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Abstract

Since Quantum Dot (QD) has a size-tunable energy gap, it has various promising

applications like QD display, biological fluorophore and photo voltaic device. In the

way of applications, the intermittency in fluorescence so called ‘blinking’ hinders

the efficient generation of photons. Various models are suggested to describe this

phenomenon, but the fundamental mechanism is not fully understood yet. Recent

single QD Photo Luminescence (PL) experiments revealed dot-to-dot variation in the

blinking, so more local probings of QDs are required. Scanning Tunneling Microscopy

(STM) and Spectroscopy (STS) studies are adequate to observe such local variations

of electrical properties for its high spatial and energy resolution.

In this study, we used pulse injection method to deposit QDs on various surfaces.

With the method, we deposited CdSe/ZnS core-shell type QDs capped with organic

molecules on gold, nickel and hexagonal Boron Nitride (h-BN) thin film which are

representatives of inert metal, reactive metal and inert insulator, respectively. And the

electronic states are measured by STS. Though some QDs show electrical structure

consistent with ab-initio calculation, most of QDs have some unexpected electrical

states inside the gap region. Besides, such states have certain distribution on single

QD surface and localized in about 1 nm range.

Some blinking models suggested the existence of external trap states to explain

the dark state of the blinking. The observed states can prove the validity of the trap

models and suggest some improvements of the models with the information about

the distribution of the trap states. With the realistic distribution of the trap states,
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we suggest a simple model which explains the origin of the trap state as an external

defects with capping molecule bonded. Though the individual capping molecules are

not resolved on QD surface, Negative Differential Resistance (NDR), observed at high

tunneling current, proved the existence of a capping molecule barrier under the QD.

Numerical simulation of the Double Barrier Tunneling Junction (DBTJ) reproduced

the observed NDR and also provided the relevant thickness of capping molecule.

By combining a photon detection system with STM, a simultaneous measurement

of the tunneling current and photons from a single QD is possible, and it will end the

long debates on the blinking mechanism.

Keywords: Quantum Dot, Trap State, Capping Molecule, Negative Differential Re-

sistance, Scanning Tunneling Spectroscopy

Student Number: 2005-20377
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Chapter 1 Quantum Dot and its Applications

1.1 Energy Levels of QD

Semiconductor nanocrystals, often called Quantum Dots (QDs), have been stud-

ied intensively for its confined discrete energy levels[53] and their tunability by size.

We can calculate the electronic energy levels by Density Functional Theory (DFT)[19]

calculation or Linear Combination of Atomic Orbitals (LCAO)[4, 36]. However, with

these methods, only small size QDs can be calculated because of the massive size of

the calculation[61]. In the other way, tight binding calculations based on effective mass

approximation are also possible, and these methods have their origins in band struc-

ture of bulk material. With these approaches, electron levels from conduction bands

and hole levels from valence bands can be obtained. In section 1.1.1, the substance of

the “top down’’ approach is introduced.

1.1.1 Confined States

QD has a forbidden energy gap originated from its semiconductor nature[51] and

the gap is tunable by the size of the crystal or in other words controlling the confine-

ment effect[68]. So a theoretical prediction of the change of energy gap from the bulk

value can be achieved by introducing a confinement potential to the bulk states as

a perturbation. Like the Bloch theorem introduced the periodicity of crystal lattice

through the Bloch envelope function[13], QD states also can be described by the enve-

lope function correspond to the confinement potential. In this context, the derivation

of the Bloch theorem has some common ideas with the perturbation approach of

1



QD[11].

Understanding the motion of electrons in indefinite amount of atoms is not an

easy task[37]. Bloch’s theorem, however, makes the situation feasible with simple

assumptions of periodicity. It states that the eigenstates of infinitely periodic lattice

can be written as the convolution of a plane wave envelope function and a periodic

Bloch function unk(r).

ψnk(r) = eik·runk(r) (1.1)

Here n and k denotes the band index and the momentum vector, respectively. The

Bloch function corresponds to the energy eigenvalue of ϵn(k) = ϵn(k+K) which shows

the same periodicity with the lattice. The deconvolution is relevant to the extraction

of the translational symmetry which shows the invariance under a translational move-

ment in multiples of the lattice constant. In other words, the lattice periodicity of

the original Hamiltonian results in the same periodicity of the resultant eigenenergies

and eigenstates. The relation between these eigenstates and eigenenergies with the

original Hamiltonian says

H0ψnk = ϵn(k)ψnk = ϵn(k)e
ikrunk(r) (1.2)

Then these bulk states can be a basis for QD confined states.

In the case of QD which has bounded states rather than the infinitely periodic

states, the new eigenstate can be obtained using perturbation approach to the original

Hamiltonian as follows

(H0 + U)ψ = ϵψ (1.3)

where U is the confinement potential which prevents electrons from going out of

the QD. As a consequence of this perturbation, the newly acquired eigenstates are

expanded as a series of the original eigenfunctions near the band minimum for conduc-

2



tion band (or maximum for valence band).1 The expansion of ψ with k = 0 component

of unk(r) is

χnk = eikrun0 (1.4)

Like the envelope function approach in the Bloch theorem, we introduce An(k) as a

coefficient of ψ expansion in momentum space as ψ =
∑

n′
∫
dk

′
An′ (k

′
)χn′k′ . By sub-

stituting the expression into the original Hamiltonian, we get multi band Schrödinger

equation for the envelope function[19].

∑
n′=bands

∫
⟨nk|H0 + U |n′k′⟩An′ (k

′
) = ϵAn(k) (1.5)

Note that this Schrödinger-like equation is different from the original Schrödinger

equation because it is summed over multi band and represented in momentum space.

To obtain proper momentum space representation of the Hamiltonian, we substitute

k
′
by the del operator and use the periodicity of un0. (in other words, ⟨nk|H0|n

′
k

′⟩ =∫
e−ik·ru∗n0H0e

ik
′ ·run′0dr can be represented as δ(k − k

′
)[(ϵn(0) +

k2

2m)δn′n +
k·p

nn
′

m ],

where pnn′ ∝
∫
u∗n0(−i∇)un′0dr.) Then the (Eq. 1.5) can be written as follows.

(ϵn(0) +
k2

2m
)An(k) +

∑
n′ ̸=n

k · pnn′

m
An′ (k) +

∫
dk

′
u(k − k

′
)An(k

′
) = ϵAn(k) (1.6)

Though we started the derivation near the band extrema, the first two terms in (Eq.

1.6) approximate the value of ϵn(k) up to second order in k.

To obtain the representation in real space, the function An(k) can be inverse-

Fourier transformed to An(k) = Ω
(2π)3

∑
m e

−ikRmFn(Rm) where Rms denote all the

lattice points. With the definition of Fn(r) and the simplification of first two terms

in (Eq. 1.6), the simplified form of (Eq. 1.6) is acquired as follows.

[ϵn(−i∇) + U(r)]Fn(r) = ϵFn(r) (1.7)

1Because of this assumption, higher order excited states cannot be described properly with this
approach. The result only describes the states near the band extrema.
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To emphasize that this equation is different from the original Schrödinger equa-

tion, they should be noted that this envelope Schrödinger-like equation is a sum of

equations for each band and also that the k in the original Hamiltonian (the first

term) is replaced by −i∇ which means the k · p Hamiltonian is used here[23].

And finally, to recover the eigenstate ψ of the whole system, we use this envelope

function as “envelope” of the bulk eigenstate near the band edges.

ψc = Fc(r)ψc(r) (1.8)

ψv = Fv(r)ψv(r) (1.9)

Their energy levels are briefly represented by schematic diagram in (Fig. 1.1).

Figures 1.1 Discrete Levels of QD - S, P and D denotes symmetries analogous
to the atomic orbitals and the subscription e and h denote electron and hole levels,
respectively

This envelope function approach has an advantage, because we acquire Schrödinger-

like equation with only the confinement potential included. This means that the fun-

damental characteristics of this system is not much different from the elementary

quantum mechanical problem, called “particle-in-a-box”, or “particle-in-a-spherical-

box” like a hydrogen atom[30]. In this sense, QD states are also called artificial atom

states[41]. We should note that the spherical box model cannot predict exact elec-

tronic structure of QD, but symmetries of some low lying states are almost exactly
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predicted.

To examine the analogy of the obtained discrete energy levels with other systems,

first we compare the states with molecular orbitals. Molecules also have discrete

energy levels called molecular orbitals. The Fermi level or the chemical potential

describes that which of these levels is filled or empty. Common notation to indicate

the highest filled level is Highest Occupied Molecular Orbital (HOMO) and Lowest

Unoccupied Molecular Orbital (LUMO) for the lowest empty level. Despite the size

of QD is much bigger than molecules, QDs can be viewed as big “molecules”[66].

In this analogy, we usually indicate the first excited state of QD as LUMO and the

second as LUMO+1 and so on. And these unoccupied states are occupied when an

electron is excited from its ground state. The filled states also have the same analogy

with HOMO levels and they are occupied when a hole (an absence state of electron)

is created.

Another analogy of QD can be found from atomic orbitals[60]. The envelope func-

tion shares the same form of equation with a hydrogen atom and the confinement

potential also has a spherical symmetry. Only the differences are the relatively bigger

size and dielectric property of semiconductor material (or surrounding materials).

The dielectric screening makes QD even similar to a hydrogen atom. The details of

potential from each ionic core are effectively screened by the dielectric property, and

an electron or a hole in the excited states feels strongly screened potential inside the

QD. Then they behave like they are the only particles in the QD. These aspects are

well reflected by the fact that the first few excited states of QD have almost the same

spatial symmetries described by S, P and D. The major difference of QD states from

atomic orbitals is that hole states in QD have no analogy in real atom. To distinguish

the hole states from the electron states, the notation of the QD confined states are
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accompanied by subscripts, “e” and “h”, as in Se, Pe, De or Sh, Ph, Dh, etc.

Figures 1.2 In-between Nature of QD - QDs have characteristics between bulk
and molecular states. They have discrete energy levels analogous to molecular orbitals
and also semiconducting energy gap analogous to bulk band gap.

The envelope function approach shows “top down” view point of the discrete

energy levels in QD[6], while analogies to molecular or atomic orbitals exhibit “bottom

up” view point. This intermediate property comes from QD’s size which is in the

middle of bulk and molecule as in (Fig. 1.2).

1.1.2 Excitonic States

Most distinguished feature of the discrete energy levels in QD is that they can

create or absorb photons[9]. The QD interactions with the photon include emission

and absorption. By absorbing photons, QD creates an excited electron which occupies

excited electron states (e.g. Se, Pe, etc.), while leaves a hole in the hole excited states

(e.g. Sh, Ph, etc.)[46]. And the opposite reaction is possible through a recombination
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of the excited electrons and holes. When an electron and a hole are created at the

same time, like the situation of photon absorption, they have different energy from the

sum of the single particle excited states[9], because of their electron-hole interaction

(mostly, it comes from the coulomb interaction)[5]. So their coexistence makes a new

quasi particle state called the exciton.

The exciton states in bulk semiconducting materials are categorized by two.

• Frenkel exciton

• Wannier-Mott exciton

The Frenkel exciton describes a strongly localized state of electron-hole pair of which

spatial extension is comparable to the unit cell size of the lattice, while the Wannier-

Mott exciton indicates the delocalized or weakly coupled states of them. So the

Wannier-Mott exciton size is sometimes extended more than few hundred times of

the lattice constant.

These two concepts, which are originally describe the exciton states in bulk semi-

conductor, can be expanded generally. So they indicate the strength of electron-hole

interaction. That means if the spatial distance of the electron-hole interaction is larger

than the system’s natural unit size (for example, size of single molecule in molecular

aggregation, atomic lattice size in semiconductor) then the exciton is in the Wannier-

Mott regime. Or, for the opposite case it is in the Frenkel exciton regime.

In this context, QD exciton is said to be in the mid-range of those two regimes[10].

For the bulk exciton, the size can be extended few tens or hundreds of nanometers for

semiconductor material. That means that the QD exciton undergoes confinement[48]

as the size of bulk material is reduced to QD size. So the original Wannier-Mott

nature of the exciton is modified by this confinement[53]. They, however, have larger
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size than the lattice size, so they are still different from the Frenkel exciton. At this

moment, we need truly generalized picture of exciton to resolve the characteristics.

Understanding exciton physics is closely related to an interactions between elec-

tronic states and photon[65]. The excitons are created by both of free carrier or

photon. The former case can be found in electroluminescence and the latter in pho-

toluminescence or photovoltaic system. In the electroluminescence, the excitons are

created by free carriers (electrons and holes) and then decay as photons. And excitons

are created by incoming photons and decay as photons (free carriers) in the photolu-

minescence process (photovoltaic). Throughout these processes, the exciton plays the

central role.

Figures 1.3 Two Different Gap Measurements - (a) Quasi Particle Gap Mea-
surement: we measure the difference in the electron and hole excitation energy (b)
Optical Gap Measurement: we measure the energy of an electron and a hole pair.

The single particle approach only gives us the ground states, and the excited states

are different from the ground states. The contributions come from QD polarization,

electron-electron interaction and exchange interaction. Among these interactions, the

polarization energy is the major contribution, and can be written as follows.

Ee = ESe +Σpol
e (1.10)

Eh = ESh
+Σpol

h (1.11)
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However, the excitonic states are different from the sum of the excited states in

(Eq. 1.7). In the case of the exciton formation (e.g. an excited electron and a hole),

the interaction between electron and hole should be considered. This energy difference

is the exciton binding energy. Generally the binding energy of the excitons in bulk

semiconductor is relatively lower than that of other excitons in molecular aggregation

or carbon nanotube. The binding energy of the QD exciton has middle size compared

to the two cases. The excited electrons and holes are forced to confined in a small

size of QD (e.g. QD size is smaller than bulk Wannier-Mott exciton), so the binding

energy of QD exciton is larger than bulk exciton. Molecular aggregation or CNT

exciton, however, have excitons much localized size and consequently larger binding

energy than QD. Here again we can see that we need more generalized approach to

describe this middle ranged binding energy.

1.2 Applications of QD

QDs have been studied intensively since the development of chemical synthetic

method in early 1990s[42]. The QDs have attractive properties like size-tunable en-

ergy gap, adaptable chemical property changeable by exchanging the surface capping

molecule and solution processability which enables mass production, storage and de-

position. Because of these advantages, QDs are considered as being used in many

applications like light emitting device, biological imaging or solar cell.

Though the applications of QDs are now at the stage of commercialization and

statistical properties of QDs are well known from ensemble experiments, the funda-

mental properties are not fully understood yet at the single QD level. In addition

to the averaged property of QD, the details of QD surface and their influence to

the electronic structure should be observed to improve the understanding and the
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applicability of QD.

1.2.1 Synthesis of QD

QDs can be synthesized by various methods like precipitation[10] or epitaxial

growth. Especially the invention of hot-injection method [42] promotes the develop-

ment of numerous applications, since it utilizes mass production, tunable size and

energy gap, variation of material and prolonged storage time. In the hot-injection

method, precursor materials of QDs are injected to ligand solvent at elevated temperature[16].

At the high temperature, the ligand molecules act like solvent, so the precursor mate-

rials dissolve and form a solution phase[54]. With the aid of fine temperature control,

the solution undergoes a supersaturation and a nucleation phase according to the

programmed temperature sequence. In the nucleation phase, nanocrystals of semi-

conductor material begin to grow and at the specific time, the growth is terminated

by the extraction of solution out of the vessel. After the extraction, solvent molecules

passivate the surface of the QD and stop the nucleation process. After removing the

excessive precursors and the capping molecules, pure QD materials can be isolated

from the solution.

A typical structure of QD with the hot-injection method is illustrated in (Fig.

1.4). QDs can have different sizes, core-shell materials, shapes and types of capping

molecules. With these flexible tunability of chemical and optophysical properties, the

QDs can be adapted to diverse environments and applications.

1.2.2 Light Emitting Diode

QDs have spectrally narrow emissions controlled by delicate chemical synthesis

and are known to be more stable compared to other organic fluorophores[15], because

they are composed of inorganic materials. So QDs are considered as a good candidate
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Figures 1.4 Typical Structure of QD - 3-Dimensional solid model of typical core-
shell type QD with surrounding capping molecules.

of next-generation display[29] or illumination device[1]. The principal advantages of

using QDs as light emitters[63] can be summarized as follows.

