μ orthologκ° λ³΄μ‘΄λκ³ paralogλ μΌλΆ 보쑴λ κ²μ νμΈνμλ€. p.V510D pendrin μ°λ¬Όμ 골μ§μ²΄μμ κ΄μ°°λλ©° μΈν¬λ§μΌλ‘μ μμ‘μ΄ μ νλλ μμμ νμΈν μ μμλ€. λν, μ μ pendrin μ°λ¬Όμ λΉν΄ p.V510D pendrin μ°λ¬Όμ κ²½μ° μμ΄μ¨ κ΅νλ₯λ μλμ μΌλ‘ κ°μνλ μμμ 보μ΄λ κ²μ νμΈνμλ€.
κ²°λ‘ : p.V510D λ³μ΄λ κ³Όμ€λμ°λ³μ΄λ‘μ κΈ°μ‘΄μ λ³΄κ³ λ λ° μλ μλ‘μ΄ λ³μ΄ννλ‘μ μ μ ν λΆμ λ° κΈ°λ₯μ λΆμμ ν΅ν΄ p.H723Rκ³Ό μ μ¬νκ² κ³¨μ§μ²΄μμ μΈν¬λ§μΌλ‘μ μμ‘μ κ΄μ¬νλ©° μμ΄μ¨ κ΅νλ₯κ³Ό μ°κ΄λμ΄ μμμ μ μ μλ€. μ΄λ¬ν λ립 μ μ μλ NSEVAμ λμ°λ³μ΄ λ립μ μ μμ trans configurationμμ λ°λ³μΈμμ μν μ ν μ μμ κ²μΌλ‘ μ¬λ£λλ€.Introduction: Mutations in the SLC26A4 gene encoding pendrin, a transmembrane exchanger, are a common cause of congenital hearing loss and is associated with enlargement of the vestibular aqueduct (EVA). Pendred syndrome (PDS) and nonsyndromic enlarged vestibular aqueduct (NSEVA, DFNB4) are clinical forms related with these mutations. It was reported that bi-allelic SLC26A4 mutations are associated with PDS whereas one or zero mutant alleles are associated with NSEVA. In cases of the bi-allelic SLC26A4 mutations with one known pathogenic mutant allele, evaluating the pathogenic potential of the newly detected SLC26A4 mutant allele could be important for clinical assessment and diagnostic and therapeutic approaches. This evaluation includes the genotypic and phenotypic context as well as functional characterization of the intracellular trafficking and anion exchange properties. In this study, we sought to define the pathogenic potential of the novel missense variant
Material and methods: A 3 year-old girl with progressive sensorineural hearing loss and the parents were included in this study. Patient and parents underwent clinical, audiological, radiological and genetic evaluations. DNA sequencing of SLC26A4 gene was performed to identify genetic mutations. The protein processing and anion exchange activities were examined to evaluate the effects of mutations. DNA sequence analyses of SLC26A4were performed by polymerase chain reaction (PCR) amplification of 21 exons and splice sites. We characterized the ability of mutant pendrin products to traffic to the plasma membrane in COS-7 cells and to transport Cl-, and HCO3- in HEK 293 cells.
