78 research outputs found

    ์ผ์ œ๊ฐ•์ ๊ธฐ ๋…๋ฆฝ์šด๋™์„ ๋‹ค๋ฃฌ ํ•œ๊ตญ์˜ํ™”์˜ ํŠน์ง•๋ถ„์„: <์•”์‚ด>, <๋ฐ€์ •>, <๊ตฐํ•จ๋„>๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ตญ์ œ๋Œ€ํ•™์› ๊ตญ์ œํ•™๊ณผ(๊ตญ์ œ์ง€์—ญํ•™์ „๊ณต), 2020. 8. ๋ฐ•ํƒœ๊ท .This thesis was written to discover how Koreans accept the Japanese colonial era, which is considered one of the greatest traumas for Koreans, as well as how they inherit their anti-Japanese sentiments and memories from the colonial era. Among numerous theories and methods, visual media such as movies, dramas, and documentaries have been noted for their ability to create frames and visceral reenactments of the past. For this reason three movies that cover the Japanese colonial period were chosen in order of Korean box office ranking: Assassination (2015), The Age of Shadows (2016), and The Battleship Island (2017). Narrative theories such as Propps folktale character theory were used as a research method to analyze the narrative structure and discourse surrounding the aforementioned films. The following outcomes were observed as a result of this study: first, those films structure homogenous popular memories regarding rectification of Pro-Japanese issues. Second, the aforementioned films reenact historically forgotten figures or places. Third, the characteristic similarities observed from these films are most likely to be an outcome of the political and economical context of the time in which these films were produced.Table of Contents I. Introductionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. 4 1.1. Purpose of this thesisโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. 4 1.2. Literature Reviewโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ7 1.3. Research Questionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.14 II. Theoretical Framework and Research Methodologyโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 15 2.1. Theoretical Discussion On Memory and Reenactmentโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....15 2.2. Methodologyโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 25 III. Analysis of the Filmsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ... 28 3.1. Basic Backgroundsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...28 3.2. Analysis on Assassination (2015).........................................................31 3.2.1. Visual Analysis of Posterโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..31 3.2.2. Narrative Structure of Assassinationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ33 3.2.3. Represented Confrontational Valueโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..35 3.2.4. Characteristics of Memoriesโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.36 3.2.5 Social Context Behind Assassinationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....41 3.3. Analysis on The Age of Shadows (2016)..............................................43 3.3.1. Visual Analysis of Posterโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..43 3.3.2. Narrative Structure of The Age of Shadowsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..44 3.3.3. Represented Confrontational Valueโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..46 3.3.4. Characteristics of Memoriesโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.47 3.3.5. Social Context Behind The Age of Shadowsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...56 3.4. Analysis on The Battleship Island (2017)............................................59 3.4.1. Visual Analysis of Posterโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..59 3.4.2. Narrative Structure of The Battleship Islandโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....60 3.4.3. Represented Confrontational Valueโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..62 3.4.4. Characteristics of Memoriesโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.63 3.4.5. Social Context Behind The Battleship Islandโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...68 IV. Characteristics of Analyzed Colonial Filmsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...............71 4.1. Rectification of Pro-Japanese Issueโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆ......71 4.2. Use of Forgotten Characters and Placesโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..76 V. Conclusionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆโ€ฆ....โ€ฆ...81 5.1. Summaryโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...81 4.2. Limitationsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....84 Bibliographyโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ85 Abstract in Koreanโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.89Maste