• Mass Productable

• Inorganic Material (Stability)

• Narrow and Tunable Emission Band

The prescribed hot-injection method using organometallic precursors is easily scal-

able and the capping layer prevents degradation or aggregation during storage and

device fabrication. Because QDs are dissolved in organic solvents like the case of or-

ganic fluorophores, they can be deposited as thin films by spin coating. And recently,

another method to make close-packed QD thin films with least chemical impurities

was developed. In the method, which is called contact printing, QDs are uniformly

dispersed on PDMS material and the PDMS stamp softly contacts the target surface.

With the proper control of speed and force of the stamping, full color QD LED device
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was fabricated with record luminescence efficiency.

In comparison with the organic light emitting devices (OLEDs), QDs are inher-

ently more stable for its inorganic nature. The OLEDs of commercial devices have a

major limit, the lifetime. Though QD has inorganic nature, the early QD devices have

similar structure of OLEDs to perform electroluminescence. The first demonstration

of electroluminescence from QD thin film embedded in organic material transport

layers showed 0.52% of external quantum efficiency in 2002. Though the early stage

efficiency is not satisfactory compared to commercial OLED devices, steeply devel-

oped technologies in this architecture recently show external quantum efficiency of

about 7% which is comparable to that of the OLED. Though the approach of organic

layer architecture lacks the benefit of stability, it proved the possibility of successful

fabrication of QD luminescence.

Recently, efforts to make fully inorganic-material based device are focused. Though

they exhibited relatively low efficiencies about 1∼2 orders of magnitude lower than

OLED, their efficiencies are developed by 2 orders through its short development his-

tory. Besides the fully inorganic QD LED already proved its stability by air stable

operation without packaging which is impossible in OLED technology[64].

QD LEDs already have proven its ability to tune the color with ultimately narrow

bandwidth. The typical emission spectra of QD shows a full-width at half-maximum

(FWHM) of 30∼40 nm. The monodispersity is achieved by fine size control during the

synthesis. With the pure colors, QD LEDs can show saturated colors with high hue

values as can be seen in (Fig. 1.5). QDs are already commercialized in forms of optical

down conversion devices which control the color and temperature of illumination by

adding mixed luminescence from QD and LED. With the aid of QD, established LED

devices can finely tune its temperature and raise its luminescence efficiency.
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Figures 1.5 Narrow Band of QD Emission and Chromaticity Diagram of
QD-LED - (a) Photoluminescence spectra of CdSe/ZnS and PbS/CdS QDs showing
narrowband emission across the visible and near infra red regions (b) Commission
Internationale de l’Eclairage (CIE) chromaticity diagram showing that the spectral
purity of QDs enables a color gamut larger than the HDTV standard[63]

1.2.3 Biological Application

Another important application of QD is found in biological imaging[7, 18]. Most

studies are focused on developing near infra red luminescent QDs ranging from 700

to 900nm[28]. Because the luminescence in that range has high penetration depth

on tissue and also the wavelength is different from tissue’s autofluorescence of about

400 to 600 nm. With the aid of the functionalization of QD surface with various

ligand materials, biological imaging with QD can achieve specific target imaging and

reduction of nonspecific binding.

1.3 Blinking Phenomena

Most applications of QD have photon related physics as its fundamental. In this

aspect, fluorescence intermittency which is so called “blinking” is the most serious
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disturbance in the applications[62, 22]. Since the first observations in CdSe QD photo-

luminescence in 1994, the blinking has been a major obstacle which limits the viability

of QDs in many applications. During the blinking, QD shows non-constant intensity

in photo luminescence. The bright states of photo luminescence are often called the

“on” state and the other states are called the “off” state. This alternating appearance

of the on and off states limits the efficiency and hinders the using of QD as stable

single photon emitter. Recent progress in QD LED and biological imaging with QD

luminescence proved the possibility of using QDs as bright, pure-colored and single

photon source of luminescence. Despite the improvement of QD applications are con-

tinued without exclusion or understanding of the blinking, it is apparent that we will

induce further improvements if we can find and tame the blinking mechanism. Other

new born applications like solar cell or QD laser also suffer from the loss mechanisms

related to the blinking.

1.3.1 Proposed Mechanisms

Though it has been long to find the fundamental mechanism of blinking for about

15 years, no successfully accepted description of blinking is currently available[47, 67].

There are many difficulties in finding the blinking mechanism. The representative

properties of this phenomenon are summarized in the following items.

• Blinking occurs over a wide range of timescales

• Blinking lacks dependence on temperature

QD photo luminescence intensity typically shows on and off states alternately

during the blinking. The transition time from “on to off” or “off to on” can be

defined as time between two threshold intensities. The time between each transition
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is called on-time or off-time, respectively. The distribution of on or off-time typically

exhibits power law behavior[40]. This distribution shows very wide range from ms

to min or hour scale which ranges over 5 orders of magnitude. The wide range of

timescale is not easily explained by one universal mechanism[49].

The blinking process is relatively insensitive to temperature change as checked by

experiments from 4K to 300K. This has led one to speculate that tunneling process

(which is temperature independent) is at play.

Though there are many difficulties to make model to simulate the blinking phenomena[31],

there have been constant effort to find proper models to explain the mechanism of

the blinking. Some suggested models are summarized here.

(1) Multiple trap model: this model assumes the existence of multiple electron

traps near the quantum dot. Owing to a static distribution of trapping and de-

trapping rates, varying with distance and/or trap depth, power-law off-time distri-

butions are obtained. Furthermore, this model readily explains the dependence of

off-time power-law slopes on the dielectric properties of the environment. Finally, the

lack of temperature dependence can be explained through a tunneling process.

Figures 1.6 Various Suggested Mechanisms of Blinking with External Traps
- (a) Power law behavior of blinking can be described by spectral diffusion of external
trap states. exceptionally long period of off time can be assigned to the spectral
shift of external trap states (b) Another mechanism explains the prolonged off time
by diffusion of electron alongside the surface of QD (c) Some models assume the
tunneling barrier between QD and external barrier can fluctuate from time to time
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(2) Spectral diffusion model: This model hypothesized a resonant tunneling be-

tween QD confined states and external trap states. Because the power-law behavior

cannot be obtained by static trap states, this model assumes the diffusion of the trap

energy levels. So the tunneling to the diffusive level exhibits the power-law behavior.

A key prediction of this model is a change in the slopes of both on-time and off-

time power laws from 3/2 at long times to 1/2 at short times. Interestingly, this has

recently been corroborated by power spectral density experiments.

(3) Spatial diffusion model: This model suggests that any ejected electron carries

out a three-dimensional diffusion in space about the quantum dot before its return.

So the extremely long lifetime of the off state is easily explained in this model.

(4) Fluctuating barrier model: Kuno et al. have alternatively suggested a model

where emission intermittency involves fluctuations in the height or width of a tunnel-

ing barrier between an electron within the quantum dot and an external trap state.

However, revealing the origin of the fluctuation is prerequisite of this model.

(5) Fluctuating non-radiative rate model: Frantsuzov and Marcus have suggested

that quantum dot intermittency is a result of the fluctuations of the non-radiative

recombination rate. Recombination occurs through the Auger-assisted excitation of

deep surface states and is followed by relaxation to the ground state. The trapping

rate is then governed by the spectral diffusion of a second excited quantum dot state

(1Pe), which modulates the eventual non-radiative recovery of the system.

1.3.2 Trap States

Most of suggested theoretical models hypothesized the existence of external trap

states around QD (from the lists above (1) - (4))[24, 33]. Though the existence of

this trap states is continuously predicted, direct evidence of the trap states is not yet

detected[47, 12]. In this context, STM which is capable of visualizing electronic states
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in sub-atomic scale can be a proper tool to verify the existence of the trap states[32].

Combined with photon detection, STM can find the existence of the trap states and

the relation between the trap states and blinking phenomena[38].
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Chapter 2 Scanning Tunneling Microscopy and
Spectroscopy

2.1 Introduction

Since the first invention in 1982, Scanning Tunneling Microscopy (STM) and Scan-

ning Tunneling Spectroscopy (STS) have been unique tools to study various systems

of surface science. STM and STS have sub-atomic resolution resulted from localized

nature of quantum tunneling phenomena and sub-mV energy resolution with low

operation temperature. Traditional STM studies are found in surface topography, re-

construction, growth dynamics, chemical property or magnetic property. But STM

continued to expand its applications from these typical surface science studies to other

samples or environments. STM expanded its operation environment from vacuum to

ambient and liquid, operation temperature from room temperature to extremely low

( 10 mK range) or high temperature and is utilized with high magnetic field up to 15T

or vector magnetic field. And STM even acquired temporal resolution by fast current

amplifier and electronics to overcome its limitation in slowness. In these contexts, the

history of STM can be summarized by expansion of its operation environment.

STM also tried to extend the choice of samples. STM founds many variations

in samples so that it applied to doped semiconductor, super conductor, high-Tc su-

perconductor, molecules, molecular aggregation, buried dopant, biological sample and

graphene. In this point of view, STM successfully expanded its range of sample choice

and now almost all nanosized objects are studied by STM and STS. QD or colloidal

semiconductor nanocrystal is also such an example.
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2.2 Tunneling Current Modeling

Methods for tunneling current modeling in STM can be summarized as follows

• Tersoff-Hamann approach

• Transfer Hamiltonian approach

• Landauer Bütticker approach

• Keldish or non-equilibrium Green’s function approach

2.2.1 Tersoff-Hamann Approach

Tersoff-Hamann approach is the first attempt to modeling the tunneling current to

emphasize its high spatial resolution and ability to extract sample’s density of states

with some simplifications to tip wave function[57]. From the original paper, they

assumed simplified s-wave type tip wavefunction to focus on the sample wavefunction.

From Bardeen’s perturbation approach, tunneling current is expressed as follows

I ∝
∑
ν

|ψν(r⃗0)|2δ(Eν − EF ) (2.1)

Note that this perturbation approach only gives successful result near the Fermi

energy. The subscript ν expresses each eigenstate of sample surface and |ψν(r⃗0)| rep-

resent the magnitude of the sample wavefunction at the center of curvature of the tip.

This equation is direct result of simplification of tip wavefunction as ψµ ∝ e−k|r⃗−r⃗0|

k|r⃗−r⃗0|

which is exponentially decaying spherical wavefunction.

2.2.2 Transfer Hamiltonian Approach

This approach is the backbone of the Tersoff-Hamann approach, and originally

called the Bardeen’s tunneling theory[25]. In this approach, the sample eigenstate
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is expressed as the sum of the original eigenstate and perturbed states from tip

eigenstates. So the solution of the time dependent schrödinger equation can be written

as follows

ψ(t) = e−itϵ/h̄ψ +
∑
k

ak(t)φk (2.2)

Where the sum is over all the tip bounded states. The coefficient ak(t) is the result

of projection of ψ(t)–e−itϵ/h̄ψ into the tip state space as in ak(t) = ⟨φk|H −Htip|φk⟩.

Because the tip’s bound states do not span the whole space, the (Eq. 2.2) is only

an approximate solution. Then the approximate solution satisfies the time-dependent

schrödinger equation.

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t) (2.3)

= e−itϵ/h̄(Hsam + (H −Hsam))ψ +
∑
k

ak(t)(Htip + (H −Htip))ψ (2.4)

Then we relate this equation with the partial time-derivative of ψ(t) as in ih̄ ∂
∂tψ(r, t) =

εe−itε/h̄ψ+ ih̄
∑

k
d
dtak(t)φk. The resulting equation is obtained by ignoring the term

proportional to ak(t), since the value of ak(t) begin with 0 and remain small for short

period of time t. The resulting equation of aj(t) is written as follows,

ih̄
d

dt
aj(t) = e−itε/h̄⟨φj |H −Hsam|ψ⟩+ Ejaj(t) (2.5)

The solution of this differential equation can be obtained with the boundary condition

aj(0) = 0.

|aj(t)|2 =
4sin2(t(Ej − ε)/2h̄)

Ej − ε
|⟨φj |H −Hsam|ψ⟩|2 (2.6)

This is the main part of the transition probability and can be rewritten as total

scattering rate as ∑
k

Pt(Ek − ε)M2(φk, ψ) (2.7)
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where M2(φ, ψ) = |⟨φ|H − Hsam|ψ⟩|2 and Pt(x) = sin2(tx/2h̄)/x2. With the help

of Fermi’s golden rule, the main contribution of the current comes from the interval

−eh/t + ε < ϵ < 2h/t + ε. Then the sum over the narrow interval is similar to the

average value over the range. so we can approximate it as follows

∑
k

Pt(Ek − ε)M2(φk, ψ) (2.8)

∼M2(ψ)
∑

k:|Ek−ε|<2h/t

Pt(Ek − ε) (2.9)

∼M2(ψ)ρtip(ε)

∫
Pt(E)dE (2.10)

This formula gives the rate at which electrons in the sample state are transferred into

tip states of similar energy levels. However, the scattering can only occur when there

is unoccupied tip state. So the Fermi-Dirac statistics comes into play and the integral

gives finite value of 2π
h̄ . Then the scattering rate from sample to tip state becomes

(1− Fµt,θ(ε))
2π

h̄
ρtip(ε)M

2(ψ) (2.11)

where

Fµt,θ(x) =
1

e(x−µ)/kBθ + 1
(2.12)

The (Eq. 2.11) tells us scattering rate from sample to tip. The scattering from the

tip to sample can be found in a similar manner. To obtain the net current from this

scattering rate, the information about the occupancy of states should be included.

With the Fermi-Dirac statistics, at the temperature θ, the tunneling current I between

tip and sample can be written as follows.

I =
2πe

h̄

∑
n

{Fµt,θ(εn)(1−Fµs,θ(εn)− (1−Fµt,θ(εn)Fµs,θ(εn)}ρtip(εn)M2(ψn) (2.13)

Or a more simplified version of this formula is the zero temperature approximate ver-

sion. At the zero temperature, the Fermi-Dirac function Fµ,θ(x) becomes the Heaviside
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function and the tunneling current becomes

I =
2πe

h̄

∑
n:µa<εn<µb

ρtip(εn)M
2(ψn) (2.14)

Or the sum can be approximated with the average value of sample density ρsam(ε)

of state over the summing range. The integral form of the tunneling current at low

temperature can be obtained as follows.

I =
2πe

h̄

∫ µb

µa

ρtip(ε)T (ε)ρsam(ε)dε (2.15)

where T (ε) is the average value of M2(ψn) over the summing range.

This equation emphasizes the equally important roles of sample and tip. The tun-

neling current is the convolution of both tip and sample states. And it adds more

features to the Tersoff-Hamann approach like the change of barrier tunneling proba-

bility (by the difference of workfunction between tip and sample or by electric field

induced by relatively higher bias). So this model can generalize our view about the

tunneling junction to the three important factors (tip, sample and barrier).

2.3 Tunneling Barrier Modeling

2.3.1 WKB Approximation

As seen from the (Eq. 2.15), proper modeling of tunneling barrier enables us

to have more exact prediction about the tunneling spectroscopy. The most popular

approach to the behavior of tunneling is Wentzel-Kramers-Brillouin (WKB) approx-

imation. It is general method for finding mathematical approximate semi classical

solutions to linear partial differential equations which are quantum mechanical equa-

tions. In this approximation the solution of partial differential equation is assumed

to be in the form as follows.

y(x) ∼ exp[
1

δ
Σ∞
n=0δ

nSn(x)] (2.16)
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In the limit δ → 0, the dominant term in second order linear partial equation (as in

the case of schrödinger equation) is the second derivative. With proper assumptions

in the magnitude of δ, the second order differential equation can be representatively

expressed as simple Eikonal type equation as S′2 = Q(x), and its solution is S0(x) =∫ x
x0

√
Q(t)dt.

2.3.2 Single Barrier Tunneling Junction

By applying the WKB approximation in tunneling barrier, the Q(t) is then cor-

responding kinetic energy inside the tunneling barrier. Because the classical kinetic

energy inside the barrier is negative (which is impossible in classical mechanics), the

integrand is imaginary for the generalized wavefunction approach of quantum me-

chanics. So the exponent of the form i
∫
dx

√
2m
h̄2 (V (x)− E) is now the phase acquired

by tunneling the barrier through. Note that this conclusion is not valid at the classical

turning point because the normalized form of this exponent diverges at the turning

points. But this factor is good approximate solutions in the region away from the bar-

rier. So the tunneling probability between the barrier is precisely predicted by consider

this approach. Since the kinetic energy inside the barrier is negative, the square root

of the kinetic energy is now has pure imaginary parts. Then the resultant exponent

becomes real value which gives finite possibility to find particles across the barrier.

