3 research outputs found

    ์›์ž์ธต ์ฆ์ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ œ์กฐ๋œ pํ˜• SnO ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์ „๊ธฐ์  ํŠน์„ฑ์— ๋Œ€ํ•œ ๊ณ„๋ฉด ์ธต ํšจ๊ณผ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€(ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์žฌ๋ฃŒ), 2021. 2. ํ™ฉ์ฒ ์„ฑ.This dissertation investigates the improvement of the electrical properties of thin-film transistor (TFT) devices using atomic-layer deposition (ALD)-based high-quality p-type SnO thin film, with the aim of securing research technology for next-generation semiconductor channels and dielectric film materials. First, the origin of hysteresis in the drain-source current (IDS) โ€“ gate-source voltage (VGS) characteristics of ALD p-type SnO TFTs was examined by adopting ALD Al2O3 interfacial layers (IL) between the SnO channel layer and the SiO2 gate insulator (GI) layer. The SnO TFTs with SiO2 GI exhibited a large hysteresis voltage (Vhy) owing to the trap state density near the interface between the SnO active layer and the SiO2 GI (border trap). Both the experimental results and the theoretical calculations showed that the origin of the border traps was the ใ€–Snใ€—_Si^(+0) gap states in SiO2, which was induced by the Sn diffusion into the SiO2 layer. The adoption of Al2O3 films as ILs suppressed the Sn diffusion. The effectiveness of IL, however, is dependent on the thickness, crystallinity, and density of the Al2O3 films. The Vhy of the SnO TFTs can be decreased when the thickness and density of the ILs increase as long as the amorphous structure of the Al2O3 IL is maintained after the rapid thermal annealing (RTA) process. The p-type ALD SnO TFTs with optimum ILs exhibited a high on/off ratio of IDS (1.2ร—105), high field effect mobility (1.6 cm2V-1s-1), and a small Vhy (0.2 V). Second, abnormal electrical properties in SnO devices with Al2O3 interfacial layer were examinated. An in-depth analysis was conducted on how mobile oxygen vacancies (VO) in the IL thin film affects three types of characteristics; the VGS dependence, gate current characteristics, and capacitance characteristics. One of the abnormal characteristics is the VGS dependence. The gate-induced electrical instability of SnO TFTs with SiO2 and Al2O3/SiO2 gate dielectric layers was evaluated. The Vhy and threshold voltage (Vth) in the transfer characteristics of SnO TFTs depended on the sweep range and rate of VGS. The TFT with an Al2O3/SiO2 gate dielectric layer exhibited reduced Vhy and stable Vth compared to the device without an Al2O3 layer. The introduction of