    "ๆ„่ฑก"์— ๊ด€ํ•œ ๅฒ็š„ ่€ƒๅฏŸ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ค‘์–ด์ค‘๋ฌธํ•™๊ณผ ๋ฌธํ•™์ „๊ณต, 2015. 8. ์ด์˜์ฃผ.ๆ„่ฑก์€ ์ค‘๊ตญ ๊ณ ์œ ์˜ ๋ฌธ์˜ˆ๋น„ํ‰ ์šฉ์–ด๋กœ์„œ ์ „ํ†ต์‹œ๊ธฐ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํ™œ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ํ˜„๋Œ€์—๋„ ๅคๅ…ธ ่ฉฉๆญŒ์˜ ํ•ด์„, ๋น„ํ‰ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๆ„่ฑก์€ ์žฅ๊ตฌํ•œ ์—ญ์‚ฌ์˜ ํ๋ฆ„์„ ๊ฑฐ์น˜๋ฉด์„œ ๋‹ค์–‘ํ•œ ์˜์—ญ์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์˜๋ฏธ๋กœ์„œ ํ™œ์šฉ๋˜์–ด ๊ทธ ์˜๋ฏธ ๋ฒ”์ฃผ๋ฅผ ๋ช…๋ฐฑํžˆ ๊ฐ€๋ฆฌ๋Š” ๊ฒƒ์ด ์‰ฝ์ง€ ์•Š์œผ๋ฉฐ, ํ˜„๋Œ€์˜ ์—ฐ๊ตฌ์ž๋“ค์€ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋งฅ๋ฝ์—์„œ ๆ„่ฑก์„ ์ดํ•ด, ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๆ„่ฑก์˜ ๋‹ค๊ฐ์ ์ธ ๋ฉด๋ชจ๋ฅผ ํฌ์ฐฉํ•จ์œผ๋กœ์จ ๊ทธ ์ „์ฒด์ ์ธ ่ฑก์„ ๊ทธ๋ ค๋‚ด๋Š” ๊ฒƒ์„ ๋ชฉ์ ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ๊ฑฐ์‹œ์  ๊ด€์ ์—์„œ ๊ทธ ๋ณ€ํ™”์˜ ํ๋ฆ„์„ ์กฐ๋งํ•˜์˜€๋‹ค. ๆ„่ฑก์˜ ๅฒ็š„ ํ๋ฆ„์€ ์—ฐ์› ? ๋ฐœ์ƒ ? ๋ณ€ํ™”์˜ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„์–ด ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์šฐ์„  ๆ„่ฑก์˜ ์—ฐ์›์€ ใ€Žๅ‘จๆ˜“ยท็นซ่พญๅ‚ณใ€์—์„œ ์ตœ์ดˆ๋กœ ๆ„์™€ ่ฑก์˜ ๊ฒฐํ•ฉ ๊ฐ€๋Šฅ์„ฑ์ด ์ œ๊ธฐ๋˜๊ธฐ๋Š” ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ์˜ ๆ„์™€ ่ฑก์€ ๊ฐ๊ธฐ ่จ˜ๆ„์™€ ่จ˜ๆจ™๋กœ์„œ ๊ฒฐํ•ฉํ•˜์—ฌ ๆ˜“่ฑก์ด๋ผ๋Š” ๊ธฐํ˜ธ๋ฅผ ์ด๋ฃฌ๋‹ค. ๋‹จ ์–‘์ž์˜ ๊ฒฐํ•ฉ์€ ๆฃๆ„็š„์œผ๋กœ ์ด๋ฃจ์–ด์ง€๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ๊ธฐํ˜ธ์˜ ์ž์˜์„ฑ์€ ็Ž‹ๅผผ์˜ ๅพ—ๆ„ๅฟ˜่ฑก่จญ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋“ฏ์ด ่ฑก์˜ ๋ฐฐ์ œ ๊ฐ€๋Šฅ์„ฑ์œผ๋กœ ์ด์–ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ ๆ˜“่ฑก์€ ํ‘œํ˜„ํ˜•์‹์œผ๋กœ์„œ์˜ ๊ธฐํ‘œ๊ฐ€ ์ƒ๋žต๋  ์ˆ˜ ์—†๋Š”, ์ฆ‰ ๊ทธ ์ž์ฒด๋กœ ์™„์ •ํ•œ ๊ฒฐํ•ฉ์„ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ํ›„๋Œ€์˜ ๆ„่ฑก๊ณผ ๊ธฐํ˜ธ์˜ ๊ฒฐํ•ฉ ์ฐจ์›์—์„œ๋ถ€ํ„ฐ ๋ณธ์งˆ์ ์ธ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ใ€Žๅ‘จๆ˜“ใ€์˜ ๆ„ - ่ฑก ๋‹จ๊ณ„์—์„œ๋Š” ํ›„๋Œ€์— ๆ„่ฑก์ด๋ผ๋Š” ์šฉ์–ด๊ฐ€ ์„ฑ๋ฆฝํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ€๋Šฅ์„ฑ์ด ๋ฐฐํƒœ๋˜์—ˆ๋‹ค๋Š” ์ •๋„๋กœ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ์ ํ•ฉํ•˜๋‹ค. ๆผขไปฃ ็Ž‹ๅ……์˜ ใ€Ž่ซ–่กกใ€์—์„œ ๆ„่ฑก์€ ์ตœ์ดˆ๋กœ ํ•˜๋‚˜์˜ ์šฉ์–ด๋กœ์„œ ๋“ฑ์žฅํ•˜์˜€์œผ๋ฉฐ, ์ด๋•Œ์˜ ๆ„่ฑก์€ ็‰ฉ่ฑก์— ์ฃผ๊ด€์  ์˜๋ฏธ๊ฐ€ ๋ถ€์—ฌ๋œ ์ƒ์ง•์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ็Ž‹ๅ……์˜ ๆ„่ฑก์€ ๆ˜“่ฑก๊ณผ๋Š” ๋‹ฌ๋ฆฌ ํ‘œํ˜„ํ˜•์‹์œผ๋กœ์„œ์˜ ๊ธฐํ‘œ๊ฐ€ ์ƒ๋žต๋  ์ˆ˜ ์—†๋‹ค๋Š” ์ , ์ฆ‰ ๊ทธ๊ฒƒ์ด ์ž์ฒด์ ์ธ ์™„๊ฒฐ์„ฑ์„ ๊ฐ€์ง„๋‹ค๋Š” ์ ์—์„œ ์˜ˆ์ˆ ๋กœ์„œ์˜ ์ƒ์ง•์œผ๋กœ ่ฝ‰ๅŒ–ํ•  ์ˆ˜ ์žˆ๋Š” ํ•„์š”์กฐ๊ฑด์„ ๊ฐ–์ถ”๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ็Ž‹ๅ……์˜ ๆ„่ฑก์€ ์–ด์›์œผ๋กœ์„œ์˜ ์˜๋ฏธ๋งŒ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ฉฐ, ์ฐจํ›„ ๋ฌธ์˜ˆ ์˜์—ญ์—์„œ์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋‚ด์žฌํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. ์ดํ›„ ๅ—ๆœ์—์„œ๋Š” ๋ฌธํ•™ ์ž์ฒด์˜ ๊ตฌ์กฐ์™€ ์„ฑ๊ฒฉ์„ ์ด๋ก ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋ ค๋Š” ์›€์ง์ž„์ด ํ™œ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ํ๋ฆ„ ์•ˆ์—์„œ ้™ธๆฉŸ๋Š” ๅค–็‰ฉๆ„Ÿๆ‡‰่ชช์„ ์ฃผ์žฅํ•˜์—ฌ ๊ฐ์ฒด๋กœ์„œ์˜ ็‰ฉ์ด๋ผ๋Š” ์š”์†Œ๋ฅผ ๋ฌธ์˜ˆ ์ฐฝ์ž‘์˜ ์›๋ฆฌ์— ๋„์ž…ํ•˜์˜€๋‹ค. ๅŠ‰?