It expresses the probability to tunneling through the barrier or coupling strength be-

tween electron states of each side of the barrier. Then we can define coupling strength

D as.

D = exp[−
∫ xb

xa

√
V (x)− ϵdx] (2.17)
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Figures 2.1 Schematic Diagram showing Typical Double Barrier Tunneling
Junction - The sample under examination (red dot) is sandwiched by two metallic
electrodes (tip and sample). Two barriers are depicted as vacuum and thin insulating
layer (blue)

2.3.3 Double Barrier Tunneling Junction

In the case of decoupling layer in STM junction, the system often modeled as

Double Barrier Tunneling Junction (DBTJ). Since the requirement of conductivity in

STM experiment often resulted in hybridized electronic state from conduction elec-

tron from the substrate, thin layers of insulator film is typically used as decoupling

layer. Though the electron can tunneling through the insulator film and enables STM

experiment, the system is modeled to have two distinct barriers and complicate the

situation. By applying the WKB approach to each barrier, we can write the corre-

sponding rates as

W1 ∼ Nt(1− f1)D1 (2.18)

W2 ∼ Ntf1D2 (2.19)

where D1 and D2 are the corresponding coupling strength of each barrier.
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D1 = exp[−
∫ xb

xa

√
V (x)− ϵdx] (2.20)

D2 = exp[−
∫ xb

xa

√
V (x)− ϵdx] (2.21)

Here Nt means the electron concentration in the middle of the barrier. For the

case of steady current through the barrier, the rates w1 and w2 should be the same.

In this assumption the f1 term should be satisfy the relation f1 =
D1

D1+D2
which yields

the following modeling of tunneling current.

I =

∫ V

0

D1D2

D1 +D2
Dm(ϵ)dϵ (2.22)

where Dm(ϵ) is the density of states in the middle region between the two barriers.

2.4 Scanning Tunneling Spectroscopy

2.4.1 Local Density of States

The differential conductance of tunneling current is often interpreted as Local

Density of States (LDOS) of the sample. Under the approach of Tersoff-Hamann, the

derivative of the tunneling current is proportional to the sample LDOS.

According to the Tersoff-Hamann approach, the tunneling current only comes

from sample density of state and the most important interpretation of STS can be

deduced. E.g. STS is proportional to the sample local density of state (LDOS).

dI

dV
∝ ρ(r⃗0, EF ) (2.23)

This expression has two important limits.

• It omits the details of the tip wavefunction. For example, if the tip has higher

order symmetry other than s-symmetry or non-constant structure in its density

of states, then this formula is inapplicable.
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• The workfunction of metallic tip and sample is assumed to be identical and

their formation of detailed structure in tunneling barrier is neglected. So in this

Tersoff-Hamann approach, change of barrier height and the resultant change of

tunneling probability are not reflected.

The workfunctions of tip and sample surfaces are generally different, but in this

Tersoff-Hamann approach we assumed the same workfunction for sample and tip.

And it also has no details about tunneling barrier of each system.

Despite of these limitations, (Eq. 2.23) offers first approximation to STS result.

From the fact that STM tip wavefunction is generally unknown in experimental sit-

uation and altering frequently, the simplification of tip wavefunction has strength.

Almost every DFT codes today use this simple picture to convert its calculated re-

sult to simulate STM images or STS mappings, because of the difficulty in assuming

specific tip condition. In realistic modeling of tunneling junction, however, possibility

of complicated tip electronic structure or variation of tunneling barrier (especially in

high bias) should be considered.

2.4.2 Spatial Variation

LDOS of specific atomic site is obtained by one sweeping of bias voltage. We can

repeat this spectroscopy after we reposition the tip over the new site of interest. By

applying the procedure over the entire surface, we can obtain the spatial variation of

LDOS of the surface. The capability of obtaining the spatial variation of the spectra

with atomic resolution is the most important feature of STM.
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Chapter 3 Experimental Techniques

We deposited QD solution onto the substrate by pulse injection method. The

method has some advantages over previous deposition methods like drop casting or

dipping. The sample surface can be kept in Ultra High Vacuum (UHV), so the surface

shows atomically clean surface with QD.

3.1 Pulse Injection Method

3.1.1 Previous QD Deposition Methods

Typical sample deposition methods in vacuum can be summarized as follows

• Electron Beam Evaporation

• Thermal Evaporation

• Laser Ablation

• Sputtering Deposition

• Chemical Vapor Deposition

But these methods are inapplicable to QD deposition. Some of these methods intro-

duce excessive heat during the deposition process through direct heating (thermal

evaporation), electron bombardment (electron beam evaporation) or photon energy

(laser ablation). With the heat energy, QD cannot sustain the original nano structure

and will be eventually evaporated into disassembled fragment. And highly energized

ions used in sputtering process will also destroy the nano structure of QD. And be-

cause QD has massive molar mass, it cannot be in gas phase which is required for
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chemical vapor deposition method. So these typical procedures are hard to be applied

in QD deposition.

Instead of the vacuum deposition methods, QD are introduced onto substrate

from outside of the vacuum chamber. Previously studied QD deposition methods can

be listed as follows

• Drop Casting

• Sample Dipping

• Contact Printing

The first two methods are not quite different. They use the formation of chemical

bonding between sample surface and QD. The substrate contact the QD solution

directly by dropping a drop of the solution in “drop casting” method. Or sample

is being immersed in the QD solution for a period of time. QDs are known to make

bonding with some surfaces like Highly Ordered Pyrolytic Graphite (HOPG). And for

inert surfaces like gold which make no chemical bonding with QD, chemical treatment

is needed to attach QD to the surface. So the formation of Self Assembled Monolayer

(SAM) with alkanethiol molecules is used to alter the chemical property of the gold

surface. The thiol functional group makes covalent Au-S bonding and then the other

end of the SAM molecule makes chemical bonding with QD surface ligand. With this

method various studies are produced on gold surface.

However the drop casting or dipping method has two limits. Firstly, to contact

the QD solution, the sample should be go outside of the vacuum chamber, so chemi-

cally reactive substrates are easily contaminated by contact with ambient gas or even

impure gas molecules in controlled environment. So these methods only can applied

to relatively inert surfaces like HOPG or gold. Secondly, the choice of substrate is
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very limited to surfaces which make chemical bonding with QD ligand. Since typical

organic ligands like TriOctylPhosphineOxide (TOPO) have non polar property, they

usually make no strong bonding with surface atoms. When there is only physisorp-

tion rather than chemisorption, then QD cannot maintain the bonding during the

deposition or rinsing procedure. So these limitations hinders the freedom in choice of

substrate and HOPG and SAM covered gold surface are mainly studied.

The restriction that QDs cannot be deposited on surfaces which make no chemical

bonding with ligand, is overcame by recent progress of contact printing method. In

this method, QDs are coated on top of PDMS surface by spin coating and then the

layer is transferred to the target substrate by direct contact with controlled force and

speed. With the method, it was possible to transfer QDs to device type substrate or

bare gold surface. In principle, this method is applicable to any type of substrates.

Though the limited choice of substrate is overcame by the method, there are still

problems of contamination from violent process and it has relatively poorer sample

quality than drop casting as shown in STM experiments.

3.1.2 Previous Results of Pulse Injection

The pulse injection method is originally known to have applications in gas dosing

into a vacuum chamber. The pulse valve is a electromagnetically driven coil valve

which can be operated from few hundred microsecond time scale. The valve opening is

controlled by electric pulse signal from control electronics. During the short period of

valve opening time, it can spray source material into the vacuum chamber. By control

the length, frequency and duty cycle, the dosing amount can be controlled. Though it

uses gas or solution which is relatively dense material for vacuum deposition, it has no

significant influence on base pressure level since it is operated in fast and controlled

manner. And samples can be deposited on the substrate which is kept in vacuum
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environment, so the sample has no contact with ambient or other impure gases. This

also has some advantages over other solution contact methods.

Figures 3.1 Conducting Polymer on Silicon surface - conducting polymer is
deposited on hydrogen terminated Si(100) surface with pulse injection method[56]

The pulse valve has been applied to the deposition of nanosize materials in solu-

tion, since the demonstration of conducting polymer deposition which is impossible

to evaporate by traditional evaporation methods[56]. Another famous application can

be found in DNA partial sequencing by STM[55]. They found that DNA deposition

on metal substrate is possible and the resulting surface is free of contamination which

enables the spectral identification of guanine nucleobase. Despite its limited use in

these special cases and relatively poor surface condition1 After the pulse injection,

pulse valve finds its advantage with its unique ability of solution dosing. In particu-

larly, the pulse injection method suffers less from contamination compared to direct

solution contact methods. In this context, the pulse injection method is also advan-

tageous in QD deposition, however there was no application in QD study as far as we

1the resulting surface of pulse injection method has relatively contaminated compared to tra-
ditional evaporated samples. But when compared with other solution contact methods, it has less
contamination.
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Figures 3.2 Pulse Valve Deposition - pulse valve is located on top of load-lock
chamber (upper left). the pulse valve is re-entered to the vacuum side of the chamber
to reduce the distance to the sample. The position of sample is observed through side
view port(lower left).
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know. So this experiment proves, for the first time, the validity of the pulse injection

method in QD deposition. Some important points through our design of the pulse

injection system can be summarized as follows.

• The distance between the valve and the sample should be as close as possible

• During the deposition process, vapors produced by the solution should be com-

pletely isolated from STM main chamber.

• QD solution should only contact the sample surface and unwanted deposition

should be avoided.

• Instead of long duration pulse, we used short pulses repeatedly

The first point, the distance between the valve and the sample is critical to minimize

the dosing amount of the solution. In the test experiments prior to QD solution

deposition, only alcohol is loaded to the pulse valve and shots of alcohol vapor is

sprayed repeatedly by the programmed control. The result is summarized in (Fig.

3.4). a series of ten pulses were conducted and the time trace of the chamber pressure

is recorded with ionization gauge. As the pulse duration increases from 120 micro

seconds to 150 micro seconds, the maximum pressure burst also increases from low

10−6 to 10−4 Torr. And the original base pressure of low 10−7 Torr is increased to

high 10−7 Torr right after the 150 micro second pulses. And intermittent bursts of

pressure which does not coincide with pulse injection moments are observed. This may

the result of vaporization of injected alcohol from the surface which is in liquid phase

right after the injection. From the results of the test, we can assure that QD solution

injected should be carefully limited to minimum amount. Or the base pressure of

the vacuum chamber can be increased and contaminations of vacuum systems like
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sample heater, pumps, vacuum gauges and STM head would degrade the quality of

the result. So we designed the pulse injection system to have minimum distance.

Figures 3.3 Detailed Schematics of the Pulse Injection Method - The pulse
valve is at the air side of the top flange. The Top 4.5 inches Conflat flange is reentered
toward vacuum side to reduce the distance between the pulse valve and substrate.
The distance can also be adjusted by moving upward the sample receptacle. At the in
front of the sample, a shadow mask prevents unwanted QD deposition to other parts
of the sample holder.

The second and third points are also relevant to the minimization of chamber con-

tamination. To isolate the solution vapor from the main chamber, we closed gate valve

between the load-lock and STM chamber during the deposition. After the deposition,

vaporized solvents are pumped by turbo molecular pump backed up by dry scroll

pump. About few minutes of turbo molecular pumping is enough to recover the pres-

sure of load-lock chamber to be able to re-open the gate to the STM chamber. Then

the QD deposited substrate is transferred to the STM chamber by linear translator.

Only the sample surface is exposed to the QD solution by covering other parts of the

sample holder by shadow mask as shown in (lower right of Fig. 3.3). This reduces

unwanted contamination of sample holder which will degrade the sample condition

during the subsequent processes.

33



Figures 3.4 Pulse Valve Test - Pressure traces during series of 10 pulse injections
repeated by 10 sec durations. The duration of the single pulse is stated at the title
of each graph as 120, 130 and 150 micro seconds, respectively. The moments of valve
opening is indicated by 10 consecutive arrows. The pressure burst is more frequent as
the pulse duration increases and the base pressure is raised after the pulse injection
of 150 micro seconds.
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The last point arises due to the fact that the deposition is not uniform over the

sample surface. When the deposition is done by few shots of ms injections, then the

resulting sample has quite non uniform distribution of QDs. The STM topographic

scans over the sample only show clean surface or thick covered QD layers. To obtain

the desired homogeneous QD distribution, the deposition should be done by sequence

of short pulses. The typical injection condition is about 300 micro seconds pulses

with 30s duration time and 0.2 sec interval. This corresponds to duty cycle of about

1.5× 10−3, and the distribution of QDs are relatively uniform over the surface. Since

the overall scan range of STM scanner is very narrow (∼ 2µm for our scanner), the

uniform distribution utilizes successful finding of QDs within a scan range.

The overall schematics and pictures of pulse valves used in this experiment are

shown in (Fig. 3.2). The pulse valve is attached to the home-built STM system’s load-

lock chamber. At the top of the load-lock chamber the pulse valve is positioned inside

the 4.5 inches Conflat flange. The pulse valve is reentered toward the vacuum side so

that the distance between the sample and the valve can be reduced. To further reduce

the distance, the sample holder receptacle is also adjusted toward the top flange from

the original sample position as shown in (left of Fig. 3.3). And the modified sample

holder receptacle also equipped with shadow mask to block the QD solution to the

other parts of the sample holder (lower right of Fig. 3.3). The shadow mask prevents

the introduction of excessive dose to the STM chamber.

3.1.3 Advantages

The advantages of using pulse valve can be summarized as following two aspects.

• Sample is not exposed to air throughout the whole deposition processes

• QD can be deposited on any kind of surfaces, regardless of its chemical property

35



In case of chemically reactive surface, the first one is of great advantage. Many

substrates form oxide layer or chemisorption in ambient environment as in case of

silicon surface. As seen in previous report, conducting polymer is successfully de-

posited on silicon surface with pulse valve [56]. In our case, QD was deposited on

three kinds of substrates, gold, nickel and hexagonal boron nitride thin film. The gold

is noble metal and known to be chemically inert so it is often used as substrate of QD

as seen in many previous reports. Nickel, however, is relatively reactive metal as it

forms oxide layer in ambient condition. So imaging of QD deposited nickel surface is

more challenging than the gold surface. Despite the formation of monolayer of solvent

molecules on nickel, STM imaging is possible with pulse injection. That the QDs are

successfully deposited on these two metal surfaces represent the fact that QD can be

deposited on both inert and reactive metals as can be seen in figure (3.5).

Figures 3.5 QD Deposited on Au(111) and Ni(111) - (a) single QD on Au(111)
surface with herring bone reconstruction (b) single QD on Ni(111), note that the bare
nickel surface is relatively contaminated with solvent molecules.

36



The image of QD deposited Hexagonal Boron Nitride (h-BN) film on Ni(111)

surface proved that QD can also be deposited on inert insulator substrate. From the

deposited QDs on different materials, it is clear that any specific chemical bonding

between QD and surface is not important. Rather than chemisorption, physisorption

is only required interactions between surface and QD to leave QD on the surface.

Figures 3.6 QD deposited on h-BN surface - (a) full coverage h-BN on Ni(111)
with two types of defects(hole and line type) (b) QD aggregation formed by pulse
injection

3.1.4 Limits

The disadvantages of pulse injection method can be summarized as following two

aspects.

• Deposition is not uniform

• Impurity molecules are also transferred to the sample surface

The first one is critical in deciding the density of solution. As previously pointed

out, non uniform distribution of QD on surface mainly limits the use of longer pulse.
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Though we partly get over the problem by using series of short pulses, the distribution

of QDs are not satisfactorily uniform. The problem of uniformity also prevents use of

dense solution. In case of high density QD solution, then few counts of pulse injection

is enough to obtain desired amounts of QD. But in this case, the resulting surface has

the same uniformity problem. So to minimize this effect, the density of the solution

should be kept dilute. The typical density of the solution used in the experiment was

about 0.25 mg/mL which is 10 times diluted density compared to the density of the

solution as purchased.