an Al2O3 layer between the SnO channel and the SiO2 layer suppressed the electron and hole trapping at the channel/dielectric interface and contained VOs that counteracted the hole trapping effect. Another abnormal characteristics due to VOs inside the Al2O3 IL is reflected in the gate current characteristic. A large IGS is related to the field-induced migration of the VOs in the Al2O3 layer. The VO could produce an internal electric field that could balance with the external electric field. The charge transfer through the gate dielectric could be affected, and gate leakage can be dominant compared to the channel current in the depletion bias region. As a results, the hysteresis directions of I-V and C-V do not coincide with each other. The other abnormal characteristics due to VOs inside the Al2O3 IL is reflected in the capacitance characteristic. The additional capacitance is observed in the specific voltage. At the sufficiently negative VGS, most of the VO must be dragged toward the Al2O3/SiO2 interface, making them inactive to the AC stimulus (hole trapping/detrapping) in the accumulation bias region. It seems that the energy level of the VO within the bandgap of the SnO is closer to the valence band, so it incurs the additional capacitance by hole trapping in the accumulation region. However, as the VGS further decreased, the VOs are migrated toward the Al2O3/SiO2 interface again, which removed the additional capacitance at sufficiently negative VGS region. Third, in order to improve the performance of the SnO TFTs, an Al-doped HfO2 (Al: HfO2) thin film having a high dielectric constant replacing the Al2O3 thin film was adopted as an IL. Al doping can suppress the crystallization of HfO2 thin film, but it acts as an obstacle to the thin film density, greatly deteriorating the performance of the SnO TFT device. On the other hand, when the crystallized Al: HfO2 IL was adopted, a large Vhy (6.4 V) was shown, but excellent TFT device performance (ฮผFE= 5.7 cm2/Vโˆ™s, SS= 0.39 V/dec., Ion/Ioff= 5.6ร—105) were achieved due to the high dielectric constant of HfO2-based film (ษ›r=26). Although it was necessary to apply bias stress for a long time for program and erase operation, the SnO/Al:HfO2/SiO2 stacked TFTs demonstrated electrical programmable and erasable characteristics as well as data retention capability. Therefore, SnO TFT devices can be used for memory devices as well as electronic circuits according to IL materials with different hysteresis characteristics.๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ฐจ์„ธ๋Œ€ ๋ฐ˜๋„์ฒด ์ฑ„๋„ ๋ฐ ์œ ์ „๋ง‰ ๋ฌผ์งˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๊ธฐ์ˆ  ํ™•๋ณด๋ฅผ ๋ชฉํ‘œ๋กœ, ๋‹จ์›์ž ์ฆ์ฐฉ๋ฒ• (Atomic Layer Deposition, ALD) ๊ธฐ๋ฐ˜ ๊ณ ํ’ˆ์งˆ์˜ pํ˜• ์‚ฐํ™” ์ฃผ์„ (SnO) ๋ฐ•๋ง‰์„ ์ ์šฉํ•œ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ (Thin-Film Transistor, TFT) ์†Œ์ž์˜ ์ „๊ธฐ์  ํŠน์„ฑ ํ–ฅ์ƒ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์—ดํ™” ํ˜„์ƒ ํ‰๊ฐ€์™€ ์›์ธ ๊ทœ๋ช…์„ ํ†ตํ•œ ์†Œ์ž์˜ ์ „๊ธฐ์  ์•ˆ์ •์„ฑ ๋ถ„์„ ๋ฐ ํŠน์„ฑ ๊ฐœ์„  ๋ฐฉ์•ˆ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ์งธ๋กœ, ALD pํ˜• SnO TFT์†Œ์ž ๊ตฌ๋™ ์‹œ ํ™•์ธ๋˜๋Š” ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค (hysteresis) ๊ฑฐ๋™์˜ ์›์ธ ๋ถ„์„์„ ์œ„ํ•ด, ๊ณ„๋ฉด์ธต (interfacial layer, IL) ์‚ฝ์ž… ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์—ด์‚ฐํ™” SiO2 ๊ฒŒ์ดํŠธ ์ ˆ์—ฐ๋ง‰ (gate insulator, GI) ๊ณผ SnO ์ฑ„๋„๋ง‰ ๊ฐ„์˜ ๊ณ„๋ฉด ๋ฐ˜์‘๊ณผ ์›์ž์˜ ์ƒํ˜ธ ํ™•์‚ฐ์„ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด, IL๋กœ์„œ ALD Al2O3 ๋ฐ•๋ง‰์„ ๋‘ ๋ฌผ์งˆ ์‚ฌ์ด์— ์‚ฝ์ž…ํ•˜์˜€๋‹ค. ๊ณ„๋ฉด์ธต์ด ์—†๋Š” SnO TFT ์†Œ์ž์˜ ๊ฒฝ์šฐ ํฐ GI๊ณผ SnO ์ฑ„๋„๋ง‰ ๊ณ„๋ฉด์—์„œ์˜ ํŠธ๋žฉ ๋ฐ€๋„์— ์˜ํ•ด ๋†’์€ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค ์ „์•• (Vhy)์„ ๋ณด์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ์ด๋ก ์  ๊ณ„์‚ฐ์„ ํ†ตํ•ด, ์ด๋Ÿฌํ•œ ๊ณ„๋ฉด ํŠธ๋žฉ์€ GI์œผ๋กœ์˜ Sn ํ™•์‚ฐ์— ๋”ฐ๋ผ ์ ˆ์—ฐ๋ง‰ ๋‚ด ใ€–Snใ€—_Si^(+0) ๊ฐญ ์ƒํƒœ์— ์˜ํ•œ ๊ฒƒ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. Al2O3๋ฅผ IL๋กœ ์ฑ„ํƒํ•˜๋ฉด์„œ Sn์˜ ํ™•์‚ฐ ๋ฐฉ์ง€์ธต์œผ๋กœ์„œ ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, IL์˜ ๋‘๊ป˜, ๊ฒฐ์ •์„ฑ, ๋ฐ€๋„์— ๋”ฐ๋ผ ๊ทธ ํšจ๋ ฅ์ด ๋‹ฌ๋ผ์กŒ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ๊ธ‰์† ์—ด์ฒ˜๋ฆฌ (rapid thermal annealing, RTA) ํ›„ Al2O3 IL์˜ ๋น„์ •์งˆ ๊ตฌ์กฐ๊ฐ€ ์œ ์ง€๋˜๋Š” ํ•œ, IL์˜ ๋‘๊ป˜์™€ ๋ฐ€๋„๊ฐ€ ์ฆ๊ฐ€ํ•  ๋•Œ SnO TFT์˜ Vhy๋Š” ๊ฐ์†Œํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฒฐ์ •์„ฑ IL์˜ ๊ฒฝ์šฐ Sn ํ™•์‚ฐ ์–ต์ œ ํŠน์ง•์„ ์žƒ์–ด๋ฒ„๋ ธ๋‹ค. pํ˜• ALD SnO TFT์— ์ตœ์  ์กฐ๊ฑด์˜ IL์„ ๋„์ž…ํ•œ ๊ฒฝ์šฐ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค ์ „์••์„ 0.2 V๊นŒ์ง€ ํฌ๊ฒŒ ๋‚ฎ์ถค๊ณผ ๋™์‹œ์— on/off ์ „๋ฅ˜๋น„(1.2 ร— 105), ์ „๊ณ„ ์ด๋™๋„ (1.6 cm2 V-1s-1) ์ธก๋ฉด์—์„œ๋„ ์šฐ์ˆ˜ํ•œ TFT ์†Œ์ž ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘˜์งธ๋กœ, SnO TFT ์†Œ์ž์˜ Al2O3 IL ์‚ฝ์ž… ์‹œ ๋‚˜ํƒ€๋‚˜๋Š” ๋น„์ •์ƒ์  ์ „๊ธฐ์  ํŠน์„ฑ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. IL ๋‚ด๋ถ€์˜ ์ด๋™์„ฑ ์‚ฐ์†Œ ๊ณต๊ณต(oxygen vacancy, VO)์ด ๊ฒŒ์ดํŠธ ์ „์•• ์˜์กด์„ฑ, ๊ฒŒ์ดํŠธ ์ „๋ฅ˜ ํŠน์„ฑ ๋ฐ ์ปคํŽ˜์‹œํ„ด์Šค ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. SnO TFT ์†Œ์ž์˜ ๋™์ž‘ ํŠน์„ฑ ์ค‘ Vhy ๋ฐ ๋ฌธํ„ฑ ์ „์•• (threshold voltage, Vth)๋Š” ์Šค์œ• ๋ฒ”์œ„์™€ ๊ฒŒ์ดํŠธ ์ „์•• ์†๋„์— ์˜์กดํ•˜์˜€๋‹ค. Al2O3 IL์„ ์‚ฝ์ž…ํ•œ TFT ์†Œ์ž์˜ ๊ฒฝ์šฐ, ์ด์ „๋ณด๋‹ค Vhy๋ฅผ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ ์•ˆ์ •์ ์ธ Vth๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. SnO ์ฑ„๋„๋ง‰๊ณผ GI ์‚ฌ์ด์— IL์„ ๋„์ž…ํ•˜์—ฌ, ๊ณ„๋ฉด์—์„œ ์ „์ž ํŠธ๋žฉํ•‘์„ ๋ง‰์•„์ค„ ๋ฟ ์•„๋‹ˆ๋ผ IL ๋‚ด๋ถ€์— ์กด์žฌํ•˜๋Š” VO๊ฐ€ ์ •๊ณต ํŠธ๋žฉํ•‘์— ๋Œ€์‘ํ•˜๋Š” ํšจ๊ณผ ๋•Œ๋ฌธ์ด๋‹ค. Al2O3 IL ๋‚ด๋ถ€์˜ VO๋กœ๋ถ€ํ„ฐ ๋˜ ํ•˜๋‚˜์˜ ๋น„์ •์ƒ์  ๊ฑฐ๋™์„ ๋ณด์ด๋Š” ๊ฒŒ์ดํŠธ ์ „๋ฅ˜๊ฐ€ ๋น„๋กฏ๋œ๋‹ค. IL ๋‚ด๋ถ€์˜ VO์˜ ์ „๊ณ„ ์œ ๋„ ์ด๋™์œผ๋กœ ๋งค์šฐ ํฐ IGS๊ฐ€ ๊ด€์ฐฐ๋œ๋‹ค. VO๋Š” ์™ธ๋ถ€ ์ „๊ธฐ์žฅ๊ณผ ๊ท ํ˜•์„ ์ด๋ฃจ๋Š” ๋‚ด๋ถ€ ์ „๊ธฐ์žฅ์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋กœ์จ ๊ฒŒ์ดํŠธ ์œ ์ „์ฒด๋ฅผ ํ†ตํ•œ ์ „ํ•˜ ์ „๋‹ฌ์ด ์˜ํ–ฅ์„ ๋ฐ›์•„, ๊ณตํ• ์˜์—ญ์—์„œ์˜ ์ฑ„๋„ ์ „๋ฅ˜๋ณด๋‹ค ๊ฒŒ์ดํŠธ ๋ˆ„์„ค์ด ์šฐ์„ธํ•ด์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ I-V์™€ C-V์˜ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค ๋ฐฉํ–ฅ์€ ์„œ๋กœ ์ผ์น˜ํ•˜์ง€ ์•Š๋Š”๋‹ค. Al2O3 IL ๋‚ด๋ถ€ VO๋กœ๋ถ€ํ„ฐ ๋น„๋กฏ๋˜๋Š” ๋งˆ์ง€๋ง‰ ๋น„์ •์ƒ์  ํŠน์„ฑ์€ ์ปคํŽ˜์‹œํ„ด์Šค ํŠน์„ฑ์— ๋ฐ˜์˜๋˜๋Š”๋ฐ, ์ด๋Š” ํŠน์ • ์ „์••์—์„œ ์ถ”๊ฐ€์ ์ธ ์ปคํŽ˜์‹œํ„ด์Šค๊ฐ€ ๊ด€์ฐฐ๋˜๋Š” ๊ฒƒ์ด๋‹ค. ์ถฉ๋ถ„ํžˆ ์Œ์˜ ๊ฒŒ์ดํŠธ ์ „์••์ธ๊ฐ€ ์‹œ, VO๋Š” Al2O3/SiO2 ๊ณ„๋ฉด์œผ๋กœ ๋Œ๋ ค๊ฐ€, ์ถ•์  ์˜์—ญ์—์„œ AC ์ž๊ทน์—์˜ ๋ฐ˜์‘์„ฑ (์ •๊ณต ํŠธ๋žฉํ•‘/๋””ํŠธ๋žฉํ•‘) ๋น„ํ™œ์„ฑํ™” ์ƒํƒœ๊ฐ€ ๋œ๋‹ค. SnO ๋ฐด๋“œ๊ฐญ ๋‚ด VO์˜ ์—๋„ˆ์ง€ ์ค€์œ„๊ฐ€ ๊ฐ€์ „์ž๋Œ€์— ์ธ์ ‘ํ•˜์—ฌ, ์ถ•์  ์˜์—ญ์—์„œ ์ •๊ณต ํŠธ๋žฉํ•‘์— ์˜ํ•ด ์ถ”๊ฐ€์ ์ธ ์ปคํŽ˜์‹œํ„ด์Šค๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ํ•˜์ง€๋งŒ ๊ฒŒ์ดํŠธ ์ „์••์ด ๋”์šฑ ๊ฐ์†Œํ•˜๋ฉด, VO๊ฐ€ Al2O3/SiO2 ๊ณ„๋ฉด์œผ๋กœ ๋‹ค์‹œ ์ด๋™ํ•˜๊ฒŒ ๋˜์–ด ์ถ”๊ฐ€ ์ปคํŽ˜์‹œํ„ด์Šค ํšจ๊ณผ๋ฅผ ์—†์• ๊ฒŒ ๋œ๋‹ค. ์…‹์งธ๋กœ, TFT ์†Œ์ž์˜ ์ „๋‹ฌ ํŠน์„ฑ ํ–ฅ์ƒ์„ ํ™•๋ณดํ•˜๊ณ ์ž Al2O3 ๋ฐ•๋ง‰์„ ๋Œ€์ฒดํ•˜๋Š” ๊ณ ์œ ์ „์œจ์˜ Al ๋„ํ•‘๋œ HfO2 ๋ฐ•๋ง‰์„ IL๋กœ ์ ์šฉํ•˜๊ณ , ํ•ด๋‹น ์†Œ์ž์˜ ์ „๊ธฐ์  ํŠน์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. Al ๋„ํ•‘ ์‹œ HfO2 ๋ฐ•๋ง‰์˜ ๊ฒฐ์ •ํ™”๋ฅผ ์–ต์ œํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ๋ฐ•๋ง‰ ๋ฐ€๋„์— ๋ฐฉํ•ด๊ฐ€ ๋˜์–ด SnO TFT ์†Œ์ž ์„ฑ๋Šฅ์„ ์•…ํ™”์‹œํ‚จ๋‹ค. ๋ฐ˜๋ฉด, ๊ฒฐ์ •์„ฑ์˜ Al ๋„ํ•‘๋œ HfO2 ๋ฐ•๋ง‰์„ IL๋กœ ๋„์ž… ์‹œ, ํฐ Vhy๋ฅผ ๋ณด์ด์ง€๋งŒ ๋†’์€ ์œ ์ „ ์ƒ์ˆ˜ (ฮตr=26) ๋•๋ถ„์— ์šฐ์ˆ˜ํ•œ TFT ์†Œ์ž ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค (ฮผFE= 5.7 cm2/Vโˆ™s, SS= 0.39 V/dec., Ion/Ioff= 5.6ร—105). ์ด๋Ÿฌํ•œ ํŠน์„ฑ์œผ๋กœ ์ด์šฉํ•˜์—ฌ SnO/Al:HfO2/SiO2 ์ ์ธต TFT์˜ ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž๋กœ์„œ์˜ ๋™์ž‘ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ, ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋œ ์ƒํƒœ (๋˜๋Š” ์ง€์›Œ์ง„ ์ƒํƒœ)์™€ ์›๋ž˜ ์ดˆ๊ธฐ ์ƒํƒœ ์‚ฌ์ด์˜ ์ „ํ™˜ ํŠน์„ฑ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋‹ค๋ฅธ ๊ณ„๋ฉด์ธต ๋ฌผ์งˆ์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค ํŠน์„ฑ์„ ๋ณด์ด๋Š” SnO ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์ „์ž ํšŒ๋กœ ์†Œ์ž๋ฟ ์•„๋‹ˆ๋ผ ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž๋กœ๋„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Abstract i Table of Contents v List of Figures ix List of Tables xxviii List of Abbreviations xxix 1. Introduction 1 1.1. Overview 1 1.2. Bibliography 5 2. Literature 8 2.1. The overview of p-type oxide semiconductors 8 2.2. The p-type SnO 16 2.3. The p-type SnO thin films grown by ALD and its application to TFTs 22 2.4. Bibliography 30 3. Characterizations of p-type SnO thin films grown by atomic layer deposition (ALD) and its application to TFTs 34 3.1. Process development of the ALD SnO 34 3.1.1. Introduction 34 3.1.2. Experimental procedure 36 3.1.3. Results and discussion 37 3.1.4. Summary 42 3.2. ALD SnO thin film to channel layer of TFT device 55 3.2.1. Introduction 55 3.2.2. Experimental procedure 55 3.2.3. Results and discussion 57 3.2.4. Summary 63 3.3. Bibliography 72 4. Reduction of the Hysteresis Voltage in Atomic-layer-deposited p-Type SnO Thin-Film Transistors by Adopting Al2O3 Interfacial Layer TFTs 74 4.1. Bulk effect on hysteresis behavior of ALD SnO TFTs 74 4.1.1. Introduction 74 4.1.2. Experimental procedure 74 4.1.3. Results and discussion 75 4.1.4. Summary 76 4.2. Interfacial effect on hysteresis behavior of ALD SnO TFTs 78 4.2.1. Introduction 78 4.2.2. Experimental procedure 79 4.2.3. Results and discussion 82 4.2.4. Summary 94 4.3. Bibliography 120 5. Examination of Abnormal Electrical Properties in SnO devices with Al2O3 interfacial layer 122 5.1. Effects of mobile oxygen vacancies within Al2O3 film on gate voltage dependence 122 5.1.1. Introduction 122 5.1.2. Experimental procedure 123 5.1.3. Results and discussion 124 5.1.4. Summary 133 5.2. Effects of mobile oxygen vacancies within Al2O3 film on gate current and capacitance characteristics 144 5.2.1. Introduction 144 5.2.2. Experimental procedure 146 5.2.3. Results and discussion 147 5.2.1. Summary 158 5.3. Bibliography 173 6. Improvement of Electrical Properties in SnO TFTs with HfO2-based interfacial layer 176 6.1. A Study on the factors that determine the performance of SnO TFTs adopting a high-k Al:HfO2 IL 176 6.1.1. Introduction 176 6.1.2. Experimental procedure 177 6.1.3. Results and discussion 178 6.1.4. Summary 184 6.2. Bibliography 200 7. Conclusion 203 Abstract (in Korean) 205Docto
    corecore