์€ ๊ทธ๊ฒƒ์„ ๊ณ„์Šนํ•˜๋Š” ๊ณผ์ •์—์„œ ์ฃผ์ฒด์˜ ์ธ์‹๊ณผ์ •์— ๋Œ€ํ•œ ์ด๋ก ์„ ๋ณด๋‹ค ์‹ฌํ™”์‹œ์ผœ, ็ฅžๆ€์˜ ์ž‘์šฉ๊ณผ ๊ทธ๋กœ๋ถ€ํ„ฐ ๋น„๋กฏํ•˜๋Š” ๆ„่ฑก์˜ ํ˜•์„ฑ์ด๋ผ๋Š” ๊ตฌ๋„์˜ ๋ฌธ์˜ˆ ์ฐฝ์ž‘ ์›๋ฆฌ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋•Œ์˜ ๆ„่ฑก์€ ็ฅž๊ณผ ็‰ฉ์˜ ์ƒํ˜ธ์ž‘์šฉ, ์—„๋ฐ€ํžˆ ๋งํ•ด์„œ๋Š” ๊ฐ์ฒด๋กœ์„œ์˜ ็‰ฉ์ด ์ œ๊ณตํ•˜๋Š” ํ‘œ์ƒ์„ ๋ณ€ํ˜•์‹œํ‚ค๋Š” ๊ณผ์ •์„ ๊ฑฐ์ณ ์‹ฌ๋ฆฌ ์ค‘์— ํ˜•์ƒํ™”ํ•œ ๊ฒฐ๊ณผ๋ฌผ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๅ”ไปฃ์—๋Š” ๋ฌธํ•™ ์ž‘ํ’ˆ์˜ ๊ตฌ์„ฑ ์›๋ฆฌ ์ฐจ์›์„ ๋„˜์–ด ๋ฌธํ•™ ์ž‘ํ’ˆ์ด ๋„๋‹ฌํ•ด ์žˆ๋Š” ์˜ˆ์ˆ ์  ๊ฒฝ๊ณ„, ์ฆ‰ ๅขƒ์ด ์ค‘์‹œ๋˜์—ˆ๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ํ๋ฆ„ ์•ˆ์—์„œ ๆ„่ฑก ๋˜ํ•œ ํŠน์ •ํ•œ ๋ฏธํ•™์  ๊ฒฝ์ง€๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋™์›๋˜๊ธฐ ์‹œ์ž‘ํ•˜์˜€๋‹ค. ็Ž‹ๆ˜Œ้ฝก์˜ ใ€Ž่ฉฉๆ ผใ€, ๅธ็ฉบๅœ–์˜ ใ€ŽไบŒๅๅ››่ฉฉๅ“ใ€์—์„œ ์ด๋Ÿฌํ•œ ํ™œ์šฉ ์–‘์ƒ์˜ ๋ณ€ํ™”๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ํ›„์ž๋Š” ๆ„่ฑก๊ณผ ้ขจๆ ผ์„ ๊ธด๋ฐ€ํžˆ ์—ฐ๊ณ„์‹œํ‚ด์œผ๋กœ์„œ ๆ„่ฑก์ด ์ฐจํ›„ ํ’๊ฒฉ๋น„ํ‰์— ํ™œ์šฉ๋˜๋Š” ํ๋ฆ„์„ ์—ด์—ˆ๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๅฎ‹ไปฃ ์ดํ›„ ๆ˜Žๆทธไปฃ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๆ„่ฑก์€ ์‹ค์ œ๋น„ํ‰์—์„œ ์ฃผ๋กœ ํ™œ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ํ™œ์šฉ์˜์—ญ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๆ„่ฑก์€ ์˜๋ฏธ์˜ ํ™•์žฅ์„ ์ด๋ฃจ๊ฒŒ ๋œ๋‹ค. ์ฆ‰ ๅŠ‰?์˜ ๆ„่ฑก์ด ์ฐฝ์ž‘์ฃผ์ฒด์˜ ์‹ฌ์ค‘์— ํ˜•์ƒํ™”๋œ ์ž‘ํ’ˆ์˜ ๊ตฌ์ƒ๋ฌผ์ด์—ˆ๋‹ค๋ฉด, ๊ทธ๊ฒƒ์ด ์‹ค์ œ๋น„ํ‰ ์šฉ์–ด๋กœ ํ™œ์šฉ๋˜๋ฉด์„œ ์ž‘ํ’ˆ์œผ๋กœ ์ฒดํ˜„๋œ ์ƒํƒœ์˜ ์˜ˆ์ˆ  ํ˜•์ƒ์„ ์ˆ˜์šฉ์ž๊ฐ€ ์ง€๊ฐํ•˜์—ฌ ์‹ฌ์ค‘์— ์žฌ๊ตฌ์„ฑํ•œ ํ˜•์ƒ์˜ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๊ฒŒ ๋˜์—ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์œ ์˜ํ•ด์•ผ ํ•  ๋ถ€๋ถ„์€ ์ด๋Ÿฌํ•œ ํ๋ฆ„์ด ์˜๋ฏธ ๋ฒ”์ฃผ์˜ ํ™•์žฅ์ด์ง€ ์ƒ์ดํ•œ ์˜๋ฏธ๋กœ์˜ ๋Œ€์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ๋Š” ๊ฒƒ์ด๋‹ค. ์ฆ‰ ๆ„่ฑก์€ ์ด์ƒ์˜ ํฌ๊ด„์ ์ธ ์˜๋ฏธ๋ง์„ ํ˜•์„ฑํ•œ ์ƒํƒœ๋กœ ์ฐฝ์ž‘๊ณผ ์ˆ˜์šฉ ์–‘๋ฉด์—์„œ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํ™œ์šฉ๋˜์—ˆ๋˜ ๊ฒƒ์ด๋‹ค.๋ชฉ ์ฐจ ๊ตญ๋ฌธ์ดˆ๋ก ์ œ1์žฅ ์„œ ๋ก  ์ œ1์ ˆ ์—ฐ๊ตฌ ๋™๊ธฐ ๋ฐ ๋ชฉ์  ์ œ2์ ˆ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  ์ œ3์ ˆ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• ๋ฐ ๋ฒ”์œ„ ์ œ2์žฅ ๆ„่ฑก์˜ ๆทตๆบ ์ œ1์ ˆ ๆ„-่ฑก ๊ฒฐํ•ฉ ๊ฐ€๋Šฅ์„ฑ์˜ ๋ฐฐํƒœ: ๅ‘จๆ˜“?็นซ่พญๅ‚ณ์˜ ๆ„์™€ ่ฑก ์ œ2์ ˆ ๆ„่ฑก ์šฉ์–ด์˜ ์„ฑ๋ฆฝ: ๏ฅ่กก์˜ ๆ„่ฑก ์ œ3์žฅ ๋ฌธ์˜ˆ ์˜์—ญ์œผ๋กœ์˜ ์ง„์ž… ์ œ1์ ˆ ๋ฌธ์˜ˆ ์˜์—ญ์œผ๋กœ์˜ ์ง„์ž…์„ ์œ„ํ•œ ์˜ˆ๋น„: ๆ–‡่ณฆ์˜ ์ฐฝ์ž‘๋ก  ์ œ2์ ˆ ๋ฌธ์˜ˆ ์šฉ์–ด๋กœ์„œ์˜ ๆ„่ฑก: ๆ–‡ๅฟƒ้›•้พ?็ฅžๆ€์˜ ๆ„่ฑก 1. ็ฅžๆ€์™€ ๆ„่ฑก 2. ็ฅž่ˆ‡็‰ฉ้Š์™€ ์ƒ์ƒ๋ ฅ์˜ ์ž‘์šฉ 3. ๅ‰ไปฃ ๆ„่ฑก๊ณผ์˜ ๅŒ็•ฐ ์ œ4์žฅ ์‹ค์ œ๋น„ํ‰์—์„œ์˜ ํ™œ์šฉ ์ œ1์ ˆ ์‹ค์ œ๋น„ํ‰์—์„œ์˜ ํ™œ์šฉ์„ ์œ„ํ•œ ์˜ˆ๋น„: ๅ”ไปฃ์˜ ๆ„่ฑก ์ œ2์ ˆ ์‹ค์ œ๋น„ํ‰์—์„œ์˜ ํ™œ์šฉ ๋ฐ ์˜๋ฏธ์˜ ๋ณ€ํ™”: ๅฎ‹ไปฃ์˜ ๆ„่ฑก ์ œ3์ ˆ ์‹ค์ œ๋น„ํ‰ ์˜์—ญ์—์˜ ์ •์ฐฉ: ๆ˜Žไปฃ ์ดํ›„์˜ ๆ„่ฑก ์ œ5์žฅ ๊ฒฐ๋ก  ์ฐธ ๊ณ  ๋ฌธ ํ—Œ ไธญๆ–‡ๆ‘˜่ฆMaste

    Oculogyric crisis associated with disulfiram-induced pallidonigral lesion

    Get PDF
    We report a man who developed oculogyric crisis one month after disulfiram intoxication. Brain MRI showed lesions involving bilateral globus pallidus and left substantia nigra. In our patient, neuronal discharges from pathologically reorganized basal ganglia circuit to the midbrain ocular motor center might lead to tonic deviation of the eyesope

    Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy.

    Get PDF
    To study the effect of disease duration on the clinical, neuropsychological and [(18)F]-deoxyglucose (FDG) PET findings in patients with mixed type multiple system atrophy (MSA), this study included 16 controls and 37 mixed-type MSA patients with a shorter than a 3-year history of cerebellar or parkinsonian symptoms. We classified the patients into three groups according to the duration of parkinsonian or cerebellar symptoms (Group I = <or=1 year; II = 13-24 months; III = 25-36 months). We performed UPDRS, international cooperative ataxia rating scale (ICARS), and a neuropsychological test battery. We compared the FDG PET findings of each group of patients with controls. Group I patients frequently had memory and frontal executive dysfunction. They showed hypometabolism in the frontal cortex, anterior cerebellar hemisphere and vermis. They had parkinsonian motor deficits, but no basal ganglia hypometabolism. Group II and III patients frequently had multiple domain cognitive impairments, and showed hypometabolism in the frontal and parieto-temporal cortices. Hypometabolism of the bilateral caudate and the left posterolateral putamen was observed in Group II, and whole striatum in Group III. In summary, the cortical hypometabolism begins in the frontal cortex and spreads to the parieto-temporal cortex in MSA. This spreading pattern coincides with the progressive cognitive decline. Early caudate hypometabolism may also contribute to the cognitive impairment. Parkinsonian motor deficits precede putaminal hypometabolism that begins in its posterolateral part. Cerebellar hypometabolism occurs early in the clinical courses and seems to be a relevant metabolic descriptor of cerebellar deficitsope

    Clinical and Hospital Factors Affecting Treatment with Primary Prevention Implantable Cardioverter-Defibrillators in Ischemic Cardiomyopathy Patients

    Get PDF
    Purpose: Implantable cardioverter defibrillators (ICD) are the standard of care for primary prevention (PP) in patients with ischemic cardiomyopathy (ICM). However, PP ICD implantation is underused in Asian countries. This study investigated ICD implantation rates and factors associated with appropriate PP ICD implants for ICM. Materials and methods: In this prospective multicenter observational registry (ADVANCE-ICM registry), ICM patients who were eligible for PP ICD were screened and enrolled. Factors associated with appropriate ICD implantation, including hospital and clinical factors, were investigated. Results: Of the 1453 ICM patients eligible for PP ICD [1111 male; median age, 71.0 (61.0-78.0) years], only 76 (5.2%) patients underwent ICD implantation. Among hospital factors, a non-monetary incentive for referral (72.4% vs. 52.9%, p=0.001) and total hospital system score (6.0 vs. 5.0, p=0.013) were higher in the ICD than in the no-ICD group. In multivariate analysis, total hospital system score [odds ratio (OR), 1.28; 95% confidence interval (CI), 1.10-1.50] was an independent factor for predicting ICD implantation, along with clinical factors, including high New York Heart Association class (โ‰ฅIII: OR, 7.29; 95% CI, 2.97-17.87) and younger age (<70 years: OR, 2.14; 95% CI, 1.30-3.53). Conclusion: PP ICD implantation for ICM patients is underused in Korea. Hospital factors were important for improving PP ICD implantation rate, suggesting that new screening and referral systems for ICM patients would improve the PP ICD implantation rate (Clinical trial registration No. NCT03590925).ope