The second aspect requires exactly the opposite requirement on density of solu-

tion. If the QD density of the solution is too low, then impurity molecules in solution

become comparable to QD density. It is because the impurity ratio of the solvent is

constant though we change the ratio of QD in solution. So the more dense solution of

QD is desirable. The impurity is solution is practically limited by quality of solvent

used and typically few ppm of non-volatile impure material is contained when we

buy solvent bottle from typical chemical suppliers (every solvents used are supplied

by Sigma-Aldrich). A simple calculation emphasizes this aspect. If we compare molar

mass between QD and solvent (DCM) molecule and weight percentage, then we can

obtain their molar ratio which is calculated as 1 to 3000000. That means there are

3000000 solvent molecules per one QD molecule in the solution. And we know that

3ppm of non-volatile impurity and 100ppm of volatile impurity are contained in orig-

inal DCM from the specification of Sigma Aldrich. This means that QD to impurity

molecule ratio as 1 to 25 and 25 impurity molecules are deposited with one QD. In

case of more dilute solution, this can be serious problem in the sense that the impurity

density will be kept constant while QD composition is lowered. Then these impurity

molecules are dominant in deposition process. So QD density should be denser than
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Figures 3.7 Energy Dispersive X-ray Spectroscopy (EDS) Spectrum of QD
deposited Silicon Sample - EDS result shows various elemental composition of QD
solution deposited silicon sample. Carbon, Copper, Silicon, Selenium and sulfur are
the main contributed elements. Selenium and sulfur can be assigned to the core and
shell of QD (cadmium is only detected in high energy EDS spectrum). Silicon is from
the substrate itself and copper is possibly from gasket of vacuum chamber (copper
gasket is used only for this test deposition on silicon which is conducted in another
pumping stage). The major peak, carbon, can be assigned to the impurity molecules
and capping molecules. From the ratio of intensity, carbon is major composition of
QD deposited surface.
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this practical limit. As can be seen in (Fit. 3.5) of nickel surface, unknown molecules

are observed with QD.

To detect elemental composition of QD deposited samples, a test deposition on sil-

icon was performed. The test was conducted in another independent vacuum chamber

with the similar construction to the main experiments. In the EDS spectrum, carbon

is the major elemental composition in the QD deposited sample. These carbon atoms

can be assigned to both capping and impurity molecules. Note that the excessive

amount of carbon cannot be explained only by the capping molecules, because bulk

material of QD should surpass the surface material. We can assign the most of the

excessive carbon atoms to the impurity from solvent. We also found that carbon based

materials are used (various hydro carbonic amylenes) as stabilizer in DCM product

from Sigma Aldrich. This problem mainly limits use of dilute density of QD solution.

With these two contrary considerations, we optimized the density of QD solution

around 0.25mg/mL.

3.2 Ingredients of QD Solution

3.2.1 Core-shell Type QD

The most studied QD would be CdSe and core-shell type[39] derivatives of it. Since

the CdSe QD is the first example of hot injection method and has many prominent

properties and well understood electrical structures. The bulk CdSe material has

energy gap of about 1.75eV. When the size of material becomes nanometer range then

the energy gap changes. The energy gap increases with decreasing size of the crystal.

Since the original band gap corresponds to the energy of red light, the increased energy

gap can cover the entire visible spectral range[2]. So the CdSe is very promising in

many applications using visible lights.
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Right after the invention of the hot injection method, variations from the original

synthesis made it possible to make core-shell type QDs. The most famous example

would be ZnS shell. Since it has superior luminescent property than core type QD,

core-shell type QDs are now mainly used in many applications.

Figures 3.8 Structure of QD used - CdSe core is radially shelled by ZnS. The
overall diameter of core-shell is 6.1nm and the QD is capped by two ligand materials,
TOPO and HDA. The density of capping molecule is fictitious.

Typical capping molecules for CdSe are TriOctylPhosphineOxide(TOPO) and

HexaDecilAmine(HDA). As can be seen in (Fig. 3.9), they have two distinct parts in

a molecule, the bonding parts and carbon chains. The TOPO has phosphino and the

HDA has amino functional group at one end. These functional groups make chemical

bonding with QD surface since they have highly electronegative atoms. The HDA has

carbon chain of 16 atoms at the other end and TOPO has three carbon chains of

8 atoms symmetrically spread to the other end symmetrically. These carbon chains

41



make no chemical bonding with QD surface nor to each other. So QDs capped with

these molecules have non polar property because the covalently bonded carbon chains

are only parts that are exposed to the outside. Because of the non polar property,

the capped QDs are easily solved by non-polar solvents like toluene, hexane or chlo-

roform. And the capping molecules also prevent QD from aggregation in solution by

repulsing each other.

Figures 3.9 Structure of Capping Molecules - Two capping molecules of QD used
in this experiment. The HDA has amino functional group at one end and sixteen
carbon chains to the other end. The TOPO has phosphino functional group at the
center and three carbon chains of eight carbons.

QD solution used in this experiment was purchased from Sigma-Aldrich, and it

has CdSe core and ZnS shell with TOPO and HDA mixed capping layer. The diameter

of core-shell is ∼ 6 nm and its PL spectrum is centered at 640 nm of red light. Its

original solvent is toluene (C6H5CH3) which are sometimes chosen for drop casting

solvent. In STM experiment, however, even one monolayer of solvent molecule can

be a hindrance for imaging and spectroscopy, so solvent material should be carefully

chosen. So we tested pulse injection of several solvents without QD to characterize

the property of solvent molecules on gold surface. The results and details will be

described in the following chapter.
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3.2.2 Properties of Deposited Solvents

Before we make QD solution, we deposited various solvents without QD to com-

pare the effect of the solvent molecules on STM imaging. The solvents are loaded to

pulse valve and injected on cleaned Au(111) surface. As can be seen in (Fig. 3.10),

among DCM, toluene and DMSO, DCM proved its volatility and leaves no residue on

the surface. Toluene made one monolayer of chemisorbed molecules which is not easily

removed by mild annealing (∼ 100◦C). DMSO shows worst performance among those.

Especially DMSO has relatively high viscosity which results highly non-uniformly de-

posited surface.

3.2.3 Solvent Exchange

To exchange solvent of QD solution, typical cleaning of QD process was applied.

In the procedure, QD solution is mixed with some amount of alcohol and then QDs

form aggregation slowly. This precipitation process can be understood by reducing

of repulsion of capping molecules by producing dynamic macro molecule of QD with

surrounding alcohol molecules. To promote this aggregation, the mixed solution can

be centrifuged for about 5 minutes at 3000 rpm. From this resultant liquid, the su-

pernatant (which is partially clear) can be separated by pouring. The precipitate is

now isolated QD in its solid phase. To further remove the residual solvent or alcohol

molecules, we optionally pumped the precipitate out down to 10−6 Torr for a few

hour with turbo molecular pump backed up by oil sealed rotary pump.

Throughout this procedure, we obtained isolated QD solid and it is resolved with

DCM with the aid of sonication. And one of advantages of this procedure is that

excessive amount of capping molecules can be extracted with alcohol.
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Figures 3.10 Comparison of various solvents - (a)Clean Au(111) surface with
herringbone reconstruction (b),(c),(d) Au(111) surface after the injection of (b)DCM,
(c)toluene and (d)Dimethylsulfoxide ,respectively.
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Figures 3.11 Schematics showing method for solvent change - solvent change
process composed of (1) precipitation using alcohol (2) centrifugation to isolate QD (3)
solvent removing and drying in dry nitrogen (4) ultimate drying in vacuum chamber
for 1 hour (5) dissolve in DCM (6) sonication to help the dissolving. The typical
solution after the exchange of solution is shown in the bottom left picture
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3.2.4 Deposition Rate Determination

Deposition rate is determined by excessive dosing of QD solution on a macor

surface. The macor is chosen for its white color which utilizes visual confirmation

of deposited QD by its color. This procedure is done in independent pumping stage

equipped with turbo molecular pump backed up by rotary pump. The actual de-

position rate for STM experiment is selected in between 1
1000 ∼ 1

3000 from its color

emergence.

3.3 Preparation of Substrates

3.3.1 Metal Substrates

Metal substrates (Au(111), Ni(111)) are cleaned by repeated cycles of sputtering

and annealing procedure. These processes can be summarized as follows.

• Sputtering : Ar backfill (5×10−5 Torr), 1kV(Ni) 0.5kV(Au) acceleration Voltage,

typically 10∼20 µA sample current

• Annealing : electron bombardment, Au (500V, 5mA) Ni (1kV, 25mA)

These processes are appropriately repeated before every QD deposition and clean

surface is periodically checked by STM imaging and STS measurement.

3.3.2 Insulator Substrates

hexagonal Boron Nitride Surface

Hexagonal-Boron Nitride (h-BN) surface is one of good candidates of decoupling

layer in graphene based device which means it is chemically inert wide band gap

insulator. And h-BN surface can be formed by thermal decomposition of borazine

(B3H6N3) gas on various metal surfaces, so high quality h-BN thin film can be ob-

tained through vacuum process. We used Ni(111) substrate to grow h-BN thin film.
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The Ni(111) surface is pre-cleaned by repeated sputtering-annealing cycles, then it is

kept at high temperature (∼ 800◦C) during borazine gas deposition. The representa-

tive structures of monolayer h-BN film are shown in (Fig. 3.12).

Figures 3.12 Images of h-BN on Ni(111) - (a)h-BN island on Ni(111) which
has edges aligned to crystallographic directions (b)full covered h-BN with line type
domain boundary and hole type defect (c) magnified image of hole type defect shows
atomic structure of edge, note that only nitrogen atom is visible in the image for its
high electron density
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Chapter 4 Electronic Structure of QD

4.1 Imaging QD with STM

4.1.1 Determination of Tip Sharpness

In most applications of STM, the exact shape and size of the tip are difficult to

be determined and even unnecessary. Since the most of the tunneling process occur

through the very end of the tip, i.e. few end atoms, it is satisfactory to know the

details of the tip at the sub-nanometer scale. Sometimes functionalization of the tip

end with various atoms or fragments utilizes determination of exact wavefunction of

the tip. So this information about formation of few tip end atoms helps to interpret

the STM results properly. In this context, the tip shape in nano-meter scale or some

hundreds of atoms has no importance in STM measurement for most cases. This

aspect is also emphasized by the localized nature of tunneling phenomena. In QD

measurement, however, the situation is totally different for the large size of QD.

As we pointed out in the previous section, the measured lateral sizes of isolated

QDs show large size variation. It ranges from 1.5 to 2 times the QD size. This rather

large distribution of the size cannot be explained by the QD size variation, since the

variation is known to have approximately normal distribution with 0.73 nm standard

deviation and 6.3 nm average and that is confirmed by PL emission spectra. This

means that 75 % of QDs are in the range of 5.57 7.03 nm and 98 $ of QDs are in

4.84 7.76 nm. So the variation in experimental imaging size is not the real distribution

of QD sizes. That can be explained by the effect of the tip geometry, instead. The

(Fig. 4.2) summarizes this effect with geometrical schematics. The size of the QD
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Figures 4.1 observed single quantum dots on metal surfaces with height
profiles across the QDs - (a) QD on Au(111) (b) QD on Ni(111), note that the
size of each QD is significantly different because of tip shape and radius, see text for
details

49



is relatively big compared to that of typical STM experimental objects (i.e. single

atoms, molecules, atomically thin layers, etc.). Then the tunneling process does not

occur only from the end atoms, but also from other parts of the tip that contacts

the QD. The idealized model in (Fig. 4.2) indicates that the tunneling process can

be occurred from the side slope when it touches QD. When the tip side slope touches

the QD, then feedback control of STM pulls the tip back. And the resultant image

line is broadened by the lateral size of the tip at the scale of QD. The broadened

topographic line is drawn as red curve in the schematic. Because the tunneling can

only exist in sub-nanometer scale, this model intentionally ignores the tunneling gap

between the tip and sample to simplify the situation. So QD and tips are rendered

as hard solid that touches each other. Note that with the inclusion of the gap, it will

magnify the imaging size of the QD. The red curve in (Fig. ??) indicates the imaging

size of QD in the direct contact scheme. With this simple model, the size of the tip

radius of curvature and half cone angle (θ) can be related to the lateral imaging size

∆ as follows through simple geometrical calculations.

∆ = 2× {R+ r

cosθ
+ (R− r)tanθ} (4.1)

Where θ is the half cone angle of the tip in nanometer scale, and R and r are the

radius of the QD and tip end, respectively. Since the lateral imaging size ∆ and QD

radius R are known factors, the remaining two variables of the tip have constraint

with the relation. Though we cannot determine the two factors at the same time,

it is possible to draw solutions of the two values. So we simulated the possible tip

curvature as the function of the tip half cone angle. The relation of (Eq. 4.1) can be
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Figures 4.2 Schematics shows image broadening of QD - QD is typically larger
than the STM probe tip. For the finite size of the tip end, QD is inherently broadened
in image.

rewritten in r as the function of θ

r =
∆cosθ

2(1− sinθ)
− R(1 + sinθ)

(1− sinθ)
(4.2)

We draw the calculation result in (Fig. 4.3). The result represents the possible tip

end radius as a function of half cone angle. The black curve shows the case such that

the imaging size of the QD is 1.5 times of the original size. The result shows that 6

nm QD is imaged as 9 nm size if we have 1.5 nm radius and 0◦ half cone angle. Or

more reasonable solutions are 1.0 nm tip end and 10◦ cone angle or 0.5 nm and 20◦.

Though we cannot determine the exact size of the tip, we can exclude the tip end

radius larger than 1.5 nm and half cone angle larger than 22◦. With this simulation,

the QD image size of 8.9 nm in (Fig. 4.1) indicates that the tip end radius is smaller

than 1.3 nm1. Another case with double sized image of QD can be seen in the orange

curve of (Fig. 4.3). From this result, it is evident that QD image can be generally

larger than the original size and the size and shape of the tip end in nanometer scale

1possible tip conditions are 1.3 nm end radius and 0◦ half cone angle, 0.87 nm and 10◦ or 0.43
nm and 20◦.
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is important in QD STM imaging.

To obtain the ideal tip end radius and shape, we carefully treated the tip end with

several procedures. We used electrochemically etched tungsten tips and conducted

typical treatment of electron beam heating and self sputtering after the introduction

to vacuum chamber. With the processes, we removed the impurities or oxides at the tip

end. Though the clean and metallic tip can be obtained through this treatment, the tip

end radius and shape are not controlled with the process. So repeated indentations

of the tip into clean Au(111) surface are performed until the ideal tip shape and

size are obtained. The indentation is done by turning the feedback off and rapidly

pushing the tip into the surface about 5 nm by adjusting the voltage to the z piezo.

And then the tip is gradually pulled from the surface until the saturated current is

back to the zero current. With the indentation process, we generally obtained larger

z piezo set point which means the tip becomes longer after the indentation. The

modified tip shape is checked by imaging of impurity particles and steep atomic steps

on the Au(111) surface. And an electronic structure of the tip is also checked by

tunneling spectroscopy on the gold. After this procedure, the tip is used for imaging

and spectroscopy of the QD.

The indentation process is also performed after the imaging of QD, because the

QD injected surfaces generally contains impurity or solvent molecules and they are

easily transferred to the tip. Then they interrupted stable imaging and tunneling

current measurement. So each time between the sample exchange, the tip condition

is checked by scanning the clean Au(111) surface and the indentation is performed

until the desired condition is obtained.
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Figures 4.3 Possible Tip Radius - Two cases of 1.5 and 2 times of the original size
are simulated with 6 nm QD diameter. The QD has imaging size of 9 nm with the
tip of radius 1.5 nm or less according to the half cone angle. With the tip of 2.5 nm,
the QD can be imaged as two times of the original size. Note that dull tips with large
half conic angle (> 33◦) will obtain the lateral QD size larger than two times of the
original size.
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4.2 Electronic Structure of QDs

4.2.1 Metal Substrates

STS measurement on metal substrates is obtained on isolated QDs or QDs at

the edge of aggregation. An example of the isolated QDs are shown in (Fig.4.1). The

exemplary STS spectrum of QD on metal surface is shown in (Fig. 4.1). Some notable

features can be summarized as follows.

• Zero Conductance Gap

• peaks of hole and electron states corresponds to S, P and D symmetries

• Peak intensity is modulated by the conductance of the substrate

• Small size peaks inside the gap

The measured zero conductance gap of QD is about 1.8 eV. And some peaks of

electron or hole levels can be assigned to the symmetry notations of S, P and D[35].