Results: The pure tone average was 66dB HL in the right ear and 75 dB HL in the left ear, respectively. Temporal bone computed tomography showed enlarged vestibular aqueduct and Mondinis malformation bilaterally. By sequencing analysis, bi-allelic mutations were identifiedone pathogenic variant (p.H723R), and one novel missense variant (p.V510D).The p.V510D pendrin product was shown to be entrapped in the ER, not trafficking to the plasma membrane in COS-7 cells. The p.V510D pendrin rate constants for Cl-/HCO3-exchange reduced, compared with those for wild-type pendrin
Conclusion: The newly detected p.V510D is a novel missense variant, not described in literature. A trans configuration with pathogenic p.H723R, and impaired cellular trafficking and anion exchange property suggested the evidence of pathogenic potential of p.V510D.μλ¬Έμ΄λ‘ ----------------------------------------------------------------------------------------------------------- i
λͺ©μ°¨ ---------------------------------------------------------------------------------------------------------------- iii
List of tables -------------------------------------------------------------------------------------------------------iv
List of figures ------------------------------------------------------------------------------------------------------ v
List of abbreviations and symbols ------------------------------------------------------------------------------vi
μλ‘ ----------------------------------------------------------------------------------------------------------------1
μ°κ΅¬μ¬λ£ λ° λ°©λ² ----------------------------------------------------------------------------------------------4
μ°κ΅¬κ²°κ³Ό ----------------------------------------------------------------------------------------------------------7
κ³ μ°° ----------------------------------------------------------------------------------------------------------------9
κ²°λ‘ ----------------------------------------------------------------------------------------------------------------12
μ°Έκ³ λ¬Έν ----------------------------------------------------------------------------------------------------------13
Tables ---------------------------------------------------------------------------------------------------------------17
Figures --------------------------------------------------------------------------------------------------------------18
κ΅λ¬Έμ΄λ‘------------------------------------------------------------------------------------------------------------26Docto
μ΄λ³νμ κ³ λ €ν μ μ°ν μΈν보μ μ§λν΄μ
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :ν곡μ°μ£Όκ³΅νκ³Ό,2000.Maste
Analysis of Antecedents and Consequence of Mentor Ownership and Commitment in Formal Mentoring within Corporate Settings
λ³Έ μ°κ΅¬λ κΈ°μ
μ 곡μμ λ©ν λ§μμ λ©ν λ λ©ν°μ 곡λ νμ΅μμ΄λ©°, λ©ν μ μ€λμκ³Ό λͺ°μ
μ΄ λ©ν λ§μ ν΅μ¬μ±κ³΅μμΈμ΄λΌλ μΈμμμ μΆλ°νμ¬, λ©ν μ μ€λμκ³Ό λͺ°μ
μ μν₯μμΈκ³Ό κ²°κ³ΌμμΈμ κ·λͺ
νκ³ , μ΄ μμΈλ€ κ°μ μ§Β·κ°μ μ μΈ μΈκ³Όκ΄κ³λ₯Ό λνλ΄λ μ μ λͺ¨νμ μ ν©μ±μ κ²μ¦νμλ€. μ νμ°κ΅¬λ₯Ό ν λλ‘ βλ©ν μ μ€λμβκ³Ό βλ©ν μ λͺ°μ
β μμΈμ 맀κ°λ³μΈμΌλ‘ μ€μ νκ³ , λ©ν μ μ€λμκ³Ό λͺ°μ
μ μν₯μ λ―ΈμΉλ μμΈμΌλ‘ λ©ν μ βνμ΅λͺ©νμ§ν₯μ±β, λ©ν°μ λν΄ βμ§κ°λ μ μ¬μ±βκ³Ό βμ§κ°λ μ μ©μ±β, βμ‘°μ§μ μ§μβ, βμμ¬μ μ§μβ μμΈμ μ μ νμκ³ , λ©ν μ μ€λμκ³Ό λͺ°μ
μ κ²°κ³ΌμμΈμΌλ‘ λ©ν μ βλ©ν λ§ νλ‘κ·Έλ¨ ν¨κ³Όμ± μ§κ°β μμΈμ μ μ νμ¬ μ΄κΈ° μ μ λͺ¨νμ κ°λ°νλ€.
