51 research outputs found

    CdSe ์–‘์ž์ ์˜ ์ „๊ธฐ์  ๊ตฌ์กฐ์™€ ๊นœ๋นก์ž„ ๋™์—ญํ•™์˜ ์ฃผ์‚ฌํ„ฐ๋„๋งํ˜„๋ฏธ๊ฒฝ ๋ฐ ๋ถ„๊ด‘ํ•™ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(๋ฌผ๋ฆฌํ•™์ „๊ณต), 2012. 8. ๊ตญ์–‘.์–‘์ž์ ์€ ํฌ๊ธฐ๋กœ ๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์—๋„ˆ์ง€ ๊ฐญ์œผ๋กœ ์ธํ•ด์„œ ์–‘์ž์  ๋””์Šคํ”Œ๋ ˆ์ด๋‚˜ ์ƒ๋ฌผํ•™์  ๋ฐœ๊ด‘์ฒด๋‚˜ ๊ด‘์ „์†Œ์ž ๋“ฑ์˜ ๋งŽ์€ ์‘์šฉ์ด ์˜ˆ์ธก๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‘์šฉ์— ์žˆ์–ด์„œ ๊ฐ€์žฅ ํฐ ๊ฑธ๋ฆผ๋Œ์ด ๋˜๋Š” ๊ฒƒ์ด ๋ฐœ๊ด‘์˜ ๊นœ๋ฐ•์ž„(blinking) ํ˜„์ƒ์ด๋‹ค. ์ด ํ˜„์ƒ์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๋ชจํ˜•์ด ์ œ์‹œ๋˜์—ˆ์ง€๋งŒ, ๊ทธ ๊ธฐ๋ณธ์ ์ธ ์—ญํ•™์€ ์•„์ง ์ œ๋Œ€๋กœ ์ดํ•ด๋˜๊ณ  ์žˆ์ง€ ๋ชปํ•˜๋‹ค. ์ตœ๊ทผ์˜ ๋‹จ์ผ ์–‘์ž์  ๊ด‘๋ฐœ๊ด‘ ์‹คํ—˜์—์„œ ์–‘์ž์  ๋งˆ๋‹ค ๋‹ค๋ฅธ ๊นœ๋ฐ•์ž„ ํ˜•ํƒœ๋ฅผ ์ธก์ •ํ•œ ์ดํ›„๋กœ, ์–‘์ž์ ์— ๋Œ€ํ•œ ๋” ๋งŽ์€ ๊ตญ์†Œ์ ์ธ ์ธก์ •์ด ํ•„์š”ํ•ด ์ง€๊ณ  ์žˆ๋‹ค. ์ฃผ์‚ฌํ˜• ํ„ฐ๋„๋ง ํ˜„๋ฏธ๊ฒฝ๊ณผ ๋ถ„๊ด‘ํ•™ ์—ฐ๊ตฌ๋Š” ๋†’์€ ๊ณต๊ฐ„ ๋ฐ ์—๋„ˆ์ง€ ๋ถ„ํ•ด๋Šฅ์œผ๋กœ ์ธํ•ด์„œ ์ด๋Ÿฌํ•œ ์–‘์ž์ ๊ฐ„ ๋ณ€์ด๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•œ ์žฅ๋น„๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์–‘์ž์ ์„ ํ‘œ๋ฉด์— ๋ฟŒ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ํŽ„์Šคํ˜• ์ฃผ์‚ฌ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด์„œ CdSeํ•ต๊ณผ ZnS ๊ป๋ฐ๊ธฐ๋กœ ์ด๋ฃจ์–ด์ง„ ์–‘์ž์ ์„ ๋น„ํ™œ์„ฑ ๊ธˆ์†์ธ ๊ธˆ, ๋ฐ˜์‘์„ฑ ์ข‹์€ ๊ธˆ์†์ธ ๋‹ˆ์ผˆ, ๋ฐ˜์‘์„ฑ์ด ์—†๋Š” ์œก๊ฐ๊ฒฉ์žํ˜• ์งˆํ™”๋ถ•์†Œ ๋ฐ•๋ง‰๋“ฑ์— ๋ฟŒ๋ฆฌ๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€๋‹ค. ์ฃผ์‚ฌ ํ„ฐ๋„๋ง ๋ถ„๊ด‘ํ•™์„ ์ด์šฉํ•ด์„œ ์ธก์ •๋œ ์–‘์ž์ ์˜ ์ „์ž๊ตฌ์กฐ์— ์žˆ์–ด์„œ ์ผ๋ถ€๋Š” ์ˆœ์ด๋ก ์  ๊ณ„์‚ฐ๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•˜์˜€์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์˜ ์–‘์ž์ ์€ ์˜ˆ์ธก ๋ชปํ–ˆ๋˜ ์—๋„ˆ์ง€ ๊ฐญ ์•ˆ์˜ ์ƒํƒœ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋”์šฑ์ด ์ด๋Ÿฌํ•œ ์ƒํƒœ๋Š” ํ•˜๋‚˜์˜ ์–‘์ž์  ์•ˆ์—์„œ๋„ 1 ๋‚˜๋…ธ๋ฏธํ„ฐ ์ •๋„์˜ ์˜์—ญ์— ๊ตญ์†Œ์ ์œผ๋กœ ์กด์žฌํ•˜์˜€๋‹ค. ๊นœ๋ฐ•์ž„ ํ˜„์ƒ์„ ์„ค๋ช…ํ•˜๋Š” ์—ฌ๋Ÿฌ ๋ชจํ˜• ์ค‘ ์ผ๋ถ€๋Š” ์™ธ๋ถ€ ํฌํš ์ƒํƒœ๋ฅผ ๋™์›ํ•ด ๊นœ๋ฐ•์ž„์„ ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ ์ธก์ •๋œ ์ƒํƒœ๋Š” ์™ธ๋ถ€ ํฌํš ์ƒํƒœ์— ์ƒ์‘ํ•˜๋Š” ์ƒํƒœ๋ฅผ ์ธก์ •ํ•จ์œผ๋กœ์จ ์ด๋Ÿฌํ•œ ๋ชจํ˜•๋“ค์˜ ํƒ€๋‹น์„ฑ์„ ๋”ํ•ด ์ฃผ์—ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋”์šฑ ๊ทผ์‚ฌํ•œ ํฌํš์ƒํƒœ์˜ ๋ถ„ํฌ๋ฅผ ์ด์šฉํ•œ ๋ชจํ˜•์„ ์„ธ์›Œ ์™ธ๋ถ€ ํฌํš ์ƒํƒœ์˜ ์›์ธ์„ ๋ถˆ์™„์ „ํ•˜๊ฒŒ ๊ฒฐํ•ฉํ•œ ๋ง์”Œ์›€ ๋ถ„์ž๋กœ ์„ค๋ช…ํ–ˆ๋‹ค. ๋น„๋ก ์–‘์ž์  ํ‘œ๋ฉด์—์„œ์˜ ๋ง์”Œ์›€ ๋ถ„์ž๋Š” ๊ด€์ฐฐํ•˜์ง€ ๋ชปํ–ˆ์ง€๋งŒ, ํ„ฐ๋„๋ง ๋ถ„๊ด‘ํ•™ ์‹คํ—˜์—์„œ ๋‚˜ํƒ€๋‚œ ์Œ๋ฏธ๋ถ„์ €ํ•ญ ํ˜„์ƒ์„ ์„ค๋ช…ํ•จ์œผ๋กœ์จ ๋ง์”Œ์›€ ๋ถ„์ž๊ฐ€ ํ„ฐ๋„๋ง์žฅ๋ฒฝ์„ ๋งŒ๋“ฆ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์ค‘ ์žฅ๋ฒฝ์—์„œ ๋‚˜ํƒ€๋‚œ ์Œ๋ฏธ๋ถ„์ €ํ•ญ์— ๋Œ€ํ•œ ์ˆ˜์น˜ํ•ด์„์„ ํ†ตํ•ด์„œ ๋ง์”Œ์›€ ๋ถ„์ž์žฅ๋ฒฝ์˜ ๋‘๊ป˜๋„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ฃผ์‚ฌํ˜• ํ„ฐ๋„๋ง ํ˜„๋ฏธ๊ฒฝ๊ณผ ๊ด‘์ž ์ธก์ • ์žฅ๋น„๋ฅผ ๊ฒฐํ•ฉ ํ•˜์—ฌ, ๋‹จ์ผ ์–‘์ž์ ์œผ๋กœ๋ถ€ํ„ฐ์˜ ์ „๋ฅ˜์™€ ๊ด‘์ž๋ฅผ ํ•จ๊ป˜ ์ธก์ •ํ•œ๋‹ค๋ฉด ๊นœ๋ฐ•์ž„ ํ˜„์ƒ์— ๋Œ€ํ•œ ๋งŽ์€ ๋…ผ์Ÿ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Since Quantum Dot (QD) has a size-tunable energy gap, it has various promising applications like QD display, biological fluorophore and photo voltaic device. In the way of applications, the intermittency in fluorescence so called blinking hinders the efficient generation of photons. Various models are suggested to describe this phenomenon, but the fundamental mechanism is not fully understood yet. Recent single QD Photo Luminescence (PL) experiments revealed dot-to-dot variation in the blinking, so more local probings of QDs are required. Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) studies are adequate to observe such local variations of electrical properties for its high spatial and energy resolution. In this study, we used pulse injection method to deposit QDs on various surfaces. With the method, we deposited CdSe/ZnS core-shell type QDs capped with organic molecules on gold, nickel and hexagonal Boron Nitride (h-BN) thin film which are representatives of inert metal, reactive metal and inert insulator, respectively. And the electronic states are measured by STS. Though some QDs show electrical structure consistent with ab-initio calculation, most of QDs have some unexpected electrical states inside the gap