Though we can assign the origins of these low lying states with envelope function

approach as described in chapter 1, the details of the spectrum can only be obtained

by rigorous calculations like DFT theory. So, to further confirm that the STS structure

is from the QD itself, we compare the result with DFT calculation.

Generally the atom numbers in a QD is too large to be calculated in an ab-intio

calculation. For example, approximate atom numbers of 6 nm diameter QD (which

is used in this experiment) exceeds 2000. So DFT calculation of such a large system

is almost impossible for limited resources or lack of computing power. To obtain the

properties of large QD, we usually calculate small size QD and scale it up. Since the

gap is the function of QD size, it can be obtained from an experiment or a calculation.
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Figures 4.4 Electronic Structure of QD on Ni(111) - Gap between first electron
and hole states is measured as 1.72eV, differential conductance of Ni(111) is plotted
as dotted line. At positive bias, enhanced conductance influenced by high density of
states of nickel substrate is visible (yellow dotted circle)
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In (Fig. 4.5), theoretical calculation of gap as a function of the QD size is represented.

Figures 4.5 Theoretically predicted Energy Gap - Theoretical prediction of band
gap as a function of the QD size from reference??. The result is calculated under the
effective mass approximation. Though the calculation is done on CdSe core QD, it is
approximately used as the scale factor of core-shell type QD gap in the text.

According to the gap variation, the DFT calculation result from reference?? is

scaled up. The calculation was done on 2 nm size core-shell type CdSe/ZnS QD.

To compare the calculation with 6 nm QD experiment, we scaled the calculation by

2.04/2.64. The values of 2.04 and 2.64 eV are extracted from the gap values in (Fig.

4.5). The scaled result is shown in (Fig. 4.7). The theoretical prediction of the gap is

agreed well with experimental gap size and peak positions of hole states also fit well.
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Figures 4.6 Magnified View inside the Gap Region - Additional state can be
seen inside the gap region at 400 meV (inside the orange dot circle).

The noticeable differences of the comparison are that the structure of electron

states are dissimilar to the calculation and state inside the gap is observed as in

magnified view (Fig. 4.6).

At 400 meV in the gap, a state is clearly observed and there is an additional peak

at 1.2 eV. The origin of the additional peaks is unclear now, but DFT calculations

with some crystal defects show deviations from the pristine QD result. Though we

cannot assign the peak to a specific type of defect, it is probable[27]. Sometimes the

tunneling spectra show severely different STS from the predicted DOS as shown in

(Fig. 4.8).

Another notable feature is peak intensity ratio between hole and electron states.

According to the calculations, generally, hole states have relatively higher electron

densities than electron states. The density of hole states implies the existence of

heavy hole bands thus the hole bands show higher densities at the energy. However,

the experimental results are not consistent with the calculations. On nickel surface,

the differential conductance of the substrate at positive bias is higher than of the
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Figures 4.7 Comparison between experiment and DFT calculation - S, P and
D symmetric states of holes coincide with the experimental data. However, electron
states show additional peak at about 1.2 eV and exaggerated peak intensities. The
increased peak intensity at the electron states coincide with the high tunneling con-
ductance of the substrate nickel surface at positive bias.
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negative bias. On this nickel surface, QD spectrum shows higher electron density at

the positive bias. On the contrary, QD on gold surface shows higher density at negative

bias, and the conductance of the gold substrate is also high at negative bias. With

these results, the peak intensity reflects the conductance of the substrate as their

background. This emphasizes the role of substrate conductance on QD spectrum.

That is peak intensities in QD STS result are modulated by substrate conductance.

Figures 4.8 Electronic Structure of QD on Au(111) - Gap is measured as 1.84eV,
differential conductance of Au(111) is plotted as dotted line. At negative bias, en-
hanced conductance influenced by high density of states of gold substrate is visible
(yellow dotted circle)

To obtain the meaningful information from the peak intensity, we need to remove

the effect of the metal substrates. That can be realized by a calculation including
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the metal substrate atoms, but that is also an difficult task for the large size of the

system. Or experimentally, QD deposition on insulating layer will decouple the QD

wavefunction from the metallic states. In this context, the QD deposition on insulating

layer has important meaning. The attempt to obtain the spectrum on thin insulating

layer will be introduced in the next section.

4.2.2 h-BN Surface

Since STM requires conducting substrate, metallic substrate is essential to the

experiment. However, when we observe target objects on metal substrate the hy-

bridization of electron wavefunction complicates the problem. As we pointed out in

the previous section, QD deposited on metal substrates shows strong modulation of

LDOS by the conductance of the metal surfaces. And hence the specific intensities of

each state are severely modified by the substrate conductance. To reduce the effect

of metallic electron states, we need insulating decoupling layer on metal substrate. If

the substrate is bulk insulating material, then tunneling current cannot pass through

the sample. So few atomic monolayer of decoupling layer is required to perform the

tunneling current measurement. Since the electrons from the tip can tunnel through

the few layer of insulator, tunneling current measurement is possible. Then it is possi-

ble to measure the QD STS without the hybridization of QD states with the metallic

states.

The h-BN surface attracts much interest for its inert property, wide band gap and

easy formation of atomically flat surface. The h-BN surface is prepared as described

in the previous chapter 3.3.2 and QDs are also injected by the same manner with the

metal substrates. Since the pulse injection method is not dependent on the chemical

property of the surface, the same conditions as in metal surfaces resulted in the similar

density of QDs on h-BN surface.
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Figures 4.9 Typical h-BN Surface after the Pulse Injection. - Among the
residual molecules, line type defects which are characteristic feature of h-BN surface
on Ni(111) are observed. On the lower right part, an isolated QD is also observed.

The characteristic defects of h-BN surface of line and hole types (Fig. 3.12) are

used as the indicative evidence of h-BN surface as in (Fig. 4.9). By the existence of the

same defects before and after the injection, we can confirm that the h-BN monolayer

is not damaged by the injected solution.

Though the h-BN surface is expected to be a good decoupling material for QD,

the obtaining of tunneling spectra on QD/h-BN was not an easy task. Since the h-BN

surface is known to be inert, residual molecules are also easily moved by tunneling

current. The horizontal lines along the fast scan direction are noticeable in (Fig. 4.9)

and the boundaries of QDs are fuzzy. So the tunneling current is usually unstable

and difficult to acquire tunneling spectrum reproducibly. So STS spectrum of QD on

h-BN surface would be possible by further removing of residual molecules.

As long as we know, this is the first attempt to deposit QD on decoupling layer.

Though the stable measurement of spectrum on h-BN was not possible, this result
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Figures 4.10 pulse injected QD on h-BN surface - Typical image of QD deposited
on h-BN surface. The instability of tunneling current is reflected as horizontal lines
and fuzzy boundary of QDs.

implies the possibility of QD deposition on insulating layers. The separation of QD

states from the substrate implies the possibility of intact QD electronic structure

measurement. And the wide band gap nature of h-BN also has advantages in photon

detection from the QD STM junction, because the gap is much wider than the QD

states, so the h-BN states have little influence on generation of photons. In this aspect,

the first demonstration of QD deposition on h-BN layer will prove its value.

4.3 QD Aggregation

Despite well isolated QD is ideal for investigation of its own characteristics, such

QD is rarely observed as in (Fig.3.5). Instead almost all QDs are found in aggregation

commonly for all substrates (Au(111), Ni(111) and h-BN on Ni(111)) surfaces[44]. The

formation of the aggregation seems to occur during pulse injection, because thermal

diffusion of QD at room temperature is not probable for its massive number of atoms.

And in the images taken before and after the mild heating process, QD aggregations

are observed for the both. This excludes the possibility of aggregation by the post-

heating process. So it is the result of dynamic diffusion of QD in solution during and
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right after the pulse injection.

Figures 4.11 QD aggregation on Au(111) - (a) small aggregation of three QDs(b)
magnified image of aggregated QDs (c) large scale view of QD aggregation

4.3.1 Metal Substrates

Typical images of QD aggregations are shown in (Fig.4.11) and (Fig.4.12). QD

aggregations are commonly formed on both Au(111) and Ni(111) surface. But the rest

bare metal surfaces show different characteristics, Au(111) shows modified herring-

bone structure(can be seen in (Fig.3.5 (a))) which is the evidence of abundant defect

atoms, but no significant adatoms or molecules are observed. The modification of

the herringbone structure is known in case of existence of defect atoms like sulfur??.

On the other hand, Ni(111) is severely contaminated with solvent molecules. As in

(Fig.4.12 (a)), nominal one monolayer of chemisorbed molecules are observed on the

bare nickel surface. But their mixed feature (possibly solvent, excessive capping and

impurity molecules) prevents the individual identification of the molecules.

Between the two surfaces, Au(111) shows relatively clean surface after the in-

jection. Occasionally, on Au(111) surface, we can find capping ligand molecules.

There might be on the Ni(111) surface, too. But the Ni(111) surface has too much

chemisorbed molecules, so discrimination of capping molecules are almost impossible.
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Figures 4.12 QD aggregation on Ni(111) - (a) Ni bare surface after the pulse
injection, contaminated by mixture of solvents and capping molecules (b) aggregated
QDs (c) magnified image

By the fact that the solvent, DCM, leaves no residues on gold surface, it is possible

to image and observe the capping molecules and the result will be discussed in the

next chapter.

4.3.2 h-BN Surface

Formation of QD aggregation on h-BN surface has no significant differences from

metal substrates. But in detail, they exhibited relatively unstable tunneling current

which is reflected as notable noises in image. (see (Fig.3.6 (b)) or (Fig.4.10 edge of

each QD) For this reason, no stable STS spectrum is obtained.
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Figures 4.13 QD aggregation on h-BN on Ni(111) - The instability of tunneling
current is reflected as horizontal lines and fuzzy boundary of QDs.
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Chapter 5 External Trap States

5.1 Tunneling Spectra of External Trap States

Occasionally some QDs exhibit totally different spectrum from ordinary ones. An

example of such a spectrum is shown in (Fig. 5.2) and for comparison the ordinary

STS result is also shown in (Fig. 5.1). The most remarkable feature of that kind of

spectrum is the existence of strong peaks inside the gap and positive sample bias.

These peaks show much stronger intensity than the ordinary spectra.

We note that these states are different from defect states shown in (Fig. 4.6).

As pointed out in the previous chapter, almost all QDs have small size gap states

which are reasonable to assign as crystal defect states and they are confirmed by

DFT calculations. Since the crystal defects are localized at the defect sites, their

intensity cannot be much stronger than the original confined states’ peaks. They only

make some deviated peaks and change of the relative intensities from the original

density of states. In this sense, the enhanced peak intensities of (Fig. 5.2) cannot be

explained by the internal crystal defects. We assign this chapter to introduce possible

mechanisms of this phenomenon.

The notable features of the spectra with the strong peaks inside the gap are

summarized as follows.

• Strong peaks are observed from the gap through the positive bias region

• The peak intensity is much stronger than the ordinary QD confined states’

peaks

• The detailed peak positions and shapes are different from QD to QD
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Figures 5.1 STM topography image and STS spectrum from a QD - The
spectrum shows the ordinary gap feature and QD confined states. The set point
current and bias are 200 pA and 2.5 V.

To find out the spatial variation of the observed peaks, we obtained a series of

tunneling spectra along the center line of a single QD. The result is shown in (Fig.

5.4) as two dimensional map with color mapped by differential conductance. The

result reveals the striking feature of the distribution of the observed states. As can

be seen in the map, the states does not uniformly exist over the QD, but they are

only observed on rather randomly spaced three points which are indicated by vertical

red lines. In other words, the origin of the strong peaks is localized at specific sites

on QD surface. So it is natural to introduce inhomogeneous QD surface condition

to explain this phenomenon. And we will present some possible mechanisms in next

section. Before that, some immediately noticeable features will be analyzed through

this section.

1. The first noticeable feature of the states is the localization. The size of the

localization can be estimated by the number of similar spectra near the sites. The

strong peaks are observed over 2 or 3 spectra near the sites. From the fact that the
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Figures 5.2 STM topography image and STS spectrum from a QD - The
spectrum shows series of states from the gap to positive bias region. The set point
current and bias are 100 pA and 2.0 V.

Figures 5.3 Another STM topography image and STS spectrum with the
strong gap states - The set point current and bias are 100 pA and 2.0 V.
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spacing between each point is 4.7Å, we can estimate the lateral localization size to be

about 1.4 nm or less. Then it is natural to compare the size with lateral size of the

capping molecule. Though the STM topography image did not show the existence of

capping molecules directly, it is improbable that the capping molecules are removed

by pulse injection or mild post heating procedure1. And evidence about the existence

of ligand is found in estimation of barrier thickness between QD and metal surface

which will be presented in chapter 6. The estimation of the thickness corresponds to

the vertical size of one TOPO molecule. So we assume that the imaged QD surface

is covered with closely packed TOPO molecules. The estimated lateral size of TOPO

molecule is 5.5Å2. Then the localization size of 1.4 nm corresponds to 2 or 3 TOPO

molecules. So we claim that the mechanism involved with this phenomenon only

affects 2 or 3 capping molecules nearby.

2. Another noticeable feature is that the specific sites with the strong differential

conductance are not recognizable in topography image. Any detectable change of tip

height is observed on whole QD surface, even though their STS result show more than

20 fold enhanced signal. This inconsistency is explained by polarity of imaging bias.

Since imaging with positive bias occasionally induced sudden change of QD moving

or tip condition change, we usually used negative imaging bias. All the images in this

chapter are obtained at negative bias and set point for STS is also set as negative. As

can be seen in (Fig. 5.4), STS signals at negative sample bias are not quite different

for all over the line. So it is apparent to see any difference in topography taken at

1The temperature is about 70◦C and it is lower than thermal decomposition temperature of ligand
materials

2The distance between closely packed TOPO is estimated from STM image on Au(111) surface.
Since QD solution should be in rich-ligand condition to prevent aggregation, the excessive ligand
molecules are also deposited by pulse injection. When we overdose the solution, we usually observed
dispersed capping ligand on Au(111). We present the details about the imaged capping molecules on
chapter 6.

69



Figures 5.4 SR-STS across a single QD - Differential Conductance obtained from
a center line of a single QD. The STM tip is moved from point O to O′, about 15
nm. And the 32 obtained spectra in 15 nm correspond to 4.7Å point distance. The
obtained spectra reveal the spatial localization of the strong gap states. The localized
sites are depicted by red circles and lines with labels, A, B and C. As shown in the
map, the peak intensities are strong at those sites than other parts of the QD.
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negative bias. It is contrast to the strong peak intensity difference at positive bias.

Figures 5.5 Comparison of spectra from the trap states and interstitial part
of the QD - Three graphs are from bare gold surface (1), the trap sites (2) and inter-
stitial part of QD (3). As shown in the graphs, the trap state has strong conductance
even stronger than that of bare metallic gold surface. On the other hand, other QD
surfaces have suppressed conductance like the red graph. (To see the details of the
red curve, the magnified version is shown in (Fig. 5.6)

With the different behavior at positive and negative bias, we can exclude the

possibility of being that the phenomenon is related to the absent of capping molecules.

Because the absent of capping molecules is likely to induce indentation in topography

regardless of imaging bias, the smooth surface image at negative bias cannot be

explained by the deficient capping layer. So we expect that this phenomenon is related

to a surface condition underneath the capping ligand, on the surface of the QD. And

the condition also affects the tunneling conductance only at negative bias.

3. We note that the regions other than the three sites show typical STS with the

gap structure. Since the enhanced peak size prevents the recognition of spectra in the

same scale, we magnified the STS result of the interstitial site in (Fig. 5.6). In the

magnified view, it is clear that the QD surface other than the specific sites have the
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Figures 5.6 Magnified View of the Red Curve in (Fig. 5.5) - The curve is
magnified by 10 times. The structure with the ordinary gap size is visible. Spectra
obtained on the surface of QD other than three trap sites show similar structure with
this graph.

electronic structure with the ordinary gap feature. This observation also assures that

the special condition does not alter the other parts of the QD surface and only affects

the property of localized sites.

4. We cannot see any nominal difference in image and spectroscopy at negative

bias. At positive bias, however, the enhancement of differential conductance of the

specific sites exceeds 20 fold than other sites. If we assume that this phenomenon

is related to any static change of electronic state 3, then the model will include

the modification of electronic structure or spatial dispersion of wavefunction at the

positive energy. Between the two possibilities, the modified electronic structure cannot

solely explain such a large enhancement. Any localized condition with 20 times larger

local electron density than nearby sites is unlikely.