    Left Atrial Wall Stress and the Long-Term Outcome of Catheter Ablation of Atrial Fibrillation: An Artificial Intelligence-Based Prediction of Atrial Wall Stress

    Get PDF
    Atrial stretch may contribute to the mechanism of atrial fibrillation (AF) recurrence after atrial fibrillation catheter ablation (AFCA). We tested whether the left atrial (LA) wall stress (LAW-stress[measured]) could be predicted by artificial intelligence (AI) using non-invasive parameters (LAW-stress[AI]) and whether rhythm outcome after AFCA could be predicted by LAW-stress[AI] in an independent cohort. Cohort 1 included 2223 patients, and cohort 2 included 658 patients who underwent AFCA. LAW-stress[measured] was calculated using the Law of Laplace using LA diameter by echocardiography, peak LA pressure measured during procedure, and LA wall thickness measured by customized software (AMBER) using computed tomography. The highest quartile (Q4) LAW-stress[measured] was predicted and validated by AI using non-invasive clinical parameters, including non-paroxysmal type of AF, age, presence of hypertension, diabetes, vascular disease, and heart failure, left ventricular ejection fraction, and the ratio of the peak mitral flow velocity of the early rapid filling to the early diastolic velocity of the mitral annulus (E/Em). We tested the AF/atrial tachycardia recurrence 3 months after the blanking period after AFCA using the LAW-stress[measured] and LAW-stress[AI] in cohort 1 and LAW-stress[AI] in cohort 2. LAW-stress[measured] was independently associated with non-paroxysmal AF (p < 0.001), diabetes (p = 0.012), vascular disease (p = 0.002), body mass index (p < 0.001), E/Em (p < 0.001), and mean LA voltage measured by electrogram voltage mapping (p < 0.001). The best-performing AI model had acceptable prediction power for predicting Q4-LAW-stress[measured] (area under the receiver operating characteristic curve 0.734). During 26.0 (12.0-52.0) months of follow-up, AF recurrence was significantly higher in the Q4-LAW-stress[measured] group [log-rank p = 0.001, hazard ratio 2.43 (1.21-4.90), p = 0.013] and Q4-LAW-stress[AI] group (log-rank p = 0.039) in cohort 1. In cohort 2, the Q4-LAW-stress[AI] group consistently showed worse rhythm outcomes (log-rank p < 0.001). A higher LAW-stress was associated with poorer rhythm outcomes after AFCA. AI was able to predict this complex but useful prognostic parameter using non-invasive parameters with moderate accuracy.ope

    ๋ณ‘์žํ˜ธ๋ž€: ๋™์•„์‹œ์•„์˜ ํŒจ๊ถŒ ๋ณ€ํ™”์™€ ์ค‘ํ™”์‚ฌ์ƒ์˜ ์ธ์‹

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ตญ์ œ๋Œ€ํ•™์› ๊ตญ์ œํ•™๊ณผ(๊ตญ์ œํ˜‘๋ ฅ์ „๊ณต), 2020. 8. ์‹ ์„ฑํ˜ธ.After seven years of the Japanese Invasions of Joseon (Imjin War, ๅฃฌ่พฐๅ€ญไบ‚, 1952~1958), East Asia went under a dynamic shift in regional order. The Manchurians from the northeastern part of China came into power as a new kingdom (Later Jin, ๅพŒ๏คŠ) in 1616, and placed its first monarch Nurhaci (ๅฅด็ˆพๅ“ˆ่ตค) as a Khan โ€“ an absolute ruler. Ming (ๆ˜Ž) was also struggling under the aftermath of Japanese Invasion of Joseon, since it was supporting Joseon as an ally, and could not prevent the rise of the Manchurians effectively. In 1636, Later Jin promoted its class from kingdom to an empire (Qing, ๆทธ), and ultimately became the new hegemon of East Asia in 1644, by conquering Ming and its territory. Throughout such turmoil of power transition, Joseon was once again located in the middle of two major powers. From late 1636 to early 1637, Manchurian army came into Korean peninsula, and Joseon surrendered to Qing even before the collapse of Ming. This research is to analyze the causality of Manchu Invasion of Joseon through security policy framework and diagnose the inevitability of this event. Through literature review, the paper will strive to define the most determinant factor of Zhong-hua (ไธญ่ฏ, Sino-centrism), and based on such background, it will clarify how each of Joseons regime โ€“ Gwanghaegun (ๅ…‰ๆตทๅ›) and Injo (ไป็ฅ–) โ€“ perceived the ideology in terms of their foreign policy and conflict management.7๋…„๊ฐ„์˜ ์ž„์ง„์™œ๋ž€(ๅฃฌ่พฐๅ€ญไบ‚, 1952~1958) ์ดํ›„, ๋™์•„์‹œ์•„๋Š” ์ƒˆ๋กœ์šด ํŒจ๊ถŒ์˜ ๋ณ€ํ™”๋ฅผ ๋งž๊ฒŒ ๋œ๋‹ค. ์ค‘๊ตญ ๋™๋ถ๋ถ€ ์ง€์—ญ์˜ ์—ฌ์ง„์กฑ๋“ค์ด 1616๋…„ ์ƒˆ๋กœ์šด ์™•์กฐ(ํ›„๊ธˆ, ๅพŒ๏คŠ)๋ฅผ ๋งŒ๋“ค์—ˆ์œผ๋ฉฐ, ๊ฑด๊ตญ์ž ๋ˆ„๋ฅดํ•˜์น˜(ๅฅด็ˆพๅ“ˆ่ตค)๋ฅผ ์ ˆ๋Œ€ ๊ถŒ๋ ฅ์ž์ธ ์นธ์œผ๋กœ ์ถ”๋Œ€ํ•˜์˜€๋‹ค. ๋ช…(ๆ˜Ž) ๋˜ํ•œ ์ž„์ง„์™œ๋ž€ ๋‹น์‹œ ๋™๋งน๊ตญ์ธ ์กฐ์„ ์„ ์ง€์›ํ•œ ์—ฌํŒŒ๋กœ ํ”๋“ค๋ฆฌ๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ํ›„๊ธˆ์˜ ๋ถ€์ƒ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ง‰์ง€ ๋ชปํ–ˆ๋‹ค. 1636๋…„, ํ›„๊ธˆ์€ ์Šค์Šค๋กœ๋ฅผ ์™•์กฐ์—์„œ ์ฒญ(ๆทธ) ์ œ๊ตญ์œผ๋กœ ์Šน๊ฒฉ์‹œ์ผฐ๊ณ , 1644๋…„ ๋ช…๋‚˜๋ผ์˜ ์˜ํ† ๋ฅผ ์ •๋ณตํ•˜๋ฉฐ ๋™์•„์‹œ์•„์˜ ์ƒˆ๋กœ์šด ํŒจ๊ถŒ๊ตญ๊ฐ€๊ฐ€ ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŒจ๊ถŒ ๊ฒฉ๋ณ€์˜ ์‹œ๊ธฐ ์†์—์„œ, ์กฐ์„ ์€ ๋‹ค์‹œ ํ•œ๋ฒˆ ๋‘ ๊ฐ•๋Œ€๊ตญ์˜ ์‚ฌ์ด์— ๋ผ์ด๊ฒŒ ๋œ๋‹ค. 1636๋…„ ํ›„๋ฐ˜๋ถ€ํ„ฐ 1637๋…„ ์ดˆ๊นŒ์ง€ ์—ฌ์ง„์กฑ ๊ตฐ๋Œ€๋Š” ํ•œ๋ฐ˜๋„๋ฅผ ๊ณต๊ฒฉํ•˜์˜€๊ณ , ๊ฒฐ๊ตญ ์กฐ์„ ์€ ๋ช…๋‚˜๋ผ์˜ ๋ฉธ๋ง๋ณด๋‹ค ์•ž์„œ ์ฒญ๋‚˜๋ผ์— ํ•ญ๋ณตํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ณ‘์žํ˜ธ๋ž€ ์‚ฌ๊ฑด์„ ์•ˆ๋ณดํ•™์  ์‹œ๊ฐ์œผ๋กœ ๋ถ„์„ํ•˜์—ฌ ์ „์Ÿ์˜ ๋ถˆ๊ฐ€ํ”ผ์„ฑ์„ ์ง„๋‹จํ•˜๋Š” ๋ฐ์— ๊ทธ ๋ชฉ์ ์ด ์žˆ๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ค‘ํ™”์‚ฌ์ƒ(ไธญ่ฏๆ€ๆƒณ)์˜ ๊ฐ€์žฅ ํ•ต์‹ฌ์ ์ธ ์š”์†Œ๋ฅผ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹น์‹œ ์กฐ์„ ์˜ ๋‘ ์™•์ด์—ˆ๋˜ ๊ด‘ํ•ด๊ตฐ(ๅ…‰ๆตทๅ›)๊ณผ ์ธ์กฐ(ไป็ฅ–)๊ฐ€ ๋Œ€์™ธ์ •์ฑ…๊ณผ ๋ถ„์Ÿํ•ด๊ฒฐ์˜ ์ธก๋ฉด์—์„œ ์–ด๋–ป๊ฒŒ ์ค‘ํ™”๋ผ๋Š” ์‚ฌ์ƒ์„ ์ธ์‹ํ–ˆ๋Š”์ง€๋ฅผ ๋ฐํžˆ๊ณ ์ž ํ•œ๋‹ค.I. INTRODUCTION 1 II. LITERATURE REVIEW 11 Deconstructing the Concept of Zhong-hua 11 Zhong-hua of Ming: Right for Han's Hegemony 19 Joseon's Perception of Zhong-hua: The Courtesy of Sadae 27 III. ANALYSIS 38 Joseon after Japanese Invasion: the Boongdang Politics 38 Gwanghaegun's Regime: Neutral Diplomacy . 46 Injo's Regime: Detour to Conventional Alliance 60 Role of Ming in Joseon: Source of Legitimacy 73 The Second Manchu Invasion of Joseon 84 IV. CONCLUSION 91 BIBLIOGRAPHY 99 ๊ตญ ๋ฌธ ์ดˆ ๋ก (Abstract in Korean) 113Maste