region. Besides, such states have certain distribution on single QD surface and localized in about 1 nm range. Some blinking models suggested the existence of external trap states to explain the dark state of the blinking. The observed states can prove the validity of the trap models and suggest some improvements of the models with the information about the distribution of the trap states. With the realistic distribution of the trap states, we suggest a simple model which explains the origin of the trap state as an external defect with capping molecule bonded. Though the individual capping molecules are not resolved on QD surface, Negative Differential Resistance (NDR), observed at high tunneling current, proved the existence of a capping molecule barrier under the QD. Numerical simulation of the Double Barrier Tunneling Junction (DBTJ) reproduced the observed NDR and also provided the relevant thickness of capping molecule. By combining a photon detection system with STM, a simultaneous measurement of the tunneling current and photons from a single QD is possible, and it will end the long debates on the blinking mechanism.Abstract i Chapter 1 Quantum Dot and its Applications 1 1.1 Energy Levels of QD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Confined States . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Excitonic States . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Applications of QD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Synthesis of QD . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Light Emitting Diode . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 Biological Application . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Blinking Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Proposed Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Trap States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 2 Scanning Tunneling Microscopy and Spectroscopy 18 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Tunneling Current Modeling . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Tersoff-Hamann Approach . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Transfer Hamiltonian Approach . . . . . . . . . . . . . . . . . . 19 2.3 Tunneling Barrier Modeling . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Single Barrier Tunneling Junction . . . . . . . . . . . . . . . . 23 2.3.3 Double Barrier Tunneling Junction . . . . . . . . . . . . . . . . 24 2.4 Scanning Tunneling Spectroscopy . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Local Density of States . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Spatial Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 3 Experimental Techniques 27 3.1 Pulse Injection Method . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Previous QD Deposition Methods . . . . . . . . . . . . . . . . 27 3.1.2 Previous Results of Pulse Injection . . . . . . . . . . . . . . . . 29 3.1.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.4 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Ingredients of QD Solution . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Core-shell Type QD . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 Properties of Deposited Solvents . . . . . . . . . . . . . . . . . 43 3.2.3 Solvent Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.4 Deposition Rate Determination . . . . . . . . . . . . . . . . . . 46 3.3 Preparation of Substrates . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.1 Metal Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.2 Insulator Substrates . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 4 Electronic Structure of QD 48 4.1 Imaging QD with STM . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.1 Determination of Tip Sharpness . . . . . . . . . . . . . . . . . 48 4.2 Electronic Structure of QDs . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.1 Metal Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.2 h-BN Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 QD Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.1 Metal Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.2 h-BN Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Chapter 5 External Trap States 66 5.1 Tunneling Spectra of External Trap States . . . . . . . . . . . . . . . . 