So we expect that the large enhancement is explained by delocalization of the

3though we cannot completely exclude the possibility of dynamic change like charging of the
specific sites.
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Figures 5.7 Site variations of the trap states - The three trap states show sim-
ilar spectra. However, their detailed structures are different from each other. This
variation indicates that their origins such as defects also have diversities.

wavefunction. The delocalization can enhance the conductance between two elec-

trodes (STM tip and metal substrate) only when the dispersed wavefunction secures

conducting pathway between the two electrodes. Since we already observed the lo-

calized characteristics in lateral direction, the formation of conducting path toward

the metal substrate is inconsistent with this situation. The other pathway to the

other electrode, i.e. delocalized wavefunction toward the STM tip, will be a major

possibility.

5. The last notable feature about the spectra is variation of spectrum from site to

site. The graph in (Fig. 5.7) emphasizes the difference of spectra of the three sites.

This variation indicates the existence of various types of origins for this phenomenon.

Throughout these features, the states are consistent with the external trap states

responsible for blinking.
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5.2 Possible Mechanism

As we pointed out in the previous section 5.1, the observed strong gap states show

certain properties. The previously described properties can be summarized as follows.

• Localization

• Affects only empty states

• Strongly enhanced conductance

• No vacancy in ligand molecules covering the QD surface

• No difference in filled states

• Site variation

From these properties, we propose the most probable model. From the fact that

there is no evidence of vacant ligand molecule, the origin of the states should be

localized underneath the surface ligands and it will be covered by the ligands. And the

temperatures during the whole process were much lower than the thermal dissociation

temperature of ligand molecule. This also disproves the possibility of flawed ligand

molecule. The most probable defect is crystal defect on QD surface which is formed

during the synthesis[59]. So we examine the possible defect types to reveal the origin

of strong gap states.

Though there are many possible defect types, they can be reasonably classified

by two category, Zn or S deficient defects. So we compared their possibilities by

calculation. For lack of computing power, the calculation of whole QD and ligand

system was impossible. Instead of that, we made small test system to investigate the

possibility.
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Figures 5.8 The LUMO states of various molecular models - (a) TOPO with a
Zn atom (b) TOPO with a Zn and a S atom(c) TOPO with a Zn and two S atom(d)
TOPO with a Zn and three S atom; From (a) to (d) as we add more sulfur atoms,
the LUMO states show localization to the end of TOPO molecule. With these results,
we can see the possibility of LUMO delocalization with deficient sulfur atoms. The
TOPO attached to a sulfur-defective Zn atom will show delocalized wavefunction
outwards to STM tip.
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Figures 5.9 The HOMO states of various molecular models - (a) TOPO with a
Zn atom (b) TOPO with a Zn and a S atom(c) TOPO with a Zn and two S atom(d)
TOPO with a Zn and three S atom; All the states are localized under the second
carbon atoms. These show the possible reason for no difference in negative bias over
defect states.
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We calculated single ligand molecules with small fragment with density functional

theory calculation. Among many possible fragments, we tried to find a combination

which has delocalized feature in LUMO orbital. So we found a tendency of orbital

delocalization to outward direction with sulfur deficient fragments. A simple exam-

ples of such fragments are shown in (Fig. 5.8). As shown in the result, LUMO is

significantly delocalized to the direction of triangular carbon chain when sulfur is

deficient. The model with no sulfur atom, (Fig. 5.8 (a)), show LUMO extended to

the fourth carbon atom, while the other cases show distribution limited below the

second carbon atom. So this delocalization tendency will explain the enhancement of

tunneling conductance by shortening the gap between LUMO and tip wavefunction.

And we also exhibit calculation results about HOMO distribution on the same

models. To be consistent with the experimental results, they should show no signifi-

cant variation. As shown in (Fig. 5.9), they show no significant delocalization in all

atomic models. For all the cases, the HOMOs do not extend to carbon chains. So these

results prove the observation of no tunneling conductance enhancement in negative

sample bias.

Though these are not the direct calculation over the realistic system, they show

the possibility of empty state delocalization towards the outside of QD. So sulfur

deficient defects are most probable explanation of the observed defects.

5.3 Perspectives

As long as we know, this study is the first observation of defects at the sub-QD

level. So more experiments and theoretical modeling are still required to fully reveal

the all defect types. The importance of defect characterization is not only limited to

discovery itself, but also connected to many phenomena which are related to defect
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Figures 5.10 Various Suggested mechanisms related to external trap states
- (a) spectral diffusion : the observed large broadening of the trap state can be ex-
plained by spectral diffusion (b) spatial diffusion : seems to be inconsistent with our
observation for there is no signature of diffusing electron state around QD surface (c)
fluctuating barrier : this model cannot be proved only by tunneling current measure-
ment. simultaneous optical detection would relate the tunneling current fluctuation
with blinking states.

dynamics. And solving the relation between the defects and the blinking problem will

be the first priority.

From the observation result, we can add more feasibility to existent blinking mod-

els. For example, spectral diffusion model is consistent with the observed large broad-

ening of the external trap states. So if the large broadening causes prolonged lifetime

of the blinking dark states, then simultaneous optical measurement will probe the

dark states according to the spectral broadening. Though the spatial diffusion model

seems to be inconsistent with our observation4, more precise modeling of blinking is

only possible by optical measurement.

In this regard, the detection of photons from the tunneling junction is essential in

solving the problem. So we plan to add photon detection capability to our system for

simultaneous optical measurement with tunneling current measurement. We present

our CAD design in appendix.

4In the timescale of our measurement, i.e. typically 1 ms or longer, there was no signature of
spatially diffused electron state
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Figures 5.11 Schematic image of external trap - The observed gap states on QD is
the most probable candidate of external trap states responsible for blinking. However,
more direct proof is only possible by simultaneous photon detection from the tunneling
junction. When electroluminescence photons from tunneling junction are detected,
then the relation between the external trap states and blinking phenomenon can be
proved. And possibly, the result will pave the way to far more efficient applications
of QD
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Chapter 6 Modeling of Negative Differential
Resistance

6.1 Observation of NDR

At relatively low tunneling current set point (about less than 200 pA), we usually

observed QD confined states fits well with DFT calculation. Though we suffered from

unstable tunneling signal at higher set point, in some special cases, it is possible to

obtain stable tunneling current signals and spectrum without QD moving or abrupt

tip condition changes. The obtained spectra at higher tunneling current set point

show extraordinary feature of negative differential resistance as shown in (Fig. 6.1).

Around 300 pA set point, the differential conductance becomes negative which means

the decreasing current with increasing bias at that bias range.

We also confirmed the existence of NDR effect in tunneling current measurement

which is recorded simultaneously with the differential conductance spectra. The ob-

served tunneling current also show the reduction of current with increasing bias at

the energy of NDR in STS. So we can exclude the possible misleading in lock-in

techniques like overload or use of insufficient sensitivity.

According to the transfer Hamiltonian approach, the tunneling current through

the junction can be modeled by the convolution of the tip and sample density of

states. Then the tunneling current is proportional to the integral of this form,

I ∝
∫ V

0
ρtip(ε)T (ε)ρsam(ε)dε (6.1)

So even if the integrand ρtip(ε)T (ε)ρsam(ε) decreases at certain range of the en-

ergy, the effect should overcome the extension of integral range to manifest the NDR
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Figures 6.1 STS on QD with NDR observed - tunneling spectrum of QD on metal
substrate. At low tunneling current set point, the spectrum shows typical QD confined
states. As the current increases or the STM tip goes closer to QD, the spectrum shows
evolution of NDR at negative bias. The NDR does not occur at positive bias.

Figures 6.2 Tunneling Current recorded with the NDR - tunneling current
measured simultaneously with the spectrum. At negative bias, the tunneling current
decreases as the bias increases, so the observed NDR spectrum is consistent with this
I-V curve. This excludes the possibility of misleading in using lock-in technique.
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spectrum. In this context, the NDR occurs very rarely with special conditions. So

by investigating the certain conditions responsible for the NDR, we can obtain much

information about the system.

The notable features of the observed NDR are summarized as three points.

Firstly, the observed spectra show evolution of the tunneling conductance from

positive to negative values. In other words, the NDR only occurs when the STM

tip is sufficiently close to the QD surface. Then it is apparent that the mechanism

responsible for this NDR effect should be induced only at close proximity of tip to

QD.

Secondly, the NDR is only occurred at high negative sample bias of about 1.5 V

and not observed at low negative or whole positive bias range. This behavior suggests

a intuition about the origin of the NDR effect. The deep energy levels of occupied

states are farthest from the vacuum level among the energy levels of QD in the

measurement range. Then the states at negative bias have higher tunneling barrier

(energy difference with vacuum level) than other states. So the mechanism for the

NDR might be related to the elevated barrier height.

The final observation is the direction of peak shift with increasing set point cur-

rent. (Fig. 6.3) is the magnified view of the NDR tunneling spectra. The peak shift

to lower energy side is clearly shown in the view. The direction of the shift is the

opposite of the common direction of level shifts in double barrier tunneling junction.

The schematic representation of such a typical voltage divider model is shown in (Fig.

6.4). When we approach the STM tip to the QD deposited substrate, and then the

barrier between tip and QD is lowered relative to the barrier between the QD and the

substrate. Then more voltage is applied to the lower barrier between the QD and the

substrate as indicated by solid blue arrow in the diagram. In this case, higher bias
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Figures 6.3 Magnified view of the NDR spectrum - The maximum point of each
spectrum is marked by red dot. As the tunneling current increases, the maximum
point shifts to the direction of lower energy. Since the set point current corresponds
to the area under the dI/dV curve, the peak intensity also rises as the tunneling
current increases.

is required to resonate the tunneling electrons with the QD energy level again. The

increase of the bias at new resonant position is described by solid red arrow in the

right panel. So according to the voltage divider model, the peaks should shift to the

higher bias direction which is the opposite of the experimental observation. So the

mechanism of NDR should also reveal this peculiar peak shift.

6.2 NDR Mechanisms

6.2.1 Symmetry Matched Resonant Tunneling

The most famous application of NDR is the tunnel diode which is also known as

Esaki diode[20, 21]. Since its first observation of negative resistance in highly doped

p-n junction in 1957, many NDR effects share the common principle with the tunnel

diode. The main idea to describe the NDR in these cases can be found in the original

energy diagram of Esaki?? in (Fig. 6.5). The electrons can tunnel through the junction
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Figures 6.4 Comparison of resonant tunneling with large and small vacuum
gap size - The left diagram shows resonant tunneling with large vacuum gap(lower
set point current). When we push the STM tip to the QD (higher set point current),
then more voltage is divided to the left barrier (blue solid arrow) since the resistance
of vacuum gap is lowered. Then the resonant condition can only be satisfied by elevate
the whole voltage (red solid arrow). So the resonant peak appears at higher bias in
STS, if we increase the tunneling current.
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only when the two electrodes have occupied and unoccupied states at that energy.

Then the applied bias acts as a window of tunneling and at appropriate bias there can

be resonant tunneling between two electrodes. If the resonant tunneling is occurred

between two electrodes with energetically localized states (like the states of heavily

doped semiconductors), then the current flows only at the resonant and cannot pass

through when the alignment is mismatched by higher applied bias. This reduction in

current shows negative resistance of the junction which is impossible with classical

current flow.

Figures 6.5 Energy Diagram and Resonant Tunneling in Tunnel Diode -
(left)The energy diagram shows an alignment of degenerate bands in p and n doped
region. At this alignment, electrons can pass through the junction by quantum tun-
neling and at higher voltage, the alignment is broken so that no electron can pass
through. (right) Measured and calculated current through the junction. Note that the
current only exists when the electron tunneling is at the resonant. At higher bias, the
current decreases as the voltage increases and NDR occurs.[37]

Many recent studies focus on finding the underlying mechanism of the NDR in

many tunneling systems. A new aspect of the NDR is found by a tunneling spectrum
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between a nickel tip and a molecule[14]. The observed NDR reveals that the tunneling

current can flow only when the spatial symmetry of each electrode is matched and the

NDR can exist as a resonant between the two symmetry matched states. The finding

refined our understanding about the NDR and the idea also proves its validity in

recent observation of NDR in fullerene molecules under the STM junction [26].

In this context, the resonant tunneling model becomes the first to be compared

with our observation. A geometrical similarity between the fullerene and QD under

the STM junction also encouraged the comparison. The analysis, however, comes

to the discrepancy with our situation. The counter evidences can be summarized as

follows.

First, if the NDR is a result of resonant between two symmetry matched states,

then the NDR always occurs at the bias[26]. This aspect is confirmed in (Fig. 6.6). At

the point of negative conductance, the sign of the conductance does not change and

rather only the magnitude of the conductance changes. When the two states have

spatially matched symmetry, then their characteristics of localized narrow energy

states determine the NDR property. Then at the point of the NDR, the change of tip-

sample distance does not significantly alter the localization of energy. So the negative

conductance cannot change to positive one.

In our experiment, however, the negative conductance occurs at the point where

the conductance was positive at low set point current. The resonant tunneling mech-

anism does not provide any means to freely change the polarity as a function of

tip-sample distance.

Second, we used tungten tip or gold coated tungten tip. The tungsten tip is

known to have no significant electronic structure near its Fermi level. The absence of

energetically localized state does not consistent with the resonant mechanism. And
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there is also an report that between Ni and W tips, only the Ni tip shows NDR

effect on a molecule tunneling spectrum[14]. And since gold is s-wave metal, gold

tip does not show any significant spatial symmetry. Though the confined states of

QD have some symmetry like P or D states, The tip wave function should have such

symmetries to resonate the tunneling current. So both of the tips do not properly

explain the resonant tunneling NDR.

Figures 6.6 NDR found in fullerene under STM junction - Tunneling current
can flow only when the wavefunction symmetries of the fullerene and the opposite
electrode are matched. Then the resonant tunneling current can decrease when the
two matched states are misaligned at higher bias. However, in this case the differential
conductance cannot change the sign according to tip proximity. Only the conductance
can be tuned from zero to negative at the NDR point which is not consistent with
our observation.

And finally, it is impossible to explain the shift of the maximum points to lower

energy direction in (Fig. 6.3) with the resonant tunneling NDR model, because the

NDR of resonant tunneling occurs at specific energy levels and doest not affect the

position of the peaks as in (Fig. 6.6). So our observation that the change of tunneling

current induces the shift of the peak levels is out of the reach in resonant tunneling
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NDR model.

With the three counter evidences, we exclude the possibility of the resonant tun-

neling in our experiment.

Figures 6.7 Tunneling Resonance of Double Barrier Tunneling Junction -
When the energy localized state (yellow peak in the center) dominates the tunneling
current, then the most of the tunneling electrons exist at that energy. Then the barrier
experienced by the electrons approximate the total barrier height of each junction.
The schematic shows the relative barrier height as red and blue squre.

6.2.2 Double Barrier Tunneling Junction Effect

Another possible mechanism found in literature is NDR effect in double barrier

tunneling junction[58]. This model focuses on change of barrier height when the tun-

neling current is dominated by energetically localized state[43]. The energy diagram

of such a Double Barrier Tunneling Junction (DBTJ) is shown in (Fig. 6.7). In this

mechanism, the energetically localized state exists only in the center region. The

sources of the localized state in previous reports are molecular orbitals. In our case,
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the localized state can be the QD confined state. Then the resonant tunneling occurs

when the chemical potential of the tip is matched with the localized energy state.

Since the most of the tunneling current pass through the localized state, the state

acts as a window of the tunneling current. In this aspect, we can define the effective

tunneling barrier height of each junction as barrier experienced by the localized en-

ergy state. The schematic barrier height is represented as red and blue solid square

in the figure.

Figures 6.8 NDR Mechanism with DBTJ - When we increase the bias from
the resonant, then the heights of each barrier changes. The raised bias increases the
difference of chemical potentials of two electrodes, then the chemical potential of the
left electrode increases relative to the center localized state. The chemical potential
of the right electrode moves in the opposite direction. So as depicted in the right
panel, the barrier of left junction (red arrow) increases while the barrier of the right
junction (blue arrow) decreases.