    Efficacy of serum leptin level as an indicator to predict the clinical response of rosiglitazo

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ๋ ™ํ‹ด(leptin)์€ ์ง€๋ฐฉ์„ธํฌ์˜ ๋น„๋งŒ ์œ ์ „์ž์— ์˜ํ•ด ์ƒ์„ฑ๋˜๋Š” ๋‹จ๋ฐฑ ์งˆ๋กœ ๋‡Œ์˜ ์‹œ์ƒํ•˜๋ถ€์— ์ž‘์šฉํ•˜์—ฌ ์ฒด์ง€๋ฐฉ์˜ ์กฐ์ ˆ์„ ํ†ตํ•ด ๋น„๋งŒ์„ ์กฐ์ ˆํ•˜๋Š” ๊ธฐ๋Šฅ์„ ํ•œ๋‹ค. ๋ ™ํ‹ด๊ณผ ์ฒด์ง€๋ฐฉ๊ณผ์˜ ๋ฐ€์ ‘ํ•œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์—ฌ๋Ÿฌ ์ฐจ๋ก€ ๋ณด๊ณ  ๋˜์—ˆ๋Š”๋ฐ, ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ ๋˜ํ•œ ์ฒด์ง€๋ฐฉ๊ณผ ๊ด€๋ จ์„ฑ์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•œํŽธ, ๊ฒฝ๊ตฌ ๋‹น๋‡จ๋ณ‘ ์น˜๋ฃŒ์ œ์ธ rosiglitazone (RSG)์€ ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์„ ๊ฐœ์„ ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์•ฝ์ œ๋กœ์„œ ๊ณจ๊ฒฉ๊ทผ๋‚ด ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์ด ๊ฐœ์„ ๋˜์–ด ํฌ๋„๋‹น ํก์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์œผ๋กœ ์ธํ•ด ํ˜ˆ๋‹น ๊ฐ•ํ•˜ ์ž‘์šฉ์ด ์ผ์–ด๋‚œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ2ํ˜• ๋‹น๋‡จ๋ณ‘ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ RSG ๋ณ‘์šฉํˆฌ์—ฌ๋ฅผ ํ†ตํ•ด ํ˜ˆ๋‹น ์กฐ์ ˆ ์ •๋„์™€ ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ ๊ฐœ์„  ์ •๋„๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ  ํ˜ˆ์ค‘ ๋ ™ํ‹ด ๋†๋„์™€ RSG์˜ ๋ฐ˜์‘์„ ๋ฐ˜์˜ํ•˜๋Š” ์ง€ํ‘œ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์—ฌ RSG์˜ ์น˜๋ฃŒ ๋ฐ˜์‘์— ๋Œ€ํ•œ ์˜ˆ์ธก์ธ์ž ๋กœ์„œ์˜ ํ˜ˆ์ค‘ ๋ ™ํ‹ด ๋†๋„์˜ ์œ ์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ2ํ˜• ๋‹น๋‡จ๋ณ‘ ํ™˜์ž์ค‘ sulfonylurea ๋˜๋Š” metformin ๋“ฑ์˜ ๊ฒฝ๊ตฌ ํ˜ˆ๋‹น๊ฐ•ํ•˜์ œ๋ฅผ ํˆฌ์—ฌ์ค‘์ธ 140๋ช…(๋‚จ์ž 90๋ช…, ์—ฌ์ž 50๋ช…)์˜ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜์—ฌ RSG์„ ๊ธฐ์กด์•ฝ์ œ์™€ ๋ณ‘์šฉ ํˆฌ์—ฌํ•˜๋ฉด์„œ ํ˜ˆ๋‹น ์กฐ์ ˆ์ง€ํ‘œ์™€ ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์ง€ํ‘œ๋ฅผ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, ํˆฌ์—ฌ์ „ํ›„ ํ˜ˆ์ค‘ ๋ ™ํ‹ด ๋†๋„๋ฅผ ๋ฐฉ์‚ฌ๋ฉด์—ญ๋ฒ•์œผ๋กœ ์ธก์ •ํ•˜์˜€๊ณ , ๋ณต๋ถ€์ดˆ์ŒํŒŒ๋กœ ๋ณต๋ถ€์˜ ํ”ผํ•˜์ง€๋ฐฉ ๋ฐ ๋‚ด์žฅ์ง€๋ฐฉ์„ ์ธก์ •ํ•˜์˜€๋‹ค. 12์ฃผ๊ฐ„ RSG 4mg์”ฉ ๋งค์ผ ๊ธฐ์กด ์•ฝ์ œ์™€ ๋ณ‘์šฉ ํˆฌ์—ฌํ›„ ๊ณต๋ณตํ˜ˆ๋‹น์€ 12.6ยฑ28.1 mg/dl ๊ฐ์†Œ(p<0.001), ๋‹นํ™” ํ˜ˆ์ƒ‰์†Œ๋Š” 0.15ยฑ1.10 % ๊ฐ ์†Œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๊ณต๋ณต ํ˜ˆ์ฒญ ์ธ์Š๋ฆฐ๋†๋„๋Š” 1.85ยฑ4.71 ฮผU/ml ๊ฐ์†Œํ•˜ ์˜€์œผ๋ฉฐ(p=0.002), ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ๋ฐ ์ด์™„๊ธฐ ํ˜ˆ์••๋„ ๊ฐ๊ฐ ์œ ์˜ํ•˜๊ฒŒ ๊ฐ ์†Œํ•˜์˜€๋‹ค (๊ฐ๊ฐ p<0.001, p=0.012). ์ฒด์ค‘์€ ์ฆ๊ฐ€ํ•˜์˜€๊ณ  (p=0.008), ์ฒด์งˆ๋Ÿ‰์ง€์ˆ˜๋„ ์œ ์˜ํ•œ ์ฆ๊ฐ€๋ฅผ ๋ณด์˜€๋‹ค. ํ—ˆ๋ฆฌ๋‘˜๋ ˆ (p<0.001)์™€ ํ—ˆ๋ฆฌ-์—‰๋ฉ์ด ๋‘˜๋ ˆ๋น„(p=0.003)๋„ ๊ฐ๊ฐ ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ์ฒด์ง€๋ฐฉ๋Ÿ‰ ํ”ผํ•˜์ง€๋ฐฉ๋Ÿ‰๋„ ์œ ์˜ํ•œ ์ฆ๊ฐ€ ์†Œ๊ฒฌ์„ ๋ณด์˜€๋‹ค. HOMAIR์€ 0.31ยฑ0.98์˜ ์œ ์˜ํ•œ ๊ฐ์†Œ๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ํ•œํŽธ, ํ˜ˆ์ค‘ ๋ ™ํ‹ด ๋†๋„๋Š” ํˆฌ์—ฌ ์ „ํ›„๋กœ ์ฆ ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๋‚˜ ์œ ์˜ํ•œ ์ฐจ์ด๋Š” ์—†์—ˆ๋‹ค. โ–ณFPG(= ํˆฌ์—ฌํ›„ FPG - ํˆฌ์—ฌ์ „ FPG)๋Š” ํˆฌ์—ฌ์ „ ํ˜ˆ์ค‘ ๋ ™ํ‹ด ๋†๋„(r=-0.202, p=0.025), ํˆฌ์—ฌ์ „ HOMAIR(r=-0.226, p=0.012), ํˆฌ์—ฌ์ „ ๊ณต๋ณต ํ˜ˆ๋‹น(r=-0.565, p<0.001)๊ณผ ์œ ์˜ํ•œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ํ•œํŽธ, โ–ณFPG๋Š” ํˆฌ์—ฌ์ „ ์ฒด์งˆ๋Ÿ‰์ง€์ˆ˜, ๊ณต๋ณต ํ˜ˆ์ฒญ ์ธ์Š๋ฆฐ ๋†๋„์™€๋Š” ๊ด€๋ จ์„ฑ์ด ์—†์—ˆ๋‹ค. ํˆฌ์—ฌ์ „ ํ˜ˆ์ค‘ ๋ ™ํ‹ด ๋†๋„๋Š” โ–ณHOMAIR (r=-0.416, p=0.01), โ–ณinsulin (r=-0.365, p=0.004), โ–ณHbA1c (r=-0.189, p= 0.036)์™€ ์œ ์˜ํ•œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ , ๋ณต๋ถ€์ดˆ์ŒํŒŒ๋กœ ์ธก์ •ํ•œ ํ”ผํ•˜์ง€๋ฐฉ์˜ ๋‘๊ป˜ (r=0.548, p<0.001) ๋ฐ ์ฒด์งˆ๋Ÿ‰์ง€์ˆ˜ (r=0.521, p<0.001), ํˆฌ์—ฌ์ „ HOMAIR (r= 0.343, p<0.001)๊ณผ๋Š” ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ์ด์ƒ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ์ œ2ํ˜• ๋‹น๋‡จ๋ณ‘ ํ™˜์ž์—์„œ RSG ๋ณ‘์šฉํˆฌ์—ฌ ํ›„ ํ˜ˆ๋‹น๊ฐ•ํ™” ํšจ๊ณผ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ ์ง€ํ‘œ๋“ค์˜ ํ˜ธ์ „์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ. RSG์˜ ๋‹ค์–‘ํ•œ ์ž„์ƒ์  ํšจ๊ณผ์˜ ์ •๋„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ํˆฌ์—ฌ์ „ ํ˜ˆ์ค‘ ๋ ™ํ‹ด ๋†๋„๊ฐ€ ์œ ์šฉ์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐ ๋œ๋‹ค. [์˜๋ฌธ] Leptin is a protein secreted by adipocytes and regulates food intake by acting on hypothalamus and is correlated with body fat mass. Insulin resistance is also is correlated with body fat mass, obesity. Rosiglitazone (RSG), an insulin sensitizer of thiazolidine-dion (TZD) class, is known as highly selective and potent agonist for the peroxisome proliferators-activated receptor-ฮณ (PPARฮณ). It improves glycemic control by improving insulin sensitivity in peripheral tissue. This study was performed to evaluate the antidiabetic and insulin sensitizing effect of RSG combination therapy and to evaluate the efficacy of serum leptin level as indicator to predict the clinical response of RSG in type 2 diabetic patients with oral agents such as metformin and/or sulfonylurea. One hundred forty type 2 diabetic patients (90 male, 40 female) were enrolled. For 12weeks, enrolled diabetic patients daily received 4 mg RSG in addition to the previous medications. The glucose level, indices of insulin resistance and metabolic parameters were measured. Serum leptin level was measures by radioimmunoassay at before and after RSG treated. Visceral fat and subcutaneous fat was measured by sonography. After 12weeks of RSG treatment, FPG (12.6ยฑ28.1 mg/dl), HOMAIR (0.3ยฑ0.9), serum fasting insulin (1.9ยฑ4.7ฮผU/ml), SBP and DBP decreased, significantly. RSG treatment also increased body weight, BMI, waist circumference, WHR, body fat mass, and subcutaneous fat. Serum leptin level tended to increase after RSG treatment, but withour significance. โ–ณFPG (โ–ณ= value after treatment - value before treatment) was significantly, inversely correlated with basal serum leptin level (r=-0.202), basal HOMAIR (r=-0.226), basal FPG (r=-0.565). There was no correlation between โ–ณFPG and basal BMI and serum insulin level. As for the basal serum leptin level, RSG treatment ,also, showed significant, inverse correlation between serum leptin level and โ–ณHOMAIR (r=-0.416), โ–ณinsulin (r=-0.365), โ–ณHbA1c (r = -0.189). Serum leptin level was, also, positively correlated with the subcutaneous fat amount (r=0.548), basal BMI (r=0.521), and basal HOMAIR (r=0.343). From these results, RSG treatment can improve not only hyperglycemia but also insulin resistance in type 2 diabetic patients. The serum leptin level can be used as an indicator to predict the cinical response of RSG treatment in type 2 diabetes.ope

