1,283 research outputs found

    ์ž๊ธฐ์ง€๋„ ํ•™์Šต์˜ ๊ฐ•๊ฑด์„ฑ ์ฆ๋Œ€๋ฅผ ์œ„ํ•œ ํ˜•ํƒœ ๊ฐ•์กฐ ์ฆ๊ฐ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ธ๊ณต์ง€๋Šฅ์ „๊ณต, 2023. 2. ์žฅ๋ณ‘ํƒ.Self-supervised learning achieved remarkable advancement comparable to supervised learning in image classification. However, its achievement is confined to test samples independently and identically distributed (IID) with a training dataset. As in supervised learning models, poor robustness to out-of-distribution (OOD) distortions still exists in self-supervised learning models. On the contrary, humans are robust to OOD distortions, and it is attributed to their shape-oriented representation with lower reliance on texture. Several previous methods were suggested to induce the image classifiers to concentrate more on shape by augmenting training images with modified textures. However, they focused on supervised learning settings rather than self-supervised ones and brought a decreased accuracy on IID test samples as a trade-off. Thus, this paper introduces shape-emphasizing augmentation, a novel data augmentation scheme for self-supervised learning. This method highlights the objects shape in an image by applying random augmentations independently to the foreground and background of the object. The self-supervised learning model learns more shape-based representation with the proposed method. Extensive experiments present its effectiveness in improving robustness to OOD distortions without sacrificing the performance on IID test samples.์ž๊ธฐ์ง€๋„ ํ•™์Šต์€ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์—์„œ ์ง€๋„ํ•™์Šต ๋ชจ๋ธ์— ๋น„๊ฒฌ๋˜๋Š” ๋†€๋ผ์šด ๋ฐœ์ „์„ ์ด๋ฃจ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์„ฑ๊ณผ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋…๋ฆฝ์ ์ด๊ณ  ๋™์ผํ•˜๊ฒŒ ๋ถ„ํฌ๋œ ์ƒ˜ํ”Œ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ์ •๋˜์–ด ์žˆ๋‹ค. ์ง€๋„ํ•™์Šต ๋ชจ๋ธ๊ณผ ๊ฐ™์ด, ์ž๊ธฐ์ง€๋„ ํ•™์Šต ๋ชจ๋ธ์€ ์—ฌ์ „ํžˆ ๋ถ„ํฌ ์™ธ ์™œ๊ณก์— ๋Œ€ํ•œ ๋‚ฎ์€ ๊ฐ•๊ฑด์„ฑ์„ ๋ณด์ธ๋‹ค. ์ด์™€ ๋ฐ˜๋Œ€๋กœ, ์‚ฌ๋žŒ์€ ๋ถ„ํฌ ์™ธ ์™œ๊ณก์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•จ์„ ๋ณด์ด๋Š”๋ฐ, ์ด๋Š” ํ˜•ํƒœ ์ง€ํ–ฅ์ ์ธ ํ‘œ์ƒ๊ณผ ๋‚ฎ์€ ์งˆ๊ฐ ์˜์กด๋„์— ๊ธฐ์ธํ•œ๋‹ค. ์ด์—, ์ตœ๊ทผ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์…‹์˜ ์งˆ๊ฐ์„ ๋ณ€ํ™”์‹œ์ผœ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์ด ์ด๋ฏธ์ง€ ๋‚ด ๊ฐ์ฒด์˜ ํ˜•ํƒœ์— ๋ณด๋‹ค ์ง‘์ค‘ํ•˜๋„๋ก ์œ ๋„ํ•˜๋Š” ๋ช‡ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•๋“ค์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ•ด๋‹น ๋ฐฉ๋ฒ•๋“ค์€ ์ž๊ธฐ์ง€๋„ ํ•™์Šต์ด ์•„๋‹Œ ์ง€๋„ ํ•™์Šต์— ์ค‘์ ์„ ๋‘์—ˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋…๋ฆฝ์ ์ด๊ณ  ๋™์ผํ•˜๊ฒŒ ๋ถ„ํฌ๋œ ๋ฐ์ดํ„ฐ๋“ค์— ๋Œ€ํ•ด ์˜คํžˆ๋ ค ์„ฑ๋Šฅ ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๋‹ค. ์ด์—, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž๊ธฐ์ง€๋„ ํ•™์Šต์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ์ „๋žต์ธ ํ˜•ํƒœ ๊ฐ•์กฐ ์ฆ๊ฐ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ฐ์ฒด์˜ ์ „๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ์— ๋…๋ฆฝ์ ์œผ๋กœ ๋ฌด์ž‘์œ„ ์ฆ๊ฐ•์„ ์ ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ๋‚ด ๊ฐ์ฒด์˜ ํ˜•ํƒœ๋ฅผ ๊ฐ•์กฐํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๋ฐฉ๋ฒ•์ด ๋…๋ฆฝ์ ์ด๊ณ  ๋™์ผํ•˜๊ฒŒ ๋ถ„ํฌ๋œ ๋ฐ์ดํ„ฐ๋“ค์— ๋Œ€ํ•œ ์ž๊ธฐ์ง€๋„ ํ•™์Šต ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ•˜๋ฝ ์—†์ด ๋ถ„ํฌ ์™ธ ์™œ๊ณก์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ์— ํšจ๊ณผ๊ฐ€ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค.Chapter 1. Introduction 1 1.1 Purpose of Research 1 1.2 Research Content 5 1.3 Outline of Research 7 Chapter 2. Related Works 8 2.1 Self-supervised contrastive learning 8 2.2 Data augmentation for improving generalization 11 2.3 Improving shape bias for robustness to distortions 15 Chapter 3. Shape-Emphasizing Augmentation 19 3.1 Problem Statement 19 3.2 Method 21 3.3 Experimental Setup 26 3.3.1 Baselines 26 3.3.2 Datasets 27 3.3.3 Metrics 29 3.3.4 Implementation Details 30 3.4 Results and Analysis 32 Chapter 4. Shape-based Representation 40 4.1 Measuring the effect of the proposed method 40 4.2 Shape bias 40 4.3 Supervised contrastive learning 43 Chapter 5. Conclusion 48 5.1 Summary of Research 48 5.2 Limitations 50 5.3 Discussions 52 5.4 Future Works 52 Bibliography 54 Abstract in Korean 61์„

    ๋ฐฐ๊ฒฝ์žก์Œ ํ† ๋ชจ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•œ ๋™๋ถ์•„์‹œ์•„ ์ง€์—ญ ํ•˜๋ถ€ ์ „๋‹จํŒŒ ์†๋„ ๋ฐ ์ด๋ฐฉ์„ฑ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€,2020. 2. ์ด์ค€๊ธฐ.์œ ๋ผ์‹œ์•„ํŒ์˜ ๋™๋ถ€๋Š” ํƒœํ‰์–‘ํŒ๊ณผ ํ•„๋ฆฌํ•€ ํ•ด์–‘ํŒ์˜ ์„ญ์ž… ๋“ฑ ๋ณตํ•ฉ์ ์ธ ๊ตฌ์กฐ์šด๋™์€ ๊ฒช์—ˆ๋‹ค. ์ด ๋•Œ๋ฌธ์— ์ด ์ง€์—ญ์— ์‚ฐ๋ฐœ์ ์œผ๋กœ ๋ถ„ํฌํ•˜๋Š” ํ™•์žฅ ๋ถ„์ง€๋“ค๊ณผ ํŒ๋‚ด๋ถ€ ํ™”์‚ฐ๋“ค์€ ํ•˜๋‚˜์˜ ๊ธฐ์ž‘์œผ๋กœ ์„ค๋ช…ํ•˜๊ธฐ ์‰ฝ์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ ์ด ์ง€์—ญ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ง€์ง„ ํ™œ๋™๊ณผ ๋ณต์žกํ•œ ๊ตฌ์กฐ์‚ฌ๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹ ๋ขฐ๋„ ์žˆ๋Š” ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์ด ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฐ๊ฒฝ์žก์Œ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋™๋ถ์•„์‹œ์•„ ์ง€์—ญ์— ๋Œ€ํ•œ ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์„ ์ž‘์„ฑํ–ˆ๋‹ค. ๋ฐฐ๊ฒฝ์žก์Œ ๋ฐฉ๋ฒ•์€ ์ง€๊ฐ๊ณผ ์ƒ๋ถ€๋งจํ‹€์˜ ์†๋„๊ตฌ์กฐ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•ด ํ†ต์šฉ๋˜๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ง€์ง„ ์ž๋ฃŒ์— ๋น„ํ•ด ์ง€๊ฐ ๊นŠ์ด๋ฅผ ์ง€๋‚˜๋Š” ๋‹จ์ฃผ๊ธฐ ์ž๋ฃŒ๋ฅผ ์–ป๊ธฐ์— ์œ ๋ฆฌํ•˜๋ฉฐ, ํ‘œ๋ฉดํŒŒ์˜ ์žฅ์ฃผ๊ธฐ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์ƒ๋ถ€๋งจํ‹€ ๊นŠ์ด๊นŒ์ง€ ์†๋„๊ตฌ์กฐ๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ด ๋ฐฉ๋ฒ•์€ ๊ด€์ธก์†Œ ์‚ฌ์ด ๋ฐฐ๊ฒฝ์žก์Œ์˜ ์ƒํ˜ธ์ƒ๊ด€ ํ•จ์ˆ˜๋กœ๋ถ€ํ„ฐ ๊ตฌํ•œ ๊ทธ๋ฆฐํ•จ์ˆ˜(Greens function)๋ฅผ ์ด์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ง€์ง„๋ฐœ์ƒ๋นˆ๋„๊ฐ€ ์ ๊ฑฐ๋‚˜ ์—ฐ๊ตฌ์ง€์—ญ๋‚ด์— ์œ„์น˜ํ•œ ๊ด€์ธก์†Œ์˜ ์ˆ˜๊ฐ€ ์ ๋”๋ผ๋„ ์‚ฌ์šฉ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฐ๊ฒฝ์žก์Œ ๋ฐฉ๋ฒ•์„ ๋™๋ถ์•„์‹œ์•„์ง€์—ญ์˜ ๋‹ค์–‘ํ•œ ๊ด€์ธก๋ง์„ ํ™œ์šฉํ•˜์—ฌ ์ด ์ง€์—ญ์˜ ํŠน์ •์ง€์—ญ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์„ ๋งŒ๋“ค์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋ถํ•œ์˜ ๋‚ด๋ฅ™๊ณผ ๋™ํ•ด์•ˆ์— ๋Œ€ํ•œ ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์„ ์ค‘๊ตญ๊ณผ ๋‚จํ•œ์˜ ๊ด€์ธก๋ง์œผ๋กœ๋ถ€ํ„ฐ ์–ป์€ ๋ ˆ์ผ๋ฆฌํŒŒ ๋ถ„์‚ฐ๊ณก์„  ์ž๋ฃŒ๋ฅผ ๋ฒ ์ด์ง€์•ˆ ์—ญ์‚ฐ์„ ํ†ตํ•ด ๊ตฌํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ตฌํ•ด์ง„ ๋ชจ๋ธ์„ 2013๋…„ ๋ถํ•ต์ง€์ง„์— ๋Œ€ํ•œ ํ’€ ๋ชจ๋ฉ˜ํŠธ ํ…์„œ ์—ญ์‚ฐ์„ ํ†ตํ•ด ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ž‘์„ฑ๋œ ๋ถํ•œ์˜ ๋‚ด๋ฅ™๊ณผ ๋™ํ•ด์•ˆ์— ๋Œ€ํ•œ ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์„ ๊ฒฝ๋กœ ๋”ฐ๋ผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ๊ธฐ์กด์˜ ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ๊ฒฝ์šฐ๋ณด๋‹ค ๋” ์ข‹์€ ์—ญ์‚ฐ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋ถํ•œ์ง€์—ญ์„ ์ง€๋‚˜๋Š” ํŒŒ์˜ ๊ฒฝ๋กœ ํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์ง€์ง„ํ™œ๋™ ๊ด€์ธก ํšจ๊ณผ๋ฅผ ์ฆ๋Œ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋”ฐ๋ผ์„œ ๊ฒฝ๋กœ์— ๋”ฐ๋ฅธ ๋ชจ๋ธ์€ ๋ถํ•œ์ง€์—ญ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ž์—ฐ์ง€์ง„ ๋ฐ ์ธ๊ณต์ง€์ง„์˜ ํŠน์„ฑ์„ ์—ฐ๊ตฌํ•˜๊ณ  ๊ด€์ธกํ•˜๋Š”๋ฐ ์œ ์šฉํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ์ฃผ๋„์— ์„ค์น˜ํ•œ ์ž„์‹œ๊ด€์ธก๋ง ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ œ์ฃผ๋„ ์ƒ๋ถ€์ง€๊ฐ์— ๋Œ€ํ•œ ๋“ฑ๋ฐฉ ๋ฐ ์ด๋ฐฉ์„ฑ ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์„ ์ž‘์„ฑํ–ˆ๋‹ค. 2โ€“15 ์ดˆ ์ฃผ๊ธฐ์˜ ๋ ˆ์ผ๋ฆฌํŒ์™€ ๋Ÿฌํ”„ํŒŒ์˜ ๊ตฐ์†๋„ ๋ฐ ์œ„์ƒ์†๋„์˜ ๋ถ„์‚ฐ ์ž๋ฃŒ๋ฅผ ๊ณ„์ธต์ ์ด๊ณ  ์œ ๋™ ์ฐจ์›์ ์ธ(transdimensional) ๋ฒ ์ด์ง€์•ˆ ์—ญ์‚ฐ์„ ํ†ตํ•ด ํ•จ๊ป˜ ์—ญ์‚ฐํ•˜์—ฌ ์ œ์ฃผ๋„ ํ•˜๋ถ€ 10 km ๊นŠ์ด์— ๋Œ€ํ•œ ๋“ฑ๋ฐฉ ๋ฐ ์ด๋ฐฉ์„ฑ ์†๋„๊ตฌ์กฐ ๋ชจ๋ธ์„ ์ž‘์„ฑํ–ˆ๋‹ค. ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด 2 km ๋ณด๋‹ค ์–•๊ฑฐ๋‚˜ 5 km ๋ณด๋‹ค ๊นŠ์€ ๊ณณ์—์„œ๋Š” ์Œ์˜ ์ด๋ฐฉ์„ฑ (VSH VSV )์ด ์šฐ์„ธํ•˜๋ฉฐ ์ด๋Š” ๋‹ค๋ฅธ ํ™”์‚ฐ์—์„œ ๋ณด๊ณ ๋œ ์ ์ด ์žˆ๋Š” ๋งˆ๊ทธ๋งˆ์˜ ์ˆ˜ํ‰์  ๊ณต๊ธ‰์— ์˜ํ•œ ๊ตฌ์กฐ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ํ•œ๋ผ์‚ฐ ์ค‘์‹ฌ์—์„œ ์ด ์–‘์˜ ์ด๋ฐฉ์„ฑ์ด ๋‚˜ํƒ€๋‚˜๋Š” ์ธต์€ ์ƒ๋ถ€์˜ ์ƒ๋Œ€ ์†๋„๊ฐ€ ๋น ๋ฅธ ๊ตฌ๊ฐ„๊ณผ ๊ทธ ํ•˜๋ถ€์˜ ์ƒ๋Œ€ ์†๋„๊ฐ€ ๋Š๋ฆฐ ๊ตฌ๊ฐ„์œผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋จผ์ € ๊ด€์ž…ํ•˜์—ฌ ์ถฉ๋ถ„ํžˆ ์‹์€ ์ˆ˜ํ‰๊ด€์ž… ๊ตฌ์กฐ์™€ ์•„์ง ์ถฉ๋ถ„ํžˆ ์‹์ง€ ์•Š์•˜๊ฑฐ๋‚˜ ์ผ๋ถ€ ๋…บ์•„์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ํ•˜๋ถ€์˜ ๋”ฐ๋œปํ•œ ์ˆ˜ํ‰๊ด€์ž… ๊ตฌ์กฐ๋ฅผ ์ง€์‹œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹ค์ธต์ ์ธ ๊ตฌ์กฐ๋Š” ์ œ์ฃผ๋„ ํ•˜๋ถ€๋กœ๋ถ€ํ„ฐ ์ง€ํ‘œ๋กœ ์ด์–ด์ง€๋Š” ์ œ์ฃผ๋„ ์ค‘์‹ฌ๋ถ€์˜ ๋ณต์žกํ•œ ๋งˆ๊ทธ๋งˆ ๊ณต๊ธ‰ ๊ตฌ์กฐ๋ฅผ ์ง€์‹œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋™ํ•ด์™€ ๊ทธ ์ฃผ๋ณ€์ง€์—ญ์— ๋Œ€ํ•œ ๋ฐฉ์‚ฌ์ƒ ์ด๋ฐฉ์„ฑ (radial anisotropy) ๋ชจ๋ธ์„ ๋ ˆ์ผ๋ฆฌํŒ์™€ ๋Ÿฌํ”„ํŒŒ์˜ ๊ตฐ์†๋„ ๋ฐ ์œ„์ƒ์†๋„์˜ ๋ถ„์‚ฐ ์ž๋ฃŒ๋ฅผ ๊ณ„์ธต์ ์ด๊ณ  ์œ ๋™ ์ฐจ์›์ ์ธ(transdimensional) ๋ฒ ์ด์ง€์•ˆ ์—ญ์‚ฐ์„ ํ†ตํ•ด ์ž‘์„ฑํ–ˆ๋‹ค. ์ด 237๊ฐœ์˜ ๊ด€์ธก์†Œ๋ฅผ ์ด์šฉํ•˜์—ฌ 55,000๊ฐœ ์ด์ƒ์˜ ๋Ÿฌ๋ธŒํŒŒ ๊ตฐ์†๋„ ๋ฐ ์œ„์ƒ์†๋„ ๋ถ„์‚ฐ๊ณก์„ ์„ 5-60 ์ดˆ ์ฃผ๊ธฐ์— ๋Œ€ํ•ด ๊ตฌํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๊ฐ™์€ ์ง€์—ญ์— ๋Œ€ํ•œ ๊ธฐ์กด์—ฐ๊ตฌ์˜ ๋ ˆ์ผ๋ฆฌํŒŒ ๋ถ„์‚ฐ๊ณก์„  ์ž๋ฃŒ ๋ฐ ์ „์ง€๊ตฌ ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์–ป์€ ์žฅ์ฃผ๊ธฐ (70-200 ์ดˆ)์˜ ๋ ˆ์ผ๋ฆฌํŒŒ ๋ฐ ๋Ÿฌ๋ธŒํŒŒ ๋ถ„์‚ฐ๊ณก์„  ์ž๋ฃŒ๋ฅผ ํ•จ๊ป˜ ์—ญ์‚ฐํ–ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์—ฐ๊ตฌ์ง€์—ญ ํ•˜๋ถ€ 160 km ๊นŠ์ด์— ๋Œ€ํ•œ 3์ฐจ์› ์ด๋ฐฉ์„ฑ ๋ธ์„ ์ž‘์„ฑํ–ˆ๋‹ค. ๋ชจ๋ธ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฐ€์žฅ ์ฃผ๋ชฉํ•  ์ ์€ ๊ฐ•ํ•œ ์–‘์˜ ์ด๋ฐฉ์„ฑ ๊ตฌ๊ฐ„์˜ ๋‘๊ป˜์™€ ๊นŠ์ด ๋ณ€ํ™” ์–‘์ƒ์ด๋‹ค. ์–‘์˜ ์ด๋ฐฉ์„ฑ์ด ๊ฐ•ํ•œ ๊ตฌ๊ฐ„์€ ๋Œ€๋ฅ™ํ•˜๋ถ€์—์„œ ์•ฝ 70-150 km ์‚ฌ์ด์— ๋‚˜ํƒ€๋‚˜์ง€๋งŒ, ์‹ ์ƒ๋Œ€ ํ™•์žฅ์„ ๊ฒช์€ ๋™ํ•ด์—์„œ๋Š” ์ฃผ๋กœ 30-60 km์˜ ์ƒ๋Œ€์ ์œผ๋กœ ๋” ์–•์€ ๊ตฌ๊ฐ„์—์„œ ์–‡๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด๋Š” ์•”์„๊ถŒ ๊นŠ์ด ๋ณ€ํ™” ๋ฐ ๊ทธ๋กœ ์ธํ•œ ๋ณต์žกํ•œ ๋™๋ ฅํ•™์  ๊ตฌ์กฐ์šด๋™์˜ ๊ฒฐ๊ณผ๋กœ ์ธํ•œ ์•”์„๊ถŒ-์—ฐ์•ฝ๊ถŒ ๊ฒฝ๊ณ„์˜ ๊นŠ์ด ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.The eastern margin of the Eurasian continental plate has suffered multiple tectonic events including interactions with the subducting Pacific and Philippine Sea plates. Therefore, heterogeneous and distributed extensional basins and intraplate volcanoes in the region are not easily explained with a simple mechanism. To understand seismic activity and complex tectonic processes in the region, reliable seismic velocity models are essential. To construct seismic velocity models for the Northeast Asia, the ambient noise method is used in this thesis. The ambient noise method is widely used for constructing velocity structures of the crust and upper mantle. This method useful for obtaining shorter period data of crustal depth than earthquake data and it is also possible to image structures up to upper mantle depth by using longer periods of surface waves dispersion data. Additionally, the method using ambient noise data is useful for construct seismic velocity models for the regions where have low local seismicity or few available stations inside because Greens functions between station pairs can be obtained from cross-correlations of seismic ambient noise. In this thesis, seismic velocity models are constructed based on the ambient noise method using various seismic networks for various scale in the Northeast Asia. First, 1-D velocity models for both the inland and offshore (western East Sea) of the northern Korean Peninsula are constrained based on the results of a Bayesian inversion process using Rayleigh wave dispersion data, which were measured from ambient noise cross correlations between stations in the southern Korean Peninsula and northeast China. The proposed models were evaluated by performing full moment tensor inversion for the 2013 Democratic Peoples Republic of Korea (DPRK) nuclear test. Using the composite model consisting of both inland and