When we increase the applied bias, then the chemical potential difference between

two electrodes increases. When we compare the change of the chemical potential rela-

tive to the center localized state, then the left electrode’s chemical potential increases
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while that of right electrode decreases. This difference induces the opposite change

of barrier height of each junction. In other words, the increase in applied bias results

in the raising of the left barrier and lowering of the right barrier. These conflicting

behavior of two barrier height compete each other. Then the NDR can occur only

when the left barrier dominates the system. We found that the close proximity of

the STM tip would lower the right junction barrier height. Then the left barrier can

dominate the tunneling current and NDR can occur.

6.3 DBTJ Modeling

To verify the DBTJ NDR mechanism and further explain the experimental ob-

servations, we performed a numerical simulation of DBTJ with WKB approximation.

The potential distribution of the QD under the STM tip is calculated by classical

electrostatics. Then the result is used to numerical calculation of tunneling conduc-

tance under the assumption that the tunneling is dominated by the energy localized

state of the QD.

6.3.1 Potential Distribution

WKB approximation explains the behavior of tunneling junction as the multi-

plication of a factor to the wavefunction. The factor also acts as coupling strength

of wavefunction across the junction. The factor, as described in chapter 2, can be

written as follows.

D = exp[−
∫ x2

x1

√
V (x)− ϵdx] (6.2)

where the integral goes over the barrier region and V (x) renders the potential distri-

bution inside the barrier.
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Figures 6.9 Geometry of DBTJ used in Finite Element Method Calculation
- The STM tip is rendered as 2 nm radius tip end with 25 ◦ half cone angle and the
QD is 6 nm sphere with dielectric constant 8. The upper barrier consists of vacuum
gap and capping layer while the lower barrier consists of capping layer. We varied the
size of vacuum gap and capping layer from 0.1 nm to 1.1 nm which generates 121 sets
of geometries
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To obtain the realistic predictions of the two tunneling junction, we estimated the

potential distribution of the DBTJ by solving the classical Poisson equation through

Finite Element Method (FEM). To use FEM, the geometry of the DBTJ is defined

as in (Fig. 6.9) and we varied thickness of each barrier to find the best solution to

our geometry. By the variation of the barrier thicknesses, we obtained 121 sets of

geometries (11 thickness variation in both of vacuum and capping layer. from 0.1 nm

to 1.1 nm). Then the each geometry is covered with triangular mesh with the charac-

teristic length scale smaller than 0.15 nm as in (Fig. 6.10). The example of obtained

potential distribution is drawn in the right panel and the potential distribution along

the center line is extracted from each calculation as (Fig. ??).

Figures 6.10 Potential Distribution obtained by Finite Element Method -
(left) mesh grid overcoat the geometry to supply the calculation points for FEM
method. The characteristic length scale of the mesh is smaller than 0.15 nm. (right)
Calculated potential distribution is represented by color mapping. We note that the
two junctions draw major potential drop as indicated by the abrupt color change.

The details of the calculation and used script are shown in (appendix. A). The

calculated results are exported to be used in the conductance calculation in the next

section.
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Figures 6.11 Potential Distribution obtained by the FEM Calculation - An
example of obtained potential distribution across the center line of the geometry.
The potential steeply drops in the two barrier regions. Though the potential drop
across the QD is also visible, the influence of this electric field to the QD confined
states was not included in the calculation, because the spatial dispersion due to the
electric field does not change the conductance significantly. The effect only gives
spatial rearrangement of the confined states in the QD.
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6.3.2 Calculation of Tunneling Conductance

As described in the chapter 2, the total coupling strength of two junctions influence

the current as follows

I =

∫ V

0

D1D2

D1 +D2
ρQD(ϵ)dϵ (6.3)

where D1 and D2 are coupling strength of each junction and ρQD is the local density

of state of QD. Since the energetically localized nature is the essential part of this

model, we approximated the QD confined state as Gaussian type localized density of

state centered at the peak position of Ph energy state. And the broadening factor is

chosen to best fit to the experimental spectrum. In this calculation, the density of

state of metal tip and substrate is factor out for simplification. Since the tunneling

conductance spectrum does not show any significant peaks in the range of interest, this

assumption does not change the main property of the junction. With the simplified

model of (Eq. 6.3), the competing behavior of D1 and D2 can be calculated.

The calculation of the numerical integration is done on 121 sets of geometry.

Then the result is numerically differentiated to obtain the tunneling conductance.

The chosen sets of result are shown in (Fig. 6.12). The obtained properties of the

result can be summarized as follows.

1. No NDR is observed at thin capping layer for all variations of vacuum gap

thickness.

2. At capping layer of about 0.6 nm, the NDR appears. By approaching the STM

tip to QD (decreasing the vacuum gap thickness), we also find that the intensity of

NDR increases. This result is well agreed with our experimental observations.

3. The best fit to our experiment is obtained at 1.0 nm capping layer thickness.

And at this condition, the peak shift towards the low energy is also reproduced.
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Figures 6.12 Calculated Result of DBTJ conductance - Among the 11 sets of
the result, three representatives are presented. (left: capping layer thickness of 0.3
nm) at thin capping layer thickness, the result shows no negative conductance. The
legend in the graph shows the vacuum gap between the STM tip and QD. (middle:
capping layer thickness of 0.6 nm) at moderate capping layer thickness, the NDR
occurs at the bias slightly larger than the resonance. (right: capping layer thickness
of 1 nm) The ratios between positive and negative part of the conductance is best fit
to experimental spectrum. And even the observed peak shift to lower energy is also
reproduced.

By the numerical simulation, we obtained geometrical factors best fit to our ex-

periment. The estimated capping layer is 1.0 nm. The two used capping molecules

have vertical size of 0.99 nm (TOPO) and 2.02 nm(HDA), respectively. Though the

images of QD did not show individual capping molecules, it is hard to imagine the

thermal decomposition in our experimental procedures. So the estimated capping

layer thickness confirms the existence of capping molecules on QD surface.
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Chapter 7 Imaging and Characterization of
Capping Molecules

7.1 Importance of Capping Layer

The capping molecules of QD act as solvent at the synthetic stage, but also as

passivation after the synthesis[52]. Besides the roles, ligand molecules also decide the

chemical property of QD[50]. We briefly examine the role or importance of ligand

molecules in this section. Some notable features of capping molecules are summarized

as follows.

• Capping layer prevents aggregation.

• decide chemical property of QD

• Decouple electronic structure of QD from outside

Unlike bulk size materials, small size materials undergo van der Waals (VDW)

interaction between the particles. So materials whose size is smaller than micro meter

scale usually form aggregation. The VDW interaction usually shows potentials of the

Lennard-Jones potential as follows

V ∝ (
rm
r
)12 − 2(

rm
r
)6 (7.1)

where r is the distance between two particles and rm means the minimum energy

point.

Since QD also interacts with other QDs through this VDW interaction, they usu-

ally aggregate to micro scale size without capping layer. With the help of capping
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layer, the minimum energy point in the Lennard-Jones potential smears out. At the

minimum energy point, the repulsive force between capping molecules exhibit re-

pulsive force, so QDs do not attract each other. This enables prolonged lifetime of

nano-sized QDs in solution and prevents degradation of QDs during deposition.

Because exposed surface of QD is covered with capping layer, they usually deter-

mine the chemical property of QD. For example, QDs with organic capping ligands

dissolves in non-polar solvents while QDs with polar ligands dissolves in polar solvents.

This change of chemical property comes into play when biological system is involved.

Since water solubility is the essential factor in applications of biology, exchange of

ligand or efficiency in the exchange are the major issues. So direct observation of

capping ligands on QD surface provides valuable information to us.

Imaging of individual capping molecules on QD is required to determine packing

density of the molecules. And the packing density plays important role in prediction

of chemical behavior related to the QD surface[45, 33] and even optical properties[8].

But QD topography images show seamless and smooth surfaces which make suspicion

of the existence of capping molecules on QD surface.

In this regard, imaging of capping molecules on QD surface is major issue of QD

study[34]. However, the use of gold coated tungsten tip 1 Usually show no atomic

resolution on QD surface. So no individual capping molecules are resolved on QD

surface.

1As pointed out earlier, we usually indent clean Au(111) surface with tungsten tip to remove
excessive pollutants and modify the tip end shape. This process usually resulted in the formation of
gold layer on tungsten tip which compromise the image resolution with clean imaging.
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7.2 Capping Molecules on Au(111)

7.2.1 Images of Capping Molecules

Instead of images on QD surface, individual capping molecules are imaged on

Au(111). (Fig. 7.1 and 7.2) are typical images of HDA and TOPO molecules, respec-

tively. The bonding site is clearly visible in HDA image as protrusion. Though the

sub-molecular structure, i.e. three carbon chains, is not resolved in TOPO image,

they usually make bonding through end oxygen atom.

Figures 7.1 Image of HDA at 5K - (left) HDA molecule absorbed on Au(111)
surface (right) atomic model of HDA molecule. The image shows the long carbon chain
of HDA molecule and bright protrusion is observed which corresponds to nitrogen
bonding with Au(111)

7.3 Determination of Bonding Direction

7.3.1 DFT Calculation

We calculate the electron distributions of LUMO and HOMO with DFT calcula-

tion. Since LUMO and HOMO are located right above and below the Fermi energy,

they play major role in bonding formation.

The DFT calculation results show the distribution of HOMO and LUMO. They

commonly exhibit localized wavefunction at the end atom. Both of two molecules
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Figures 7.2 Images of TOPO at 5K - (left) Adsorbed TOPO molecules on Au(111).
We expose clean Au(111) surface to excessive QD solution and then heated the surface
up to 200◦C. Since TOPO has relatively strong bonding than HDA, so HDA molecules
are removed by the heating process. (middle) Image of TOPO molecular chain; The
distance between each molecule is about 0.8 nm. Though three carbon chains are not
resolved, TOPO typically makes bonding through end oxygen atom. (right) Atomic
model of TOPO molecule; The end oxygen atom is marked with red color

have electronegative atoms at the end, oxygen and nitrogen. So the end atoms are

negatively charged and will form bonding with positive ions. In our case, Zn is posi-

tively charged when it makes bonding with sulfur. So it is natural to make bonding

between the negative end parts and Zn atoms.

This bonding direction is also used when they make bonding with metal electrons.

As in (Fig. 7.1), the localized orbital is hybridized with metal electrons.

7.3.2 Rotational Motion

When we image HDA molecules on elevated temperature of about 80 K, we ob-

served rotating motion of the HDA molecules. The circular object in (Fig. 7.5) is

typical image of such rotating molecule. We can see the size of the circle is about 1.8

times of the original length of the molecule, so we know that the rotating motion is

pinned at the end of a molecule. By comparing the observed motion with the static

images at 5 K, the energy barrier of the motion can be estimated to be between 6.67
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Figures 7.3 HOMO and LUMO Electron Distribution Calculated by DFT -
Both of HOMO and LUMO orbitals are localized at the end nitrogen atom. These or-
bitals form bonding with QD through hybridization. Since the high electro-negativity
of end oxygen atom, HDA will be attached to Zn surface atom of QD which has
partial positive charge.

Figures 7.4 HOMO and LUMO Electron Distribution Calculated by DFT -
TOPO also show wavefunction localized on the very end atom, Phosphor.
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mV and 0.42 mV.

Figures 7.5 Rotating HDA - Image of rotating HDA molecule on Au(111) surface
and its atomic model. Note that some HDA molecules aggregate and do not show any
movement during the scan since the rotational motion is limited by each other.

And information about the energy barrier is obtained from bias dependent images

in (Fig. 7.6). Even the small bias of 5 mV induced the rotational motion.2

Though the thermal energy of 5 K is not enough to rotate the molecule, switching

of molecular position by tunneling current was possible. As shown in (Fig. 7.7), the

molecules are intermittently switched by the tunneling current.

2Though the rotating images at 10 and 5 mV show relatively depressed topography, their rotational
motion is apparent from the circular boundary of the depressed image. The suppressed electron
density at these biases maybe the origin of the depression.
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Figures 7.6 Images of Rotation HDA at Various Sample Bias - Each image is
acquired with different sample bias from -2.0V to -5mV ((a) - (i)).

Figures 7.7 Successive Images Showing Sudden Motion of HDA by Tunnel-
ing Current - (left) HDA molecule image at 5K (middle) The direction of carbon
chain is rotated 60◦ during scanning by tunneling current (right) the rotated molecule
image
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Chapter A Calculation of DBTJ NDR model

A.1 Potential Distribution of STM junction

Followings are the code used to calculate potential distribution of STM tunneling
junction. The code is written in Python language and is intended to be used by
scrip function of Argos 2D package. The Argos 2D package is open source software
developed by Pavel Karban et. al. for the solution of partial differential equations
based on higher order finite element method. It uses planar or axis-symmetric space
to render meshes used in finite element method, so it is proper to simulate STM
junction with QD if we uses axis-symmetric problem settings and is simpler than full
three dimensional packages like Elmer which is also available as a open software. The
calculation is repeatedly done with varying vacuum barrier thickness and capping
layer thickness. Total of 121 subsets are used and they correspond to capping layers
from 0.1nm to 1.1nm and vacuum layers from 0.1 nm to 1.1 nm.

newdocument("Electrostatic Axisymmetric STM junction", "axisymmetric",

"electrostatic", 0, 3, "disabled", 1, 1, 0, "steadystate", 0, 0, 0)

epsCap = 2

epsQD = 8

Tipdia = 4

addboundary("Zero", "electrostatic_potential", 0)

addboundary("One", "electrostatic_potential", 1)

addboundary("Border", "electrostatic_surface_charge_density", 0)

addmaterial("Vacuum", 0, 1)

addmaterial("CdSe", 0, epsQD)

addmaterial("Capping", 0, epsCap)

QDdia = 6

fileHandle = open ( ’c:\\test.txt’, ’w’ )

#Cappingthick = 0.5

for j in range(2,10,1):

for i in range(20):

Cappingthick = 0.1 + j*0.1

Vacthick = 0.1 +i*0.1

#Vacthick = 0.3

TipCenter = 2*Cappingthick + QDdia +Vacthick + (Tipdia/2)

QDCenter = Cappingthick +(QDdia/2)

addedge( 0, 0, 20, 0, angle = 0, marker = "Zero" )
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addedge(20,0,0,20, angle = 90, marker = "Border")

addedge(0,20,0,2*Cappingthick+QDdia+Vacthick+Tipdia, angle = 0,

marker = "Border")

addedge(0,0,0,Cappingthick,angle = 0 , marker = "Border")

addedge(0,0,QDCenter,QDCenter, angle = 90, marker = "Border")

addedge(QDCenter,QDCenter,0,2*QDCenter, angle = 90, marker =

"Border")

addedge(0,Cappingthick,QDCenter-Cappingthick,QDCenter,

angle = 90, marker = "Border")

addedge(QDCenter-Cappingthick,QDCenter,0,Cappingthick+QDdia,

angle = 90, marker = "Border")

addedge(0 , 2*QDCenter , 0 , TipCenter-(Tipdia/2) ,angle = 0,

marker = "Border")

addedge(0,Cappingthick,0,Cappingthick+QDdia, angle = 0,

marker = "Border")

addedge(0 , Cappingthick+QDdia , 0 , 2*QDCenter , angle = 0 ,

marker = "Border")

addedge(0,TipCenter-(Tipdia/2),Tipdia/2, TipCenter, angle = 90 ,

marker = "One")

addedge(Tipdia/2, TipCenter,0,TipCenter+(Tipdia/2), angle = 90 ,

marker = "One")

addlabel(19,0.1, 0, marker = "Vacuum")

addlabel(0.1,QDCenter, 0, marker = "CdSe")

addlabel(0.05,0.05, 0, marker = "Capping")

zoombestfit()

solve()

tipbias = pointresult(0,TipCenter-(Tipdia/2)-0.000001)

qdtopbias = pointresult(0,QDCenter+(QDdia/2))

qdbottombias = pointresult(0,QDCenter-(QDdia/2))

samplebias = pointresult(0,0)

upperbarrier = tipbias["V"] -qdtopbias["V"]

qdbias = qdtopbias["V"] - qdbottombias["V"]

lowerbarrier = qdbottombias["V"] - samplebias["V"]

fileHandle.write ( str(Cappingthick)+’\t’+ str(Vacthick)+

’\t’+str(upperbarrier)+’\t’+str(qdbias)+"\t"+str(lowerbarrier)+"\r\n")

#print("tip bias = "+str(tipbias["V"])+" ")

#print("qd top bias = "+str(qdtopbias["V"])+" ")

#print("qd bottom bias = "+str(qdbottombias["V"])+" ")

#print("sample bias = "+str(samplebias["V"])+" ")
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print(" ")

print("capping thick = "+str(Cappingthick)+" ")

print("vacuum gap = "+str(Vacthick)+" ")

print("upperbarrier = "+str(upperbarrier)+" ")

print("qdbias = "+str(qdbias)+" ")

print("lowerbarrier = "+str(lowerbarrier)+" ")

mode("node")

selectall()

deleteselection()

mode("label")

selectall()

deleteselection()

fileHandle.close()

A.2 DBTJ

Followings are the code used in simulations of Double Barrier Tunneling Junction

with WKB approximation. The calculated potential distribution is imported from

a file to determine the ratio of potential drop between vacuum and capping layer.