66 5.2 Possible Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Chapter 6 Modeling of Negative Differential Resistance 80 6.1 Observation of NDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 NDR Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2.1 Symmetry Matched Resonant Tunneling . . . . . . . . . . . . . 83 6.2.2 Double Barrier Tunneling Junction Effect . . . . . . . . . . . . 88 6.3 DBTJ Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.1 Potential Distribution . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.2 Calculation of Tunneling Conductance . . . . . . . . . . . . . . 94 Chapter 7 Imaging and Characterization of Capping Molecules 96 7.1 Importance of Capping Layer . . . . . . . . . . . . . . . . . . . . . . . 96 7.2 Capping Molecules on Au(111) . . . . . . . . . . . . . . . . . . . . . . 98 7.2.1 Images of Capping Molecules . . . . . . . . . . . . . . . . . . . 98 7.3 Determination of Bonding Direction . . . . . . . . . . . . . . . . . . . 98 7.3.1 DFT Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.3.2 Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . 99 Appendices 112 Chapter A Calculation of DBTJ NDR model 113 A.1 Potential Distribution of STM junction . . . . . . . . . . . . . . . . . 113 A.2 DBTJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Chapter B Hexagonal Boron Nitride Thin Film on Ni(111) 117 B.1 Various Defect Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 B.2 Gap States Observed on the Edge of h-BN . . . . . . . . . . . . . . . . 119 Chapter C Design of Photon STM 122 ์ดˆ๋ก 123 ๊ฐ์‚ฌ์˜ ๊ธ€ 125Docto

    Screening of DBT Degrading Microorganisms for Fossil Fuel Desulfurization

    No full text
    Maste

    Development of Molecular Markers Based on AFLP and MITE in Ginseng Species

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€(์ž‘๋ฌผ์ƒ๋ช…๊ณผํ•™์ „๊ณต), 2012. 8. ์–‘ํƒœ์ง„.๊ณ ๋ ค์ธ์‚ผ(Panax ginseng C. A. Meyer)์€ ์ค‘์š”ํ•œ ์•ฝ๋ฆฌ์  ํšจ๋Šฅ์„ ๊ฐ€์ง„ ์˜ค๊ฐ€๊ณผ์˜ ๋Œ€ํ‘œ์  ์•ฝ์šฉ ์ž‘๋ฌผ์ด๋‹ค. ๊ณ ๋ ค์ธ์‚ผ๊ณผ ์ „์น ์‚ผ (์ค‘๊ตญ์‚ผ), ํ™”๊ธฐ์‚ผ (๋ฏธ๊ตญ์‚ผ)์€ ์ „์„ธ๊ณ„์ ์œผ๋กœ ์•ฝ์šฉ์˜ ๋ชฉ์ ์œผ๋กœ ์ด์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ทธ ์ค‘์—์„œ๋„ ๊ณ ๋ ค์ธ์‚ผ์€ ๊ทธ ํšจ๋Šฅ์ด ๋‹ค๋ฅธ ์ข…์— ๋น„ํ•˜์—ฌ ์›”๋“ฑํ•˜์—ฌ ๋†’์€ ํ‰๊ฐ€๋ฅผ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ณ ๋ ค์ธ์‚ผ์€ ์ง€๊ธˆ๊นŒ์ง€ 9ํ’ˆ์ข…์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋Š”๋ฐ ์œก์„ฑ๋œ ํ’ˆ์ข…๋“ค ๊ฐ„์˜ ์‹๋ณ„ ๋ฐฉ๋ฒ•์€ ์ƒ์œก ๊ณผ์ • ์ค‘์— ๊ฒฝํ—˜์ ์ธ ํ˜•ํƒœ์  ๊ด€์ฐฐ์„ ํ†ตํ•ด์„œ๋งŒ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณด๋‹ค ์ฒด๊ณ„์ ์ด๊ณ  ๊ณผํ•™์ ์ธ ๋ฐฉ๋ฒ•์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ณ ๋ ค์ธ์‚ผ ํ’ˆ์ข…๋“ค๊ณผ ๊ด€๋ จ ์ข…๋“ค์„ ๊ตฌ๋ถ„ํ•˜๋Š” AFLP์™€ MITE์— ๊ธฐ๋ฐ˜ํ•œ ๋ถ„์ž ๋งˆ์ปค๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. AFLP๋Š” ๋Œ€์ƒ ์‹๋ฌผ์˜ ์œ ์ „์ฒด ์ •๋ณด๊ฐ€ ์—†์–ด๋„ ๋งˆ์ปค๋ฅผ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋Š” ์ข‹์€ ๊ธฐ์ˆ ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ AFLP๋ฅผ ํ†ตํ•ด ์–ป์€ 549๊ฐœ์˜ ๋ฐด๋“œ ์ค‘์— ๊ณ ๋ ค์ธ์‚ผ๊ณผ ๋ฏธ๊ตญ์‚ผ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๋งˆ์ปค 117๊ฐœ๋ฅผ ์ฐพ์•˜๊ณ  ๊ณ ๋ ค์ธ์‚ผ ํ’ˆ์ข… ๊ฐ„์— ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ๋งˆ์ปค 5๊ฐœ๋ฅผ ์ฐพ์•˜์œผ๋ฉฐ ๊ฐ๊ฐ 21.3 %์™€ 0.9 %์— ํ•ด๋‹นํ•œ๋‹ค. ๊ณ ๋ ค์ธ์‚ผ ํ’ˆ์ข… ๊ฐ„ ๋งˆ์ปค ๊ฐœ๋ฐœ์˜ ํšจ์œจ์„ฑ์ด ๋‚ฎ์€ ๊ฒƒ์€ ์ด๋“ค๊ฐ„์— ์œ ์ „๋ณ€์ด๊ฐ€ ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. MITE๋Š” 600bp ์ดํ•˜์˜ ์ž‘์€ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋ฉฐTIRs๊ณผ TSDs ๊ทธ๋ฆฌ๊ณ  ์œ ์ „์ฒด ๋‚ด์— ๋งŽ์€ ๋ณต์ œ์ˆ˜๋ฅผ ๊ฐ–๋Š” ๋“ฑ์˜ ํŠน์ง•์œผ๋กœ ์ธํ•ด ๋ณด๋ฆฌ๋‚˜ ์˜ฅ์ˆ˜์ˆ˜ ๋“ฑ ๋งŽ์€ ์‹๋ฌผ์ฒด์—์„œ ๋งˆ์ปค๋ฅผ ์ฐพ๋Š”๋ฐ ์ด์šฉ๋˜์–ด ์™”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 133๊ฐœ์˜ MITE consensus ์„œ์—ด ์ค‘์— 25๊ฐœ์˜ MITE family์— ํ•ด๋‹นํ•˜๋Š” 73๊ฐœ์˜ MITE ์ง€์—ญ์„ ์ตœ์ข… ๋ถ„์„ํ•˜์—ฌ ๊ณ ๋ ค์ธ์‚ผ๊ณผ ๋ฏธ๊ตญ์‚ผ์„ ๊ตฌ๋ถ„ํ•˜๋Š” 16๊ฐœ์˜ ๋งˆ์ปค๋ฅผ ์ฐพ์•˜์œผ๋ฉฐ ์ด๊ฒƒ์€ 21.9 %์— ํ•ด๋‹นํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  73๊ฐœ ์ค‘์— 10๊ฐœ๊ฐ€ MIP ๋ฐด๋“œ ํŒจํ„ด์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š”๋ฐ, ์ด ์ค‘ 3๊ฐœ๊ฐ€ MITE์˜ ์‚ฝ์ž… ์—ฌ๋ถ€๋กœ ์•Œ ์ˆ˜ ์žˆ๋Š” ๊ตฌ๋ถ„ ๋งˆ์ปค์ด๋ฉฐ ์ „๋ถ€ ๊ณ ๋ ค์ธ์‚ผ์—๋งŒ MITE๊ฐ€ ์‚ฝ์ž…๋œ ๊ฒƒ์œผ๋กœ ๋ณด์•„ ๊ณ ๋ ค์ธ์‚ผ๊ณผ ๋ฏธ๊ตญ์‚ผ์˜ ์ข… ๋ถ„ํ™” ์ดํ›„ ๊ณ ๋ ค์ธ์‚ผ์—๋งŒ ํŠน์ด์ ์œผ๋กœ MITE๊ฐ€ ์‚ฝ์ž…๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋˜ํ•œ MIP ๋ฐด๋“œ ํŒจํ„ด์„ ๋ณด์ด๋Š” 10๊ฐœ๋ฅผ ๊ฐ€์ง€๊ณ  ์ด๋“ค์˜ ๋ฐด๋“œ ์„œ์—ด์„ ๋ถ„์„ํ•˜์—ฌ MITE์˜ ์กด์žฌ ์œ ๋ฌด๋ฅผ ํ™•์ธํ•˜๊ณ  ์ด๋“ค ์„œ์—ด์˜ ๋น„๊ต ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ ํ–ฅํ›„ MITE family์— ๋Œ€ํ•œ ๋” ๋งŽ์€ ๋น„๊ต ๋ถ„์„ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ์ธ์‚ผ ์œ ์ „์ฒด์˜ ์ง„ํ™”๋ฅผ ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Korean ginseng (Panax ginseng C. A. Meyer) is an important medicinal herb belonging to family Araliaceae. Three species, P. ginseng, P. notoginseng and P. quinquefolius, have been generally used as herbal medicine worldwide. To date, nine Panax ginseng cultivars have been cultivated. However, identification of them is being carried out only by empirical morphological observation. Thus, the main objective of this study is development of AFLP and MITE-based molecular markers to distinguish P. ginseng cultivars and related species. AFLP analysis is an excellent technique for molecular marker development of plant species whose genome information is limited. In AFLP analysis, 117 (21.3%) polymorphic bands were identified between P. ginseng and P. quinquefolium and 5 (0.9%) bands among P. ginseng cultivars among the total 549 amplified bands. This inefficiency result to find a marker among ginseng cultivars may be due to low genetic variation among cultivars. MITE which has been successfully used in other plant species can also be used for marker development in ginseng species, because of its characteristic small size and high copy number. In this study, 133 MITE consensus sequences were identified. As a result, 73 MITE regions of 25 MITE families were analyzed and 16 (21.9%) polymorphic regions were identified between P. ginseng and P. quinquefolium. In addition, 10 MITE regions were identified to show MITE-based insertional polymorphism (MIP) patter, 3 between P. ginseng and P. quinquefolium and rest 7 within single cultivar itself. All MIP bands found in P. quinquefolium were smaller than their counterpart bands in P. ginseng. This implies that MITEs might be inserted in P. ginseng genome after divergence from P. quinquefolium. Furthermore, many InDel and base substitutions were found among flanking sequences of MITE, when compared scaffold sequences matching to MIP amplicons. It indicates that P. ginseng genome was probably duplicated before insertion of the MITEs, although some MIP regions found in scaffolds seem to be resulted from MITE excision. In conclusion, this study analyzed genetic polymorphism in P. ginseng cultivars and related Panax species by AFLP and MITE analysis, and revealed polymorphic regions that can be used for molecular marker development. These results will be a valuable resource to understand structure and evolution of ginseng genome.CONTENTS ABSTRACT I CONTENTS III LIST OF TABLES V LIST OF FIGURES VII LIST OF ABBREVIATIONS VIII INTRODUCTION 1 MATERIAL AND METHODES 4 1. Plant materials and genomic DNA extraction 4 2. AFLP analysis 4 3. Identification of MITE sequence in P. ginseng scaffold 6 4. PCR amplification of MITE containing sequence 12 5. Sequence analyses and comparison 12 RESULTS 13 1. AFLP analysis between two P. ginseng cultivars 13 2. AFLP analysis of 11 ginseng samples 14 3. Identification of MITE consensus sequences 18 4. Analysis of 73 scaffolds with MITE 24 5. PCR analysis of MITE-based insertional polymorphism 30 6. Sequence comparison of MITE flanking sequences showing MIP 36 DISCUSSION 48 REFERENCE 52 ABSTRACT IN KOREAN 58Maste

    Synthesis and Surface Chemistry of CdSe Nanocrystals Using Both Growth and Etching

    No full text