offshore models resulted in consistently higher goodness of fit to observed waveforms than previous models. This indicates that seismic monitoring can be improved by using the proposed models, which resolve propagation effects along different paths in the NKP region. Therefore, the composite model can be useful to understand the characteristics of tectonic earthquakes and monitor anthropogenic seismic events in the NKP. Second, upper crustal isotropic and radial anisotropic structures beneath Jeju Island are imaged by using ambient noise data from a temporary seismic network. A series of hierarchical and transdimensional Bayesian inversions were performed to construct upper crustal (1โ€“10 km) isotropic and anisotropic structures jointly using surface wave (Rayleigh and Love wave) group and phase velocity dispersion data over a 2โ€“15 s period. The results show that layers of negative anisotropy (VSH 5 km) depths, which was interpreted as reflecting dyke swarms responsible for the more than 400 cinder cones at the surface and the vertical plumbing systems supplying magma from deeper sources, respectively. Additionally, a layer with significantly positive radial anisotropy (VSH > VSV, up to 5%) was found at middle depths (2โ€“5 km), and was interpreted as horizontally aligned magma plumbing systems (e.g., sills) through comparisons with several other volcanoes worldwide. In comparison with the isotropic structure, the positive anisotropic layer was separated into upper and lower layers with locally neutral to slightly fast and slower shear wave velocities, respectively, beneath the largest central crater (Mt. Halla). Such a structure indicates that the cooled upper part of the magma plumbing systems formed within the horizontally developed sill complex, and is underlain by still-warm sill structures, potentially with a small fraction of melting. With dykes predominant above and below, the island-wide sill layer and locally high-temperature body at the center explain the evolution of the Jeju Island volcanoes by island-forming surface lava flows and central volcanic eruptions before and after the eruptions of cinder cones. Lastly, the radial anisotropy model for the East Sea and surrounding region is developed by conducting joint inversion of Love and Rayleigh wave dispersion data using hierachical and transdimensional Bayesian inversion techniques. Using continuous seismic records of 237 broad-band seismic stations, more than 55,000 group and phase velocities of Love wave fundamental mode are extracted for periods of 5-60 s. Rayleigh wave dispersion data are obtained from a previous study (Kim et al., 2016; for periods of 8-70 s). In addition longer period Love and Rayleigh wave dispersion data from the global dispersion model (Ekstrom, 2011; for periods of 70-200 s) are combined. Therefore, the constructed 3-D radial anisotropy model provides details about the crustal and upper mantle anisotropic structures to the depth of 160 km. The most prominent feature of the model is the variation in the thickness and depth of a layer with strong positive radial anisotropy (VSH > VSV), which indicates horizontal upper mantle flows at the top of asthenosphere. The layer exists at depths between 70 and 150 km beneath continental regions compared to the thinner and shallower (30-60 km) structure beneath regions subjected to extension during the Cenozoic. These upper mantle variations represent the undulation of the LAB attributed to complex geodynamic processes in interactions with the preexisting continental lithosphere.Chapter 1. Introduction 1 Chapter 2. 1-D velocity model for the North Korean Peninsula from Rayleigh wave dispersion of ambient noise cross correlation 6 2.1. Introduction 7 2.2. Data and methods 12 2.3. Results and discussion 20 2.4. Conclusion 32 Chapter 3. Upper crustal shear wave velocity and radial anisotropy beneath Jeju Island volcanoes from ambient noise tomography 33 3.1. Introduction 34 3.2. Geologic Setting and background 38 3.3. Data and Methods 43 3.4. Results 52 3.5. Discussion 67 3.6. Conclusions 75 Chapter 4. Imaging the anisotropic upper mantle structure beneath northeast Asia from Bayesian inversions of ambient noise data 77 4.1. Introduction 78 4.2. Data and Methods 80 4.3. Results and Discussion 89 4.4. Summary 110 Chapter 5. Summary and conclusion 112 References 115 Abstract in Korean 144Docto

    ์ด์˜จ ๋†๋„ ๋ถ„๊ทน ํ˜„์ƒ์„ ์ด์šฉํ•œ ๋‚˜๋…ธ์ „๊ธฐ๋™์˜ํ•™์  ์œ ์ „์ž ๊ฒ€์ถœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์ด์ƒ์ค€.์†Œํ˜•ํ™”์—์„œ ์˜ค๋Š” ๋†’์€ ์‹œ๋ฃŒ ๋ถ„์„ ํšจ์œจ๊ณผ ์‹œ์Šคํ…œ ์ œ์–ด์˜ ์šฉ์ดํ•จ ๋“ฑ์˜ ์žฅ์ ์œผ๋กœ ์ธํ•ด ๋งˆ์ดํฌ๋กœ ์œ ์ฒด์—ญํ•™์€ 1990๋…„๋Œ€ ์ดํ›„๋กœ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ์—ˆ๋‹ค. ํ•œํŽธ ๋‚˜๋…ธ๊ณต์ •๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ๋งˆ์ดํฌ๋กœ/๋‚˜๋…ธ์œ ์ฒด์—ญํ•™ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๊ฐ€์†ํ™”๋˜์—ˆ๋‹ค. ๋งˆ์ดํฌ๋กœ๋ฏธํ„ฐ ์•„๋ž˜ ์˜์—ญ์—์„œ๋Š” ๋‹ค๋ฅธ ์˜์—ญ์—์„œ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋˜ ์ƒˆ๋กœ์šด ๋ฌผ๋ฆฌ ํ™”ํ•™์  ํ˜„์ƒ๋“ค์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋Š”๋ฐ, ์ด ์ค‘ EDL overlap์— ์˜ํ•œ ์„ ํƒ์  ํˆฌ๊ณผ์„ฑ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ํŠน์ง•์œผ๋กœ ์†๊ผฝํžˆ๊ณ  ์žˆ๋‹ค. ์ด ์„ ํƒ์  ํˆฌ๊ณผ์„ฑ์„ ์ด์šฉํ•œ ๋งˆ์ดํฌ๋กœ/๋‚˜๋…ธ์œ ์ฒด์—ญํ•™ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ๋ถ„์„์žฅ์น˜, ์งˆ๋ณ‘ ์ง„๋‹จ, ๋‹ด์ˆ˜ํ™”, ์—๋„ˆ์ง€ ํ•˜๋ฒ ์ŠคํŒ… ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ํ˜ˆ์•ก์•”์˜ ์ข…๋ฅ˜์ธ EGFR L858R ๋Œ์—ฐ๋ณ€์ด์— ๋Œ€ํ•œ ๊ฒ€์ถœ์„ ์‹œ๋„ํ•˜์˜€์œผ๋ฉฐ, ๋‹ค์šด์ŠคํŠธ๋ฆผ ๋ถ„์„์„ ์œ„ํ•œ ํšจ์œจ์ ์ธ ํ˜•ํƒœ์˜ ์žฅ์น˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ์ด์˜จ ๋†๋„ ๋ถ„๊ทน ํ˜„์ƒ๊ณผ ํŠน์ • ์—ผ๊ธฐ์„œ์—ด์— ๊ฒฐํ•ฉํ•˜๋Š” dCas9 ๋‹จ๋ฐฑ์งˆ์„ ์ด์šฉํ•˜์—ฌ ํƒ€๊ฒŸ ํ˜ˆ์•ก์•” ์ง„๋‹จ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์•” ์ง„๋‹จ์€ ์กฐ๊ธฐ ์ง„๋‹จ์ด ์ค‘์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๊ทผ ํ˜„์žฅ ์˜๋ฃŒ ์ง„๋‹จ ๋ฐฉ์‹์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ง„๋‹จ ๊ธฐ์ˆ ๋“ค ์ค‘ ์—ฐ์‡„์ค‘ํ•ฉ๋ฐ˜์‘ ๋ฐฉ์‹์ด ๊ฐ€์žฅ ํ”ํžˆ ์“ฐ์ด๋Š”๋ฐ ๋น„์šฉ๊ณผ ์‹œ๊ฐ„์ด ๋งŽ์ด ๋“œ๋Š” ๋“ฑ์˜ ๋‹จ์ ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋Œ€์•ˆ์œผ๋กœ์จ ์ด์˜จ ๋†๋„ ๋ถ„๊ทน ํ˜„์ƒ๊ณผ ํŠน์ • DNA์™€ ๊ฒฐํ•ฉํ•˜๋Š” dCas9์„ ์ด์šฉํ•œ ํƒ€๊ฒŸ DNA ๊ฒ€์ถœ ์—ฐ๊ตฌ๊ฐ€ ๋ฐœํ‘œ๋œ๋ฐ” ์žˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ํ›„์† ์—ฐ๊ตฌ๋กœ์จ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ˜ˆ์•ก์•” ์ค‘ ํ์•”์˜ ์›์ธ์ด ๋˜๋Š” ๋งˆ์ปค (EGFR L858R)์„ ์ „์ฒด ์‹œ๋ฃŒ ํ•จ์œ ๋Ÿ‰ 1 %๊นŒ์ง€ ๋‚ฎ์ถฐ๊ฐ€๋ฉฐ ๊ฒ€์ถœ์— ์„ฑ๊ณตํ•˜์˜€๊ณ  ์ด ๋•Œ, dCas9 ๋‹จ๋ฐฑ์งˆ์˜ ํƒ€๊ฒŸ ๊ฒฐํ•ฉ์œจ์€ ํ•จ์œ ๋Ÿ‰์— ํฐ ์ƒ๊ด€๊ด€๊ณ„ ์—†์ด ์•ฝ 25 % ๋ฅผ ์œ ์ง€ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํ•˜๋‚˜์˜ ์—ผ๊ธฐ์„œ์—ด๋งŒ ๋‹ค๋ฅธ ๊ฒฝ์šฐ์—๋„ ๋ณธ ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ•์œผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๊ฒ€์ถœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ด ํ”Œ๋žซํผ์„ ํ†ตํ•ด ํ–ฅํ›„ on/off ๋ฐฉ์‹์˜ ํ˜ˆ์•ก์•” ์กฐ๊ธฐ์ง„๋‹จ ์นฉ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€๋œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ํšจ์œจ์ ์ธ ๊ตฌ์กฐ๋กœ ๋””์ž์ธ๋œ ๋งˆ์ดํฌ๋กœ/๋‚˜๋…ธ์œ ์ฒด์—ญํ•™ ๋ฐฉ์‹์˜ ๋†์ถ• ๋ฐ ์ถ”์ถœ ์žฅ์น˜๋ฅผ ๊ณ ์•ˆํ–ˆ๋‹ค. ๋‚˜๋…ธ์œ ์ฒด์—ญํ•™ ํ”Œ๋žซํผ์—์„œ์˜ ๋‹ค์–‘ํ•œ ๋†์ถ•๊ธฐ์ˆ  ์ค‘ ์ด์˜จ ๋†๋„ ๋ถ„๊ทน ํ˜„์ƒ์„ ์ด์šฉํ•œ ๋†์ถ• ๋ฐฉ์‹์€ ๋†’์€ ๋†์ถ•์œจ๊ณผ ๋ณต์žกํ•œ ๋ฒ„ํผ ๊ตํ™˜ ๊ณผ์ •์ด ํ•„์š”์—†๋Š” ๋“ฑ์˜ ์žฅ์ ์œผ๋กœ ๋งŽ์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด์˜ ์ด์˜จ ๋†๋„ ๋ถ„๊ทน ํ˜„์ƒ ๋†์ถ•๋ฐฉ์‹์œผ๋กœ๋Š” ๋†์ถ•๋œ ์ƒ˜ํ”Œ์„ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ค์› ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ„๋‹จํ•˜๊ฒŒ ์›ํ˜•์œผ๋กœ ๋ฐฐ์น˜๋œ ์ฑ„๋„ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๋†์ถ•๋œ ์ƒ˜ํ”Œ์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์›ํ˜•์œผ๋กœ ๋ฐฐ์น˜๋œ ๊ฐ๊ฐ์˜ ์ฑ„๋„์—์„œ ๋†์ถ•์ด ์ง„ํ–‰๋˜๋ฉด์„œ ์šฉ๋งค๋Š” ๋ฐ–์œผ๋กœ ๋น ์ ธ๋‚˜๊ฐ€๊ณ , ๋†์ถ•๋œ ์ƒ˜ํ”Œ์„ ๊ฐ€์šด๋ฐ์— ๊ผฝํžŒ ํŒŒ์ดํŽซ ํŒ์„ ํšŒ์ˆ˜ํ•ด์คŒ์œผ๋กœ์จ ์–ป์–ด๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฐ„๋‹จํ•˜๋ฉด์„œ ์ €๊ฐ€ํ˜•์˜ ๊ณต์ •์„ ์œ„ํ•ด ์‚ฌ๋ฌด์šฉ ํ”„๋ฆฐํ„ฐ๊ธฐ๋ฅผ ๊ฐœ์กฐํ•˜์—ฌ ๋‚˜๋…ธ๋ง‰์„ ํŒจํ„ฐ๋‹ํ•˜๋Š”๋ฐ ์„ฑ๊ณตํ•˜์˜€๋‹ค. ํด๋ฆฌ์Šคํ‹ฐ๋ Œ ํŒŒ์ดํด, ํ˜•๊ด‘์ž…์ž, DNA ๋ฅผ ์ด์šฉํ•ด ๋†์ถ• ๋ฐ ์ถ”์ถœ ์‹คํ—˜์„ ํ•˜์˜€์œผ๋ฉฐ ๊ฐ๊ฐ 85.5 %, 79.0 %, 51.3 %์˜ ํšŒ์ˆ˜์œจ์„ ์–ป์—ˆ๋‹ค. ๋˜ํ•œ, ์Šˆํผ ์ž‰ํฌ์ ฏ ํ”„๋ฆฐํ„ฐ๋ฅผ ์ด์šฉํ•ด ์ „๊ทน์„ ํŒจํ„ฐ๋‹ํ•˜์—ฌ ๋‚˜๋…ธ๋ง‰ ๋Œ€์‹  ์ด์˜จ ์„ ํƒ์„ฑ์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. Faradaic ๋ฐ˜์‘์„ ์ด์šฉํ•œ ์ „๊ทน ํ”„๋ฆฐํŒ… ๋””๋ฐ”์ด์Šค๋ฅผ ํ†ตํ•ด ์–‘์ „ํ•˜ ์ž…์ž, ์Œ์ „ํ•˜ ์ž…์ž ๋ชจ๋‘ ์„ฑ๊ณต์ ์œผ๋กœ ๋†์ถ•ํ•˜๋Š”๋ฐ ์„ฑ๊ณตํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ณ ์•ˆํ•œ ๋ฐฉ์‚ฌํ˜• ๋†์ถ•-์ถ”์ถœ ์žฅ์น˜๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์ž„์ƒ ํ™˜๊ฒฝ ๋“ฑ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€๋œ๋‹ค.Microfluidic systems have been in the spotlight since the 1990s due to various advantages from miniaturization such as