With the WKB modeling of tunneling junction adapted to double barrier tunneling

junction, current through the junction is calculated by numerical integration. And

then the differential conductance is also calculated as numerical derivative.

data1 = ReadList[

"d:\\lsj\\test.txt", {Number, Number, Number, Number, Number},

WordSeparators -> "\t"];

\[Epsilon] = 2; el = 1.6*10^-19; \[Phi]1 = 5.2; \[Phi]2 = 5.3; h =

1.05*10^-34;

m = 9.1*10^-31; \[Sigma] = 0.1; Eh = 1.0;

f := N[\!\(

\*SubsuperscriptBox[\(\[Integral]\), \(-V\), \(0\)]\((\((

\*SuperscriptBox[\(\[ExponentialE]\), \(\(-2\)

\*SqrtBox[

FractionBox[\(2*m*

el*\((\((\(-2\) + \[Eta]1)\)*V/2 + \[Phi]1 - En)\)\),
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SuperscriptBox[\(h\), \(2\)]]]*\((z)\)\)]*

\*SuperscriptBox[\(\[ExponentialE]\), \(\(-2\)

\*SqrtBox[

FractionBox[\(2*m*el*\((\(-\[Eta]2\)*V/2 + \[Phi]2 - En)\)\),

SuperscriptBox[\(h\), \(2\)]]]*\((d)\)\)])\)/\((

\*SuperscriptBox[\(\[ExponentialE]\), \(\(-2\)

\*SqrtBox[

FractionBox[\(2*m*

el*\((\((\(-2\) + \[Eta]1)\)*V/2 + \[Phi]1 - En)\)\),

SuperscriptBox[\(h\), \(2\)]]]*\((z)\)\)] +

\*SuperscriptBox[\(\[ExponentialE]\), \(\(-2\)

\*SqrtBox[

FractionBox[\(2*m*el*\((\(-\[Eta]2\)*V/2 + \[Phi]2 - En)\)\),

SuperscriptBox[\(h\), \(2\)]]]*\((d)\)\)])\)*

\*SuperscriptBox[\(\[ExponentialE]\), \(-

\*SuperscriptBox[\((\((En +

Eh + \[Eta]*

V)\)/\[Sigma])\), \(2\)]\)]\ )\) \

\[DifferentialD]En\)];

For[i = 1, i < 121, i++,

d = data1[[i, 1]]*10^-9;

z = data1[[i, 2]]*10^-9;

\[Eta]1 = data1[[i, 3]];

\[Eta]2 = data1[[i, 5]];

\[Eta] = (\[Eta]1 + \[Eta]2)/2;

p = Table[f, {V, 0, 2, 0.01}];

p2 = Differences[p];

Print[d];

Print[z];

Print[ListPlot[p2, PlotRange -> All]];

Export["d:\\lsj\\output" ~~ ToString[i] ~~ ".dat", p2, "Table"]

]
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Chapter B Hexagonal Boron Nitride Thin Film on
Ni(111)

We grow Hexagonal Boron Nitride (h-BN) thin film on Ni(111) surface by borazine

gas dosing while heating the sample as described in chapter 3. During the experiment,

we observed characteristic defects and domains from h-BN films. Here we show some

exemplary images and tunneling spectra of monolayer h-BN.

(Fig. B.1) shows the typical image of monolayer h-BN film on Ni(111) surface.

There exist some domain boundaries and hole type defects.

Figures B.1 Large Scale STM Images of h-BN Monolayer on Ni(111) Surface
- h-BN monolayer on Ni(111) with two different defect types shown (line and hole
types)
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B.1 Various Defect Types

Two distinguished defects are observed on h-BN monolayer film.

The first one, the line type defect, shows bright protrusion for almost all bias

regions. However, at positive sample bias region, the contrast between the line defects

and other regions is inversed. The contrast inversion is shown in (Fig. B.2). And

especially, at the bias of 1.7 V, the line type defect is shown as distinct region between

two h-BN film as in (Fig. B.2 (b)). So the line type defect might be actually small

size fragment of boron nitride. And sometimes the fragment can be moved by surging

tunneling current. Though we cannot identify their chemical composition with STM

measurement, still the major possibility is that they are h-BN fragment.

Figures B.2 Bias dependence of the line type defect images - (a) 1.6 V (b) 1.7
V (c) 1.8 V ; The contrast of line type defect is inversed around sample bias voltage
of 1.7 V. At 1.7 V image, the internal structure of the line type defect is also shown.

Another defect type is hole type depression as in (Fig. B.3). They are usually

observed at the cross point of three line type defects. And specially, the edge of the

hole type defect shows atomic structure of h-BN substrate. Since nitrogen atoms have

major electron density and are imaged in STM, three-fold symmetry is visible in the

atomic lattice. So around the depression, we can resolve various edge types in a single
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image.

Figures B.3 Hole Type Defect of h-BN Monolayer - Image of hole type defect
shows atomic structure of h-BN edge

B.2 Gap States Observed on the Edge of h-BN

Since h-BN film has no significant spectral structure inside the gap energy, it

shows similar spectrum with nickel surface. However, at around the hole type defects,

some spectral variation is observed. As shown in (Fig. B.4), some dip feature appears

at the edge. Detailed structures of the dip vary from point to point.

In literature, formation of gap states by atomistic defects are already reported

[3]. And applications using h-BN as template[17] or building block are significantly

increasing at this time. So the observation of electronic structure change at the edge

of h-BN has great importance.

And the breaking of symmetry and stoichiometry at the edge results in the bro-
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Figures B.4 Hole Type Defect of h-BN Monolayer - Magnified image and Points
where STS results are obtained

Figures B.5 Hole Type Defect of h-BN Monolayer - STSs show similar electronic
structure for nickel(A) and h-BN(F) which reflects the suppressed electron density of
boron nitride itself inside the gap energy
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Figures B.6 Hole Type Defect of h-BN Monolayer - STSs from edge sites(B,C,D
and E) show depressed electron density near the Fermi energy varying from different
tip positions

ken electron spin population. So the exact properties are only possible with proper

consideration of spin population. And also in calculation, we should consider spin

polarized electronic structure[3].

In this context, further experimental characterization and calculation are still

required.
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Chapter C Design of Photon STM

Figures C.1 CAD Design of Photon Detection - The generated photons by tun-
neling current is collected by collimating lens. Then the signal is transmitted through
the optical fiber to outside of the chamber and amplified by photon multiplier tube.
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초록

양자점은 크기로 변화시킬 수 있는 에너지 갭으로 인해서 양자점 디스플레이나

생물학적발광체나광전소자등의많은응용이예측되고있다.이러한응용에있어서

가장 큰 걸림돌이 되는 것이 발광의 깜박임(blinking) 현상이다. 이 현상을 설명하기

위해 많은 모형이 제시되었지만, 그 기본적인 역학은 아직 제대로 이해되고 있지 못

하다. 최근의 단일 양자점 광발광 실험에서 양자점 마다 다른 깜박임 형태를 측정한

이후로, 양자점에 대한 더 많은 국소적인 측정이 필요해 지고 있다. 주사형 터널링

현미경과 분광학 연구는 높은 공간 및 에너지 분해능으로 인해서 이러한 양자점간

변이를 측정하는 데 적합한 장비라고 할 수 있다.

이 연구에서는 양자점을 표면에 뿌리는 방법으로 펄스형 주사방법을 사용하였

다. 이 방법을 통해서 CdSe핵과 ZnS 껍데기로 이루어진 양자점을 비활성 금속인 금,

반응성 좋은 금속인 니켈, 반응성이 없는 육각격자형 질화붕소 박막등에 뿌리는 데

성공하였다. 주사터널링분광학을 이용해서 측정된 양자점의 전자구조에 있어서 일

부는순이론적계산결과와일치하였지만,대부분의양자점은예측못했던에너지갭

안의 상태를 보여주었다. 더욱이 이러한 상태는 하나의 양자점 안에서도 1 나노미터

정도의 영역에 국소적으로 존재하였다.

깜박임 현상을 설명하는 여러 모형 중 일부는 외부 포획 상태를 동원해 깜박임

을 설명하고 있다. 이 연구에서 측정된 상태는 외부 포획 상태에 상응하는 상태를

측정함으로써이러한모형들의타당성을더해주었다.우리는더욱근사한포획상태

의 분포를 이용한 모형을 세워 외부 포획 상태의 원인을 불완전하게 결합한 덧씌움

분자로 설명했다. 비록 양자점 표면에서의 덧씌움 분자는 관찰하지 못했지만, 터널

링 분광학 실험에서 나타난 음미분저항 현상을 설명함으로써 덧씌움 분자가 터널링
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장벽을 만듦을 확인하였다. 이중 장벽에서 나타난 음미분저항에 대한 수치해석을

통해서 덧씌움 분자장벽의 두께도 확인할 수 있었다.

주사형 터널링 현미경과 광자 측정 장비를 결합 하여, 단일 양자점으로부터의

전류와 광자를 함께 측정한다면 깜박임 현상에 대한 많은 논쟁을 해결할 수 있을

것이다.

주요어: 양자점, 포획 상태, 덧씌움 분자, 부정미분저항, 주사터널링분광학

학번: 2005-20377
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조금은 익숙하게 느끼고 있는 것을 보면 이제는 조금 뱃사람이 되어 간다는 생각이

듭니다.

여전히 가야 할 길은 멀지만, 박사 학위라는 중간 기착지에서 잠시 숨을 고르는

지금이 걸어왔던 길을 뒤돌아보며 또 한 번 나아갈 길을 차근히 볼 수 있는 좋은

기회가 되는 것 같습니다. 모든 순간들이 당시에는 알지 못했지만, 다시 돌이켜 보면

모두배움의기회였습니다.이미예전에이길을지나갔던선배로써,여전히계속해서

전진해 나아가는 연구자로써, 실험실이라는 큰 배를 이끄는 선장으로써, 늘 모두에

게 배움의 기회가 되어 주셨던 국양 선생님이 계셔서 이 모든 이야기가 시작될 수

있었습니다. 앞으로 어떤 길을 가든지, 무슨 일을 하든지 저에게는 언제나 든든한

마음속의 버팀목이 되어 주실 거라 믿습니다.

시간이지날수록힘든길을헤쳐나갈수있는것은먼저이길을걸었던선배들이

뿌려 놓은 씨앗들 덕분이라는 것을 새삼 느낍니다. 처음 실험실에 들어왔을 때, 이미

졸업을 하셔서 저에겐 큰 산과 같았던 김태환 박사님, 새파란 후배에게도 무엇이든

친절히 알려주셨던 병영이형, 뭐든 화이트보드에 친절하게 밑그림을 그려주셨던 영

재형, 저널 클럽마다 날카로운 질문을 하시던 하진이형, 미팅 날짜가 같아서 미팅

때마다바람막이가되어주셨던현종이형,저에게폴리싱의기본을전수해주신신형

125



준박사님,실험의기본은일희일비하지않는것임을강조해주신최재혁박사님까지

시간이 꽤 흘렀지만 생생한 기억들로 남아 있습니다.

길었다면 긴 실험실 생활을 돌이켜 보면 모두 선배들과 함께 했던 추억의 조각

들만 남았습니다. 진공부터 알려주며 기본적인 실험방법을 알려준 효원 누나, 늘

새벽까지 함께 일하면 야식 사주셨던 용대형, 늘 한결 같이 호두과자를 좋아하셨던

훈휘형, 무엇이든 차분하게 일하셨던 용성이형, 언제나 웃음과 함께 유쾌 했던 성

철이형, 늘 그 날카로운 물리를 본받고 싶었던 중석이형, 카리스마를 본받고 싶었던

환수형,연구하던모습만큼스타같이했던기억이나는정필이형,언제나맏형같았

던 정훈이형, 양계장만큼 같이 닭을 먹었던 성헌이형, 삼성 가서 본래의 카리스마를

잃은 듯한 영택이형, 도전 정신의 아이콘 희준이형, 실험실에서 늘 살았던 것 같은

정석이형, 제 옆자리 큰 형님 태권형님 까지, 모두 한 분 한 분 잊을 수 없는 추억의

조각들로 남아 있습니다.

또즐거웠던대학생활을함께해주었던 4반친구들,성모,광원,록연,훈민,승현,

예령, 주완, 소진, 희태, 태경, 하나, 연정이 모두 덕분에 좋은 추억을 갖고 나아갈 수

있었고, 대학시절과 대학원 시절 늘 곁에 있어줘서 너무 든든했습니다. 때로 대학원

생활에서 벗어나고 싶을 때마다 술 한 잔 할 수 있었던 친구들 경윤이, 성철이, 동

석이, 한울이, 성훈이, 주호, 희원이, 창훈이가 있어서 크게 웃을 수 있었던 건 제게

큰행운이었습니다.그리고이제는인생의멘토가되어주시는손철수선생님그리고

최현미 선생님과 한유진 선생님, 덕분에 늘 인생에 대해 생각할 수 있었습니다. 이

모든 분들이 자칫 대학원 생활만이 전부가 될 뻔 했던 길에 세상도 들려주고 마음도

위로해 주었기에 더욱 풍성했던 지난 시간이 될 수 있었습니다.

그리고 실험실 멤버들 모두는 실험실이라는 배에서 둘 도 없는 동료들이 되어

주었습니다. 유럽을 속속들이 함께 누볐던 홍우는 때로는 편한 상담도 해주었고,

실험실에 웃음이 떠나지 않게 해주는 범용이는 진정한 매너가이로 본받고 싶었고,

사람을 좋아하시고 실험실 모두에게 새로운 바람을 넣어주신 웅돈이형은 저에게 힘
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든 일이 있을 때마다 너무나 든든한 조언을 해 주셨습니다. 에너지가 도대체 어디서

그렇게 많이 나오는 지 알 수 없는 민준이에게는 너무 많은 도움을 받았고, 무엇이든

깊게 고민하고 때론 비판도 두려워 않는 정훈이와는 토론 하는 즐거움을 얻었습니

다. 그 목소리를 들으면 한 없이 차분해 지는 김상희 선생님께도 늘 감사드립니다.

차분함의 최고봉 지성이와 졸업동기 유쾌 진화, 다방면 능력자 강민, 목소리 우렁찬

최고의 후배 선욱이, 아직은 오래 함께 못했지만 남은 실험실 기간 열심히 일을 도와

줄 명철이와 성우, 모두 최고의 후배이자 동료가 되어 주었습니다. 그리고 누구보다

도 고마웠던 일들을 일일이 다 셀 수도 없는 상준이형이 없었다면 이 여행은 단 한

발자국도 옮기지 못했을 것 같습니다.

되짚어 볼수록 감사한 분들이 너무 많아서 저는 정말 행운아였다는 생각이 듭니

다. 어머니께서 종종 말씀하셨던 “넌 운이 좋으니까 잘 될 거야‘’라는 말씀은 아마도

이모든분들이제주변에있음을알려주신게아닐까합니다.이제는누구보다도소

중한 영은이가 있어서 힘들다는 것을 잊을 수 있었고, 동생에게는 늘 편안한 누나가

있어서 든든했습니다. 마지막으로 늘 묵묵히 아들을 지켜봐 주시는 어머니, 아버지

께는 말로는 고마움을 다 하기 어려울 것 같습니다. 앞으로도 마음속 깊이 최선을

다하는 아들을 보여드리겠습니다.

이제 졸업이라는 작은 파도를 넘고 더 큰 바다로 나가려는 순간입니다. 두렵고

떨리기도 하고, 앞으로 다가올 멋진 일들이 기대도 되는 순간입니다. 지금까지 함

께 해주셨던 고마운 인연들만큼 앞으로도 새롭게 만들어갈 멋진 인연이 있을 것을

기대하면서 나아가겠습니다. 모두에게 감사드립니다.
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