μ°κ΅¬ κ²°κ³Ό, βμ‘°μ§μ μ§μβκ³Ό βμμ¬μ μ§μβ μμΈμ λμΌν μμΈμΌλ‘ λνλ μ΄ λ μμΈμ κ²°ν©νμ¬ μ΄κΈ° μ μ λͺ¨νμ μ¬μ€μ νλ€. μ¬μ€μ λ λͺ¨νμ μ ν©λλ λΉκ΅μ μνΈνκ³ μμΈλ€ κ°μ μ§οΌκ°μ ν¨κ³Όλ λͺ¨λ ν΅κ³μ μΌλ‘ μ μν κ²μΌλ‘ λνλ¬λ€. νΉν λ©ν μ λ©ν°μ λν΄ βμ§κ°λ μ μ©μ±βκ³Ό λ©ν μ βνμ΅λͺ©νμ§ν₯μ±β μμΈμ λͺ¨λ λ©ν μ μ€λμκ³Ό λͺ°μ
λΏ μλλΌ, λ©ν μ λ©ν λ§ νλ‘κ·Έλ¨ ν¨κ³Όμ± μ§κ°μλ μλμ μΌλ‘ λ€λ₯Έ μμΈμ λΉν΄ μν₯λ ₯ μλ ν΅μ¬λ³μΈμΌλ‘ μμ©νλ κ²μΌλ‘ λνλ¬λ€.The primary purpose of this study is to identify antecedents and consequence of mentor ownership and commitment from the mentorβs perspective, and to empirically verify an entire structural model which indicates a causal relationship between antecedents and consequence of mentor ownership and commitment.
225 mentors from 6 companies participated in the survey. The major findings indicated that the initial theoretical model consisting of 8 factors was modified to a model consisting of 7 factors and the 7-factor model showed a reasonable fit to the data. The direct and indirect effects of antecedents and consequence of mentor ownership and commitment were found to be statistically significant. Among the antecedent variables, a mentorβs perceived mutuality toward his/her mentee and learning goal orientation were proved to be relatively influential factors which had direct effects on mentor ownership & commitment and indirect effects on a mentorβs perceived mentoring program effectiveness
Applicability of the Malcolm Baldrige Criteria to Improve the Quality of Virtual Universities in Korea
β
. μλ‘
1. μ°κ΅¬μ νμμ±
2. μ°κ΅¬μ λͺ©μ
β
‘. TQMκ³Ό Malcolm Baldrige κΈ°μ€
1. TQMμ κ°λ
λ° λ°μ κ³Όμ
2. Malcolm Baldrige νμ§μ κ°μ
3. κ΅μ‘κΈ°κ΄μ μν Malcolm Baldrige ν΅μ¬κ°μΉμ ꡬ체μ κΈ°μ€
4. Malcolm Baldrige νμ§μ μμ κ΅μ‘κΈ°κ΄ μ¬λ‘: λ―Έκ΅ Monfort κ²½μλν
β
’. κ΅λ΄ μ격λνμ μ΄μ²΄μ μ§ κ°μ μ μνMalcolm Baldrige κΈ°μ€μ μ μ© κ°λ₯μ±μ λν νμ
β
£. κ²°λ‘ λ° μμ¬μ
μ°Έκ³ λ¬Έν
abstractWe are seeing an increasing number of online university credit courses and even fully-online degree programs all over the country. Over the past several years, the number of stand alone virtual universities which offer online degree programs has increased substantially. Currently, there are 17 virtual universities offering fully- online degree programs in Korea. The recent growth of virtual universities is being fueled by the increasing number of life-long learners. However, the quality of education and service provided by virtual universities is regarded as poorer than established universities. Since established universities with offline programs are authorized to offer degrees via the internet, and as foreign educational institutions are expected to enter Korea's distance learning market in the near future, virtual universities are faced with major challenges in improving the quality of education and service.
The primary purpose of this study is to explore the applicability of the Malcolm Baldrige criteria, which are known as the global standards for total quality management(TQM), to improve the quality of Korea-based virtual universities.
In this paper, we review the Malcolm Baldrige criteria for educational institutions and a case of Malcolm Baldrige Award winner (Kenneth W. Monfort College of Business). We also discuss the applicability of the Malcolm Baldrige criteria to improve the quality of virtual universities. Finally, we suggest 5 recommendations that will help enhance the quality and competitiveness of virtual universities in Korea