    DoctorHighly luminescent CdSe nanocrystals are a promising fluorophore for various applications due to their color-tunable bandgap in the visible range. Their luminescent properties are strongly affected by both the size and the surface of the nanocrystals because of the quntum confinement effect and high surface-to-volume ratio. To reproducibly yield CdSe nanocrystals with desired structure and optical properties, a series of researches has been done on synthesizing CdSe nanocrystals and manipulating the surface by using both colloidal growth and etching techniques.We first developed a reproducible synthesis of CdSe nanocrystals having zinc-blende (ZB) lattice structure by using a non-coordinating solvent system and used the as-prepared ZB CdSe nanocrystals as a substrate for the synthesis of core/shell nanocrystals, such as CdSe/ZnS, CdSe/ZnSe/ZnS, and CdSe/CdS/ZnS. Only two monolayers of shell coverage for each material is enough to enhance the photoluminescence (PL) quantum efficiency and achieve ~50% PL efficiency in water from all core/shell nanocrystals after ligand exchange with 3-mercaptopropionic acid. The coherent epitaxial growth of the zinc-blende shell for core/shell nanocrystals is confirmed by powder X-ray diffraction (XRD) patterns and high-resolution transmission electron microscopy images. The PL spectra obtained at 5 K illustrates the effects of the shell composition on deep-trap emission, which manifestes the role of hole-trapping surface defects. The spectral shift in both the first absorption maximum and PL band varies with the shell composition following the simple band-offset picture. The shell-to-shell variation of the spectral shift and changes in XRD patterns suggests that the contraction of CdSe lattice occurs with the concomitant redshift in the PL band, most notably with the ZnS shell. Water-soluble nanocrystals shows longer PL lifetimes than organic-soluble ones. As results, the zinc-blende structure is considered a viable alternate replacing the wurtzite structure for the uniform growth of shells and the isotropic incorporation of capping ligands.Then, we studied the effects of two of most important surface capping ligands, primary amine and tertiary phosphine, on the surface trap states of CdSe nanocrystals. It was found that binary amine&#8211phosphine ligand system effectively passivates the surface trap states for both electron and hole, thereby making highly luminescent CdSe nanocrystals. Propylamine (PA) and tributylphoshpine (TBP) was added to the nanocrystal solution in chloroform at room temperature. Before the passivation, as-prepared CdSe nanocrystals was mostly covered with fatty acid carboxylates and showed low QE with a multi-exponential PL decay. Addition of excess PA induces blueshifts in both absorption and emission spectra with a slight increase in quantum efficiency and PL lifetime, whereas that of TBP reduces the PL intensity. Surprisingly, addition of both PA and TBP made nanocrystals highly luminescent with a ~50% quantum efficiency and a nearly single-exponential PL decay. The characterization of the nanocrystal surface and the chemical species dissolved into the solution after amine&#8211phosphine passivation was carried out by using X-ray photoelectron spectroscopy (XPS) and electrospray ionization mass spectrometry (ESI-MS). The XPS analysis shows that fatty acid carboxylates are covered on the surface of as-prepared nanocrystals and both amine and phosphine removes carboxylates from the surface. The ESI mass spectra identifies the chemical species dissolved into the solvent by ligand. As results, it was suggested that primary amine and tertiary phosphine dissolve surface adatoms into the solution and cooperatively passivate surface dangling bonds on CdSe nanocrystals, thereby reproducibly yielding bright CdSe nanocrystals.Lastly, we developed two different etching techniques of CdSe nanocrystals. Each of the two ligands in binary passivation, primary amine and tertiary phosphine, could etch the nanocrystals in their unique ways: tertiary phosphines assisted the oxidative etching of CdSe nanocrystals by oxygen and primary amines induced anodic decomposition of the nanocrystals in chloroform under continuous UV irradiation. In phosphine-assisted oxidative etching, exposing the CdSe nanocrystal solution in chloroform with excess amount of TBP under oxygen induced a continuous blueshift in the absorption spectra. The measurement of the TBP oxidation rate showed that the nanocrystals facilitated the oxidation of TBP while they were continuously etched. Moreover, XPS measurement of the Cd/Se atomic stoichiometry confirmed that the oxidative etching yielded highly Cd-rich surface. Taken together, it was suggested that TBP absorbed on the surface selenium sites assisted the oxidative etching of selenium atoms. MS analysis of the etching