    Propeller noise source inversion and hull fluctuating pressure estimation

    No full text
    ์ˆ˜์ค‘์—์„œ ํšŒ์ „ํ•˜๋Š” ํ”„๋กœํŽ ๋Ÿฌ๋Š” ์„ ์ฒด์— ๊ฐ•ํ•œ ์†Œ์Œ๊ณผ ์ง„๋™์„ ์œ ๋ฐœ์‹œํ‚ค๋Š” ์ฃผ์š” ์š”์ธ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ด๋Ÿฌํ•œ ํ”„๋กœํŽ ๋Ÿฌ ์†Œ์Œ ๋ฐ ์ง„๋™์€ ๊ตฐ์‚ฌ์ , ๋˜๋Š” ๋น„๊ตฐ์‚ฌ์ ์œผ๋กœ ํ•ญ์ƒ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ ์œผ๋กœ ๋Œ€๋‘๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ํ˜„์žฌ๊นŒ์ง€๋„ ์ด ๋ถ„์•ผ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๊ตฐ์‚ฌ์ ์ธ ์ธก๋ฉด์œผ๋กœ๋Š”, ์ˆ˜์ƒํ•จ์˜ ํ”ผํƒ์œจ ๊ฐ์†Œ๋ฅผ ๋น„๋กฏํ•œ ์ •์ˆ™์„ฑ์„ ๊ฐ•์กฐํ•˜๋Š” ํ•จ์ • ์„ค๊ณ„๊ฐ€ ์ค‘์š”์‹œ ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋น„๊ตฐ์‚ฌ์ ์œผ๋กœ๋„ ์•ˆ๋ฝํ•˜๊ณ  ์กฐ์šฉํ•œ ํฌ๋ฃจ์ฆˆ์„  ๋“ฑ์˜ ๊ฐœ๋ฐœ์— ๊ทธ ๊ด€์‹ฌ์ด ํฌ๊ฒŒ ์ฆ๊ฐ€๋จ์— ๋”ฐ๋ผ ์ €์†Œ์Œ ํ”„๋กœํŽ ๋Ÿฌ์˜ ์„ค๊ณ„์— ๋Œ€ํ•œ ์ค‘์š”์„ฑ์€ ๋งค์šฐ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ํ”„๋กœํŽ ๋Ÿฌ์˜ ์†Œ์Œ์€ ์„ ์ฒด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „์ฒด ์†Œ์Œ์› ์ค‘ ์ ˆ๋ฐ˜ ์ด์ƒ์˜ ๋น„์ค‘์„ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์„ ์ฒด์˜ ๋˜ ๋‹ค๋ฅธ ์†Œ์Œ์›์ธ ๊ธฐ๊ณ„๋ฅ˜(์—”์ง„, ์ƒคํ”„ํŠธ, ๋ณด๊ธฐ๋ฅ˜ ๋“ฑ) ์†Œ์Œ์— ๋น„ํ•ด ๊ทธ ๋ฐœ์ƒ ๋ฉ”์ปค๋‹ˆ์ฆ˜(mechanism)์ด ๋ณต์žกํ•˜๊ณ  ์ œ์–ด๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ๋งค์šฐ ํ™œ๋ฐœํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์ง€๋งŒ ์•„์ง ๋ฏธ์™„ ๊ณผ์ œ๊ฐ€ ๋งŽ์€ ์‹ค์ •์ด๋ฉฐ, ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๊ฐ€๊ณ  ์žˆ๋Š” ๋ถ„์•ผ์ด๋‹ค. ์ตœ๊ทผ, ์ €์†Œ์Œ ์„ ์ฒด ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ํ•ต์‹ฌ ์—ฐ๊ตฌ ๋ถ„์•ผ์ธ ํ”„๋กœํŽ ๋Ÿฌ ๊ธฐ์ € ์†Œ์Œ ๋ฐ ์ง„๋™ ์—ฐ๊ตฌ๋Š” ์ˆ˜์น˜ํ•ด์„์  ๋ฐฉ๋ฒ•๊ณผ ์‹คํ—˜์  ๋ฐฉ๋ฒ• ๋“ฑ์œผ๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค. ์ˆ˜์น˜ํ•ด์„์  ๋ฐฉ๋ฒ•์˜ ๋Œ€ํ‘œ์ ์ธ ์ ‘๊ทผ์€ ์ „์‚ฐ์œ ์ฒด์—ญํ•™(CFD : computational fluid dynamics)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ „์‚ฐ์œ ์ฒด์—ญํ•™ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•์€ ๋น„๊ต์  ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜์ง€๋งŒ, ์ด๋Š” ์ ‘๊ทผ๋ฐฉ๋ฒ•์ด ๋งค์šฐ ๊นŒ๋‹ค๋กœ์šธ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ณ„์‚ฐ์— ๋งค์šฐ ๋งŽ์€ ์‹œ๊ฐ„ ์†Œ์š”๋ฅผ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋ฐ˜๋ฉด ์‹คํ—˜์  ๋ฐฉ๋ฒ•์—์„œ๋Š” ๋ชจํ˜•์„  ๋˜๋Š” ์‹ค์„  ์Šค์ผ€์ผ ์‹คํ—˜์„ ํ†ตํ•ด ๋ณ€๋™์••๋ ฅ์„ ์˜ˆ์ธกํ•˜๋Š”๋ฐ, ์ฃผ๋กœ ํ”„๋กœํŽ ๋Ÿฌ ์ƒ๋ถ€ ๋ช‡ ๊ฐœ์˜ ์••๋ ฅ์„ผ์„œ์—์„œ ์ˆ˜์‹ ๋œ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ฅธ ์„ ์ฒด ์ „์ฒด์˜ ๋ณ€๋™์••๋ ฅ์„ ์˜ˆ์ธกํ•˜๊ฒŒ ๋œ๋‹ค. ํ•˜์ง€๋งŒ ์ด ์ ‘๊ทผ๋ฐฉ๋ฒ•์€ ์ œํ•œ๋œ ์••๋ ฅ์„ผ์„œ ์žฅ์ฐฉ ๊ฐœ์ˆ˜๋กœ ์ธํ•˜์—ฌ ๋ถ€์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋™๋ฐ˜ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ๊ธฐ์—์„œ ์„ค๋ช…ํ•œ ์‹คํ—˜์  ์ ‘๊ทผ๋ฐฉ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋˜, ์ด์— ์ •ํ•ฉ์žฅ ์—ญ์‚ฐ(MFI : matched field inversion) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ํ”„๋กœํŽ ๋Ÿฌ์˜ ์†Œ์Œ์›์„ ์ถ”์ •ํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ ์ฒด์˜ ๋ณ€๋™์••๋ ฅ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์—ญ์‚ฐ ๊ธฐ๋ฒ•์€ ์„ ์ฒด ์••๋ ฅ์„ผ์„œ์—์„œ ๊ณ„์ธก๋œ ์Œํ–ฅ ์‹ ํ˜ธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฒฝ๊ณ„์š”์†Œ๋ฒ•์„ ์ด์šฉํ•œ Kirchhoff-Helmholtz ๋ฐฉ์ •์‹์œผ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋œ ๋ณต์ œ ์Œ์žฅ์„ ์ด์šฉํ•˜์˜€๋‹ค. ์ด ์ ‘๊ทผ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ ๊ณ„์ธก ์‹ ํ˜ธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ”„๋กœํŽ ๋Ÿฌ ๋“ฑ๊ฐ€ ์†Œ์Œ์› ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ ์ฒด ๋ณ€๋™์••๋ ฅ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ํ”„๋กœํŽ ๋Ÿฌ์˜ ์†Œ์Œ์›์€ ํฌ๊ฒŒ ๊ณต๋™ ์†Œ์Œ(cavitation noise)์™€ ๋น„๊ณต๋™ ์†Œ์Œ(non-cavitation noise)์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ๊ฐ ์†Œ์Œ์›์˜ ๋ฐœ์ƒ ํŠน์„ฑ์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ณต๋™ ๋ฐ ๋น„๊ณต๋™ ์†Œ์Œ์›์„ ๋Œ€ํ‘œํ•˜๋Š” ๋‹จ๊ทน์ž(monopole), ์Œ๊ทน์ž(dipole) ๋ฐ ์‚ฌ์ค‘๊ทน์ž(quadrupole) ์Œ์›์œผ๋กœ ๋ชจ๋ธ๋ง ํ•˜์˜€๋‹ค. ์—ญ์‚ฐ ๊ณผ์ •์˜ ํ•ต์‹ฌ์€ ๋ณตํ•ฉ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์†Œ์Œ์›์˜ ์œ„์น˜์™€ ํฌ๊ธฐ ๋“ฑ์„ ๊ฒฐ์ •ํ•˜๊ณ , ์ด๋ ‡๊ฒŒ ๊ฒฐ์ •๋œ ์†Œ์Œ์›์€ ์Œํ–ฅ ๊ฒฝ๊ณ„์š”์†Œ๋ฒ•(acoustic boundary element method)์„ ์ด์šฉํ•˜์—ฌ ๋ชจํ˜•์„  ํ”„๋กœํŽ ๋Ÿฌ ์ƒ๋ถ€์— ์žฅ์ฐฉ๋œ ์••๋ ฅ์„ผ์„œ ์œ„์น˜์—์„œ์˜ ๋ณต์ œ์Œ์žฅ(replica pressure field)์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด ๋ณต์ œ์Œ์žฅ์€ ์ •ํ•ฉ์žฅ ํ”„๋กœ์„ธ์„œ์— ์˜ํ•˜์—ฌ ๊ณ„์ธก ์‹ ํ˜ธ์™€ ๊ทธ ์ƒ๊ด€์„ฑ(correlation)์„ ํ‰๊ฐ€ํ•จ์œผ๋กœ์จ ๊ฐ€์žฅ ์ตœ์ ํ™”๋œ ํ”„๋กœํŽ ๋Ÿฌ ์†Œ์Œ์›์„ ์—ญ์‚ฐ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด ๊ณผ์ •์„ ๋ฐ˜๋ณต ์ˆ˜ํ–‰ํ•˜์—ฌ ์–ป์–ด์ง„ ํ”„๋กœํŽ ๋Ÿฌ ์†Œ์Œ์›์„ ์ด์šฉํ•˜๋ฉด ์„ ์ฒด ์ „์ฒด์˜ ๋ณ€๋™์••๋ ฅ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ํ”„๋กœํŽ ๋Ÿฌ ์†Œ์Œ์› ์—ญ์‚ฐ์„ ์œ„ํ•˜์—ฌ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์„ธ ๋ฒˆ์˜ ๋ชจํ˜•์„  ๋ณ€๋™์••๋ ฅ ๊ณ„์ธก์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์„ ์ฒด์— ๋Œ€ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์œผ๋กœ ์‹คํ—˜์ด ์ˆ˜ํ–‰๋˜์—ˆ๋Š”๋ฐ, ๋‘ ๋ฒˆ์˜ ๊ณต๋™ ํ™˜๊ฒฝ๊ณผ ํ•œ ๋ฒˆ์˜ ๋น„๊ณต๋™ ํ™˜๊ฒฝ์—์„œ ๋ณ€๋™์••๋ ฅ์„ ๊ณ„์ธกํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์˜ ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ๊ณต๋™ ๋ฐ ๋น„๊ณต๋™ ์†Œ์Œ์›์„ ์—ญ์‚ฐํ•˜์˜€์œผ๋ฉฐ, ์—ญ์‚ฐ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ๋ณ€๋™์••๋ ฅ์„ ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ ์‹คํ—˜ ๊ณ„์ธก ๋ฐ์ดํ„ฐ์™€ ์ž˜ ์ผ์น˜ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ํ”„๋กœํŽ ๋Ÿฌ์˜ ๊ณต๋™ ๋ฐ ๋น„๊ณต๋™ ์†Œ์Œ์› ์—ญ์‚ฐ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ฐ„๋‹จํ•˜๊ณ ๋„ ํšจ์œจ์ ์œผ๋กœ ์„ ์ฒด ๋ณ€๋™์••๋ ฅ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์„ ์ฒด ์ดˆ๊ธฐ ์„ค๊ณ„๋‹จ๊ณ„์— ์žˆ์–ด์„œ ํ”„๋กœํŽ ๋Ÿฌ ์„ค๊ณ„ ๋˜๋Š” ์„ ์ฒด ์„ค๊ณ„์— ์œ ์šฉํ•œ ๊ธฐ์ดˆ ์—ฐ๊ตฌ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.A underwater propeller is one of the important things that excite the hull above the propeller and cause a high level of noise and vibration in the ship structure. This propeller noise and vibration is coming to the fore as the important problem to be solved in the military and non-military research, and the study of these parts are under active research. In the military research, it is important to design the silent battle ship enough to avoid acoustical detection by the enemy platform, and in the non-military research, the primary focus is also to make comfort and silent cruise, container, and tanker ship and so on. Therefore, the need for quieter ships propeller design has grown in importance. The propeller noise comprises almost half portion of total ship noise. Because the generation mechanism of the propeller noise is more complicated and difficult to control than the machinery(engine, shaft, aux. gear, etc.) noise that is another ship noise source, the associated research has been brisk recently. But there are a lot of problem that has yet to be fully solved. Recently, as a core research to design the ship body or propeller, the study for the propeller-induced noise and vibration has been divided into numerical and experimental approaches. The representative numerical approach is based on the computational fluid dynamics. Although this method can reason about results that is quite exact, but the approach way is very complicated to analyze and demands a great deal of computational costs. In the experimental approach, the model-scale experiment in facilities such as a cavitation tunnels or sea trial have been widely performed to measure the hull pressure fluctuation. In these experiments, hull pressures are typically measured using an array of pressure transducers flush-mounted on the hull above the propeller. However, the approximate result may have inaccuracies due to the limited number of available pressure transducers. This paper presents an improvement over the previous method based on source modeling and the Kirchhoff-Helmholtz(KH) method using experiment data. For this, the matched-field inversion signal processing technique, which is widely used in the underwater acoustics community, has been adopted to predict the propeller noise source and estimate the hull fluctuating pressure distribution exactly. In this study, the matched field inversion technique used the fluctuating hull pressure field measured by flush-mounted pressure sensors, and the replica acoustic field calculated by the KH equation using the boundary element method. With this present method, the equivalent source model for the propeller can be optimized based on measured data, resulting in a more accurately extrapolated hull pressure distribution. The noise source caused by a rotating propeller can be considered to have separate cavitation and non-cavitation components. To select the appropriate model to reflect the generation characteristic of cavitation and non-cavitation noise, monopole, dipole and quadrupole source that represent both of them are adopted. The main inversion process in this paper is described as follows. First, the source location and strength around the propeller are determined using hybrid optimization technique. Second, the replica pressure field on the pressure sensor array is estimated using acoustic boundary element method. Finally, it is possible to find the optimum propeller source model by correlation of the replica pressure and the measured data using Bartlett processor. The hull pressure fluctuation can be estimated exactly using the iteration of these three steps. To perform the propeller source inversion, three cases of model scale experiments were done using different kinds of model ship. The purpose of the first two things is to measure the cavitation noise, and the last one is to measure the non-cavitation noise. Using three cases of experiments data, the cavitation and non-cavitation noise inversion were performed, and the hull pressure distribution can be estimated accurately based on the inversion results. Using this suggested inversion technique for the propeller-induced cavitating and non-cavitating noise source, it is possible to predict the precise hull pressure fluctuation, and it is helpful to design the propeller or ship body as a valuable basic research at the early-design stage.Docto

    ์„œํ•ด์•ˆ์‚ฐ ์–ด๋ฅ˜์˜ ํก์ถฉ๋ฅ˜ ํ”ผ๋‚ญ์œ ์ถฉ ๊ฐ์—ผ ์‹คํƒœ ์กฐ์‚ฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๊ธฐ์ƒ์ถฉํ•™์ „๊ณต,2004.Maste
    • โ€ฆ
    corecore