product shows that selenium is oxidized from Se2&#8722to Se0 by the etching process and Cd2+ ions ejected from the nanocrystls are stabilized by either chloride ions (Cl&#8722) produced from the chloroform solvent or oxidation products of TBP such as TBP oxide. In amine&#8211UV etching, CdSe nanocrystals passivated with PA in chloroform showed continuous size reduction under UV irradiation. The etching was quenched by either exchanging the solvent to hexane that could not accept electrons like chloroform or adding TBP that could passivate the surface hole traps on the nanocrystals, stongly indicating that the nanocrystals undergo anodic decomposition. The etched CdSe nanocrystals passivated with binary passivation shows high QE which is comparable to that of the nanocrystals prepared by colloidal growth, suggesting that primary amine&#8211UV etching can reduce the size of nanocrystals without significantly altering the surface states. XPS analysis showed that the amine&#8211UV etching process yielded nearly one-to-one Cd/Se stoichiometry. MS analysis of the etching product show that selenium is oxidized to Se0 as in the case of tertiary phosphine&#8211oxygen etching and the Cd2+ ions are mostly stabilized by Cl&#8722from the solvent. As results, we could reproducibly and finely control the size of CdSe nanocrystals and manipulate their surface stoichiometry by using different etching techniques. These etching processes are broadly applicable to other binary compound semiconductor nanocrystals and nanomaterials.๊ณ ๋ฐœ๊ด‘์„ฑ CdSe ๋‚˜๋…ธ๊ฒฐ์ •์€ ๊ฐ€์‹œ๊ด‘์„  ์ „ ์˜์—ญ์—์„œ ํ˜•๊ด‘ ํŒŒ์žฅ์ด ์กฐ์ ˆ๋˜๋Š” ๋งค์šฐ ์œ ์šฉํ•œ ๋ฐœ๊ด‘์ฒด๋กœ์„œ ์žฌ๋ฃŒ, ์ „์ž, ๋ฌผ๋ฆฌ, ์ƒํ™”ํ•™, ๊ทธ๋ฆฌ๊ณ  ์—๋„ˆ์ง€ ๊ณตํ•™ ์˜์—ญ์—์„œ ํก/๋ฐœ๊ด‘์ฒด๋กœ ์‘์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋‚˜๋…ธ๋ฏธํ„ฐ ํฌ๊ธฐ์˜ ๋ฌผ์งˆ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์–‘์ž๊ฐ€๋‘ ํšจ๊ณผ์™€ ๋†’์€ ํ‘œ๋ฉด ๋Œ€ ๋ถ€ํ”ผ ๋น„์œจ๋กœ ์ธํ•ด ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๋ฐœ๊ด‘์„ฑ์€ ๊ฒฐ์ •์˜ ๋ชจ์–‘๊ณผ ํ‘œ๋ฉด ์ƒํƒœ์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง„๋‹ค. ๋•Œ๋ฌธ์— CdSe ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๋ฐœ๊ด‘์„ฑ์„ ์žฌํ˜„์ ์œผ๋กœ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์›ํ•˜๋Š” ๊ตฌ์กฐ์˜ ๋‚˜๋…ธ๊ฒฐ์ •์„ ์žฌํ˜„์ ์œผ๋กœ ํ•ฉ์„ฑํ•˜๋Š” ๊ธฐ์ˆ  ๋ฟ ์•„๋‹ˆ๋ผ ํ•ฉ์„ฑ๋œ ๋‚˜๋…ธ๊ฒฐ์ •์˜ ํ‘œ๋ฉด์„ ์ œ์–ดํ•˜๋Š” ๊ธฐ์ˆ ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ CdSe ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๊ตฌ์กฐ์™€ ํ‘œ๋ฉด์„ ์กฐ์ ˆํ•˜๊ณ  ๊ทธ๊ฒƒ์ด ๋‚˜๋…ธ๊ฒฐ์ • ๋ฐœ๊ด‘์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ž์„ธํžˆ ์‚ดํŽด๋ณธ ์ผ๋ จ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด์˜ ์„ฑ์žฅ๋ฒ• ์œ„์ฃผ์˜ ๋‚˜๋…ธ๊ฒฐ์ • ํ•ฉ์„ฑ ๋ฟ ์•„๋‹ˆ๋ผ ์ œ์–ด ๊ฐ€๋Šฅํ•œ ๋‚˜๋…ธ๊ฒฐ์ • ์‹๊ฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๊ตฌ์กฐ์™€ ํ‘œ๋ฉด ์ƒํƒœ๋ฅผ ๋”์šฑ ๋‹ค์–‘ํ•˜๊ณ  ์ •๋ฐ€ํ•˜๊ฒŒ ์กฐ์ ˆํ•˜์˜€๋‹ค.๋จผ์ €, ์ œ 2์žฅ์—์„œ CdSe ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๊ตฌ์กฐ๋ฅผ ๋‹ค์–‘ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด์˜ wurtzite ๊ฒฐ์ • ๊ตฌ์กฐ์˜ CdSe์— ๋Œ€์‘๋˜๋Š” zinc-blende ๊ฒฐ์ •๊ตฌ์กฐ์˜ CdSe ๋‚˜๋…ธ๊ฒฐ์ •์„ ํ•ฉ์„ฑํ•˜๊ณ  ๊ทธ ํŠน์„ฑ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. Non-coordinating ์šฉ๋งค ์กฐ๊ฑด์—์„œ ์žฌํ˜„์ ์œผ๋กœ zinc-blende CdSe ๋‚˜๋…ธ๊ฒฐ์ •์„ ํ•ฉ์„ฑํ•˜์˜€๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ CdSe/ZnS, CdSe/ZnSe/ZnS, ๊ทธ๋ฆฌ๊ณ  CdSe/CdS/ZnS ํ˜•ํƒœ์˜zinc-blende ํ•ต/๊ป์งˆ ๊ตฌ์กฐ ๋‚˜๋…ธ๊ฒฐ์ •์„ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ์ด๋“ค ํ•ต/๊ป์งˆ ๊ตฌ์กฐ ๋‚˜๋…ธ๊ฒฐ์ •์€ ๋ชจ๋“  ์กฐ์„ฑ์—์„œ ๋‹จ 2 monolayer ๋‘๊ป˜์˜ ๊ป์งˆ ์„ฑ์žฅ๋งŒ์œผ๋กœ ๋†’์€ ๋ฐœ๊ด‘์„ฑ ํ–ฅ์ƒ์„ ๋ณด์˜€๊ณ  3-mercaptopropionic acid๋ฅผ ์ด์šฉํ•œ ํ‘œ๋ฉด ์น˜ํ™˜ ๋ฐ ์ˆ˜์šฉ์„ฑ ๋‚˜๋…ธ๊ฒฐ์ • ์ œ์กฐ ์ดํ›„์—๋„ ~50% ์˜ ๋†’์€ ๋ฐœ๊ด‘์ˆ˜์œจ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. X์„  ํšŒ์ ˆํŒจํ„ด๊ณผ ์ „์žํ˜„๋ฏธ๊ฒฝ ์‚ฌ์ง„์„ ํ†ตํ•œ ๊ตฌ์กฐ ๋ถ„์„ ๊ฒฐ๊ณผ ๋ชจ๋“  ํ•ต/๊ป์งˆ ๊ตฌ์กฐ ๋‚˜๋…ธ๊ฒฐ์ •์—์„œ ๊ป์งˆ ๋ฌผ์งˆ์ด ์ž˜ ์ •๋ ฌ๋œ epitaxial ์„ฑ์žฅ์„ ์ผ์œผ์ผฐ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, 5K ์ €์˜จ์—์„œ์˜ ํ˜•๊ด‘ ์ธก์ • ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ํ•ต/๊ป์งˆ ๊ตฌ์กฐ ๋‚˜๋…ธ๊ฒฐ์ •์— ํ‘œ๋ฉด ๊ฒฐํ•จ์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•˜๋Š” holeํŠธ๋žฉ์ด ๋‚จ์•„ deep-trap ๋ฐœ๊ด‘์„ ์ผ์œผํ‚ด์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ป์งˆ ์„ฑ์žฅ์— ๋”ฐ๋ฅธ band-edge ํก์ˆ˜ ๋ฐ ๋ฐœ๊ด‘ ํŒŒ์žฅ์˜ ์ด๋™๊ณผ X์„  ํšŒ์ ˆ ํŒจํ„ด ๋ณ€ํ™”๋Š” ํ•ต/๊ป์งˆ ๊ตฌ์กฐ ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๋ ๊ตฌ์กฐ ๋ณ€ํ™”๊ฐ€ ๋‹จ์ˆœํ•œ band-offset ๋„์‹๊ณผ ์ž˜ ์ผ์น˜ํ•จ์„ ๋ณด์—ฌ์ฃผ์—ˆ์„ ๋ฟ ์•„๋‹ˆ๋ผ ๊ป์งˆ ์„ฑ์žฅ์œผ๋กœ ์ธํ•œCdSe ํ•ต์˜ ๊ฒฉ์ž ์ˆ˜์ถ•์ด ์ŠคํŽ™ํŠธ๋Ÿผ์˜ ์ ์ƒ‰ํŽธ์ด๋ฅผ ์ˆ˜๋ฐ˜ํ•จ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ˆ˜์šฉ์„ฑ ๋‚˜๋…ธ๊ฒฐ์ •์œผ๋กœ์˜ ํ‘œ๋ฉด ๋ฐ ์šฉ๋งค ์น˜ํ™˜ ๊ฒฐ๊ณผ ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๋ฐœ๊ด‘ ์ˆ˜๋ช…์€ ์กฐ๊ธˆ ๋Š˜์–ด๋‚ฌ๋‹ค. ์ด์ƒ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ zinc-blende CdSe ๋‚˜๋…ธ๊ฒฐ์ •์ด ๊ธฐ์กด์˜ wurtzite CdSe ๋‚˜๋…ธ๊ฒฐ์ •์„ ๋Œ€์น˜ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐœ๊ด‘์ฒด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.์ œ 3์žฅ์—์„œ๋Š” ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด ์ƒํƒœ ๋ฐ ๋ฆฌ๊ฐ„๋“œ๊ฐ€ ๋ฐœ๊ด‘์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๊ด€ํ•œ ์ฒด๊ณ„์ ์ธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋…ผ์˜ํ•˜์˜€๋‹ค. CdSe ๋‚˜๋…ธ๊ฒฐ์ • ํ•ฉ์„ฑ์—์„œ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋‘ ๋ฆฌ๊ฐ„๋“œ์ธ 1์ฐจ ์•„๋ฏผ๊ณผ 3์ฐจ ํฌ์Šคํ•€์ด CdSe ๋‚˜๋…ธ๊ฒฐ์ •์˜ ํ‘œ๋ฉด ํŠธ๋žฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋‘ ๋ฆฌ๊ฐ„๋“œ๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•œ binary amine-phosphine ํŒจ์‹œ๋ฒ ์ด์…˜์ด ๋งค์šฐ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œ๋ฉด์˜ electron ํŠธ๋žฉ๊ณผ hole ํŠธ๋žฉ์„ ์ œ๊ฑฐํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ƒ์˜จ์˜ ํด๋กœ๋กœํฌ๋ฆ„์— ๋…น์ธ CdSe ๋‚˜๋…ธ๊ฒฐ์ • ์šฉ์•ก์— propylamine๊ณผ tributylphosphine์„ ๋”ํ•˜๋ฉฐ ๋ฐœ๊ด‘์„ฑ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ์–ด๋–ค ๋ฆฌ๊ฐ„๋“œ๋„ ๋”ํ•˜๊ธฐ ์ „ ์•ฝํ•œ ๋ฐœ๊ด‘๊ณผ mult-exponential ๋ฐœ๊ด‘ ์‡ ํ‡ด๋ฅผ ๋ณด์—ฌ์ฃผ๋˜ CdSe ๋‚˜๋…ธ๊ฒฐ์ •์€ ๊ณผ๋Ÿ‰์˜ propylamine์ด ๋”ํ•ด์ง€์ž ํก/๋ฐœ๊ด‘ ํŒŒ์žฅ์˜ ์ฒญ์ƒ‰ํŽธ์ด์™€ ํ•จ๊ป˜ ์•ฝ๊ฐ„์˜ ๋ฐœ๊ด‘์ˆ˜์œจ ๋ฐ ๋ฐœ๊ด‘์ˆ˜๋ช…์˜ ํ–ฅ์ƒ์„ ๋ณด์˜€์œผ๋ฉฐ tributylphosphine์ด ๋”ํ•ด์ง€์ž ํ˜•๊ด‘์˜ ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋†€๋ž๊ฒŒ๋„ propylamine๊ณผ tributylphosphine์ด ํ•จ๊ป˜ ๋”ํ•ด์ง€์ž ~50%์˜ ๋†’์€ ๋ฐœ๊ด‘ ์ˆ˜์œจ๊ณผ ํ•จ๊ป˜ single-exponential์— ๊ฐ€๊นŒ์šด ๋ฐœ๊ด‘์‡ ํ‡ด๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. X์„  ๊ด‘์ „์ž๋ถ„๊ด‘ํ•™๊ณผ ์งˆ๋Ÿ‰๋ถ„์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ amine-phosphine ํŒจ์‹œ๋ฒ ์ด์…˜์œผ๋กœ ์ธํ•œ ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด ์ƒํƒœ ๋ณ€ํ™”์™€ ํ‘œ๋ฉด์—์„œ ์šฉ๋งค๋กœ ๋…น์•„๋‚˜๊ฐ„ ์„ฑ๋ถ„์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ตœ์ดˆ ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด์— ๋ถ™์–ด์žˆ๋˜ carboxylate๊ฐ€ propylamine๊ณผ tributylphosphine์— ์˜ํ•ด ์ œ๊ฑฐ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋“ค์€ 1์ฐจ ์•„๋ฏผ๊ณผ 3์ฐจ ํฌ์Šคํ•€์ด ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด์˜ adatom๋“ค์„ ์šฉ๋งค๋กœ ๋…น์—ฌ๋‚ด๊ณ  ๋‘˜์ด ํ•จ๊ป˜ ํ‘œ๋ฉด์˜ electron๊ณผ hole ํŠธ๋žฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ํŒจ์‹œ๋ฒ ์ด์…˜ํ•˜์—ฌ ๋งค์šฐ ์žฌํ˜„์ ์ธ ํ‘œ๋ฉด ์ƒํƒœ์™€ ๋†’์€ ๋ฐœ๊ด‘ํšจ์œจ์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.๋์œผ๋กœ, ์ œ 4์žฅ์—์„œ ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๊ตฌ์กฐ ๋ฐ ํ‘œ๋ฉด ์ œ์— ๊ธฐ๋ฒ•์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ์ƒˆ๋กœ์šด ์‹๊ฐ๋ฒ•์„ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ์ œ 3์žฅ์˜ binary ํŒจ์‹œ๋ฒ ์ด์…˜์— ์“ฐ์ธ ๋‘ ๋ฆฌ๊ฐ„๋“œ๊ฐ€ ๊ฐ๊ฐ ๋…ํŠนํ•œ ํ™”ํ•™ ๊ณผ์ •์„ ํ†ตํ•ด CdSe ๋‚˜๋…ธ๊ฒฐ์ •์„ ๋ถ„ํ•ดํ•จ์„ ๊ด€์ฐฐํ•˜์˜€๊ณ  ์ด๋“ค์ด ๋งค์šฐ ์žฌํ˜„์ ์ธ ๋‚˜๋…ธ๊ฒฐ์ • ์‹๊ฐ๋ฒ•์œผ๋กœ ์“ฐ์ผ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์šฐ์„ , 3์ฐจ ํฌ์Šคํ•€์— ์˜ํ•ด ์ด‰์ง„๋˜๋Š”CdSe ๋‚˜๋…ธ๊ฒฐ์ •์˜ ์‚ฐํ™” ์‹๊ฐ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ณผ๋Ÿ‰์˜ tributylphosphine์ด ๋”ํ•ด์ง„ CdSe ๋‚˜๋…ธ๊ฒฐ์ •์˜ ํด๋กœ๋กœํฌ๋ฆ„ ์šฉ์•ก์„ ์‚ฐ์†Œ์— ๋…ธ์ถœ์‹œํ‚ค์ž ๋‚˜๋…ธ๊ฒฐ์ •์ด ๋น ๋ฅด๊ฒŒ ๋ถ„ํ•ด๋˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ๋‹จ์ง€ tributylphosphine ๋˜๋Š” ์‚ฐ์†Œ๋งŒ์œผ๋กœ๋Š” ์ด์™€ ๊ฐ™์€ ๋ถ„ํ•ด๊ณผ์ •์ด ์ผ์–ด๋‚˜์ง€ ์•Š์œผ๋ฉฐ tributylphosphine์˜ ์‚ฐํ™”๊ฐ€ ๋‚˜๋…ธ๊ฒฐ์ •์— ์˜ํ•ด ์ด‰์ง„๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, X์„  ๊ด‘์ „์ž๋ถ„๊ด‘ํ•™ ๋ถ„์„์„ ํ†ตํ•ด ์‹๊ฐ ๊ณผ์ •์ด ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด์˜ Cd/Se ์›์†Œ ๋น„์œจ์„ ๋งค์šฐ ์ฆ๊ฐ€์‹œํ‚ด์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋Š” ์‹๊ฐ ๋ฐ˜์‘์ด ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด์˜ Se์— ๊ฒฐํ•ฉ๋œ 3์ฐจ ํฌ์Šคํ•€์ด ์‚ฐ์†Œ์— ์˜ํ•œ ํ‘œ๋ฉด Se์˜ ์‚ฐํ™”๋ฅผ ์ด‰์ง„์‹œํ‚ด์„ ์˜๋ฏธํ•œ๋‹ค. ์งˆ๋Ÿ‰๋ถ„์„์„ ์ด์šฉํ•œ ์‹๊ฐ ์ƒ์„ฑ๋ฌผ ๋ถ„์„ ๊ฒฐ๊ณผ CdSe ์˜ Se2- ๊ฐ€ Se0 ์œผ๋กœ ์‚ฐํ™”๋˜์—ˆ๊ณ , ์ด ๊ณผ์ •์—์„œ ๋ฐฉ์ถœ๋œ Cd2+ ์ด์˜จ์€ ํด๋กœ๋กœํฌ๋ฆ„ ์šฉ๋งค์—์„œ ๋‚˜์˜จ ์—ผํ™” ์ด์˜จ์ด๋‚˜ tributylphosphine oxide์™€ ๊ฐ™์€ tributylphosphine์˜ ์‚ฐํ™”๋ฌผ ๋“ฑ์— ์˜ํ•ด ์šฉ๋งค ์†์—์„œ ์•ˆ์ •ํ™”๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๊ณผ๋Ÿ‰์˜ 1์ฐจ ์•„๋ฏผ์œผ๋กœ ํŒจ์‹œ๋ฒ ์ด์…˜๋œ CdSe ๋‚˜๋…ธ๊ฒฐ์ •์ด chloroform ์šฉ๋งค ์†์—์„œ ์ž์™ธ์„ ์— ๋…ธ์ถœ๋˜์—ˆ์„ ๋•Œ ๋งค์šฐ ๋น ๋ฅธ ์†๋„๋กœ ๋ถ„ํ•ด๋˜๋Š” ํ˜„์ƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์•„๋ฏผ-UV์— ์˜ํ•œ ์‹๊ฐ์€ ์šฉ๋งค๋ฅผ ์ „์ž ์นœํ™”๋„๊ฐ€ ํ˜„์ €ํžˆ ๋‚ฎ์€ hexane์œผ๋กœ ์น˜ํ™˜ํ•˜๊ฑฐ๋‚˜ ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด์˜ hole trap์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋Š” tributylphosphine ์„ ์ฒจ๊ฐ€ํ•˜์—ฌ ์–ต์ œํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‹๊ฐ ๊ณผ์ •์ด anodic decomposition ๊ณผ์ •์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ, ์‹๊ฐ ์ดํ›„ ์–ป์–ด์ง„ ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด์„ binary ํŒจ์‹œ๋ฒ ์ด์…˜ ํ•˜์ž ์„ฑ์žฅ๋ฒ•์„ ํ†ตํ•ด ์ œ์กฐํ•œ ๊ฐ™์€ ํฌ๊ธฐ์˜ CdSe ๋‚˜๋…ธ๊ฒฐ์ •๊ณผ ๋น„์Šทํ•œ ์ˆ˜์ค€์˜ ๋ฐ์€ ๋ฐœ๊ด‘์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋Š” amine-UV์— ์˜ํ•œ ์‹๊ฐ ๊ณผ์ •์ด ๋‚˜๋…ธ๊ฒฐ์ • ํ‘œ๋ฉด ์ƒํƒœ๋ฅผ ํฌ๊ฒŒ ๋ณ€ํ™”์‹œํ‚ค์ง€ ์•Š์œผ๋ฉด์„œ ํฌ๊ธฐ๋ฅผ ์†์‰ฝ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ๋งค์šฐ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ž„์„ ์˜๋ฏธํ•œ๋‹ค. X์„  ๊ด‘์ „์ž ๋ถ„๊ด‘ํ•™ ๋ถ„์„ ๊ฒฐ๊ณผ, ์•„๋ฏผ-UV ์‹๊ฐ์„ ํ†ตํ•ด ๊ฑฐ์˜ 1:1์˜ Cd/Se ์›์†Œ ๋น„์œจ์˜ ๋‚˜๋…ธ๊ฒฐ์ •์ด ์–ป์–ด์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ์งˆ๋Ÿ‰๋ถ„์„์„ ์ด์šฉํ•œ ์‹๊ฐ ์ƒ์„ฑ๋ฌผ ๋ถ„์„ ๊ฒฐ๊ณผ 3์ฐจ ํฌ์Šคํ•€-์‚ฐ์†Œ ์‹œ๊ฐ์—์„œ์™€ ์œ ์‚ฌํ•˜๊ฒŒ Se0 ๋กœ ์…€๋ ˆ๋Š„์ด ์‚ฐํ™”๋˜์—ˆ๊ณ  ์ด ๊ณผ์ •์—์„œ ๋–จ์–ด์ ธ ๋‚˜์˜จ Cd2+๋Š” ์šฉ๋งค์— ์˜ํ•ด ์—ผํ™” ์นด๋“œ๋ฎด ํ˜•ํƒœ๋กœ ์šฉ๋งค ์†์— ๋…น์•„์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋“ค์€ ์œ„์˜ ์‹๊ฐ ๋ฐฉ๋ฒ•๋“ค์ด ๋‚˜๋…ธ๊ฒฐ์ •์˜ ํฌ๊ธฐ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ‘œ๋ฉด ์กฐ์„ฑ์„ ์žฌํ˜„์ ์ด๊ณ  ์ •๋ฐ€ํ•˜๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์‹๊ฐ ๋ฐฉ๋ฒ•์€ ๋‹ค๋ฅธ ์ด์›์†Œ ๋ฐ˜๋„์ฒด ๋‚˜๋…ธ๊ฒฐ์ •์—๋„ ์ ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค

    SECURITY PRINTING CARTRIGE, SECURITY PAPER AND MANUFACTURING METHOD THREROF

    No full text
    ๋ณด์•ˆ ์ธ์‡„ ์นดํŠธ๋ฆฌ์ง€, ๋ณด์•ˆ ์šฉ์ง€ ๋ฐ ์ œ์กฐ ๋ฐฉ๋ฒ•์ด ๊ฐœ์‹œ๋œ๋‹ค. ๋ณด์•ˆ ์ธ์‡„ ์นดํŠธ๋ฆฌ์ง€๋Š” ๊ธฐ ์„ค์ •๋œ ์ ์–ด๋„ ํ•˜๋‚˜์˜ ๋ฌผ์งˆ์„ ํฌํ•จํ•˜๋Š” ์ž์„ฑ ์ž…์ž ๋ฐ ์ž์„ฑ ์ž…์ž๋ฅผ ํฌํ•จํ•˜๋Š” ์ฐฉ์ƒ‰ ์—ผ๋ฃŒ๋ฅผ ํฌํ•จํ•œ๋‹ค

    Metal oxide film coating method using solution process

    No full text
    ๋ณธ ๋ฐœ๋ช…์€ ๊ธˆ์† ์•Œ์ฝ•์‚ฌ์ด๋“œ ๋ฐ ์œ ๊ธฐ๋ฌผ์„ ํ˜ผํ•ฉํ•˜์—ฌ ๊ธˆ์†-์œ ๊ธฐ๋ฌผ ์ „๊ตฌ์ฒด ์šฉ์•ก์„ ์ค€๋น„ํ•˜๋Š” ์ œ 1 ๋‹จ๊ณ„; ์ž…์ž๊ฐ€ ๋ถ„์‚ฐ๋œ ์šฉ๋งค์— ์ƒ๊ธฐ ๊ธˆ์†-์œ ๊ธฐ๋ฌผ ์ „๊ตฌ์ฒด ์šฉ์•ก์„ ์ฒจ๊ฐ€ํ•˜์—ฌ ์ƒ๊ธฐ ์ž…์ž ํ‘œ๋ฉด์— ๊ธˆ์†-์œ ๊ธฐ๋ฌผ ์ „๊ตฌ์ฒด ํก์ฐฉ๋ง‰์„ ํ˜•์„ฑํ•˜๋Š” ์ œ 2 ๋‹จ๊ณ„; ๋ฐ ์ƒ๊ธฐ ๊ธˆ์†-์œ ๊ธฐ๋ฌผ ์ „๊ตฌ์ฒด ํก์ฐฉ๋ง‰์ด ํ˜•์„ฑ๋œ ์ž…์ž๋ฅผ ๊ฐ€์—ดํ•˜์—ฌ ํ‘œ๋ฉด์— ๊ธˆ์† ์‚ฐํ™”๋ฌผ ๋ง‰์ด ํ˜•์„ฑ๋œ ์ž…์ž๋ฅผ ํ˜•์„ฑํ•˜๋Š” ์ œ 3 ๋‹จ๊ณ„; ๋ฅผ ํฌํ•จํ•˜๊ณ , ์ƒ๊ธฐ ๊ธˆ์† ์‚ฐํ™”๋ฌผ ๋ง‰์˜ ๋‘๊ป˜๊ฐ€ ๋ชฉํ‘œํ•˜๋Š” ๋‘๊ป˜์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ์ƒ๊ธฐ ์ œ 2 ๋‹จ๊ณ„ ๋ฐ ์ œ 3 ๋‹จ๊ณ„๋ฅผ ๊ต๋Œ€ ๋ฐ˜๋ณตํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•˜๋Š” ๊ธˆ์† ์‚ฐํ™”๋ฌผ ๋ง‰ ์ฝ”ํŒ… ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค

    HIGHLY EMISSIVE SHORT WAVE INFRARED NANOPARTICLES AND METHOD FOR PREPARING THE SAME

    No full text
    The present invention provides shortwave infrared ray emitting nanoparticles including a core having band gap energy of E1; an intermediate layer that is formed on the core and has band gap energy of E2; and an outer layer that is formed on the intermediate layer and has band gap energy of E3, in which the size of the E2 is smaller than the size of the E1 and the size of the E3. According to the present invention, it is possible to provide a solar cell which is improved in efficiency and life span and can be produced by a solution process
    • โ€ฆ
    corecore