highly efficient sample analysis and ease of system control, etc. Meanwhile, the advance of nanotechnology (especially for nano structure fabrication) has accelerated the research on micro/nanofluidic platform and its applications. In the sub- mm region, new physico-chemical phenomena that were not observed in other regions were discovered. Among them, selective permeability by electrical double layer overlap is considered as a most important feature. Using this selective permeability, researches on various application fields are being conducted in micro/nanofluidic system such as sensing, disease diagnosis, desalination, and energy harvesting, etc. In this thesis, target specific binding method for blood cancer is researched and also an efficient type of micro/nanofluidic platform for downstream analysis is proposed. First, the detection of target blood gene was conducted using ion concentration polarization and target specific binding dCas9 protein. Due to the demands for early stage diagnosis on disease, point-of-care diagnostics for the detection of target gene have been actively studied these days. Among various technologies, PCR is the state-of-art technology used in genomic analysis. But it has critical limitation of high cost, time consuming and simultaneous amplification of error. As an alternative, a method of detecting specific DNA using ion concentration polarization (ICP) phenomenon and changes of the analytes mobility upon DNA-dCas9 binding has been reported. As a follow up study, this study successfully demonstrated on blood cancer marker (EGFR L858R) at reduced % of target mutation DNA to 1 % (DNA concentration ~ 0.097 nM). We also confirmed that the DNA-dCas9 binding rate was about 25 % which is not have a significant correlation with the target DNA content and detection sensitivity with 1 bp differ off-target. This platform is expected to be utilized as a on/off diagnostic chip for early detection of blood cancer later. Second, the efficiently designed micro/nanofluidic preconcentrator and online extractor was devised. Among various preconcentration strategies using nanofluidic platforms, a nanoscale electrokinetic phenomenon called ion concentration polarization (ICP) has been extensively utilized due to several advantages such as high preconcentration factor and no need of complex buffer exchange process. However, conventional ICP preconcentrator had difficulties in the recovery of preconcentrated sample and complicated buffer channels. To overcome these, bufferchannel-less radial micro/nanofluidic preconcentrator was developed in this work. Radially arranged microchannel can maximize the micro/nano membrane interface so that the samples were preconcentrated from each microchannel. All of preconcentrated plugs moved toward the center pipette tip and can be easily collected by just pulling out the tip installed at the center reservoir. For a simple and cost-effective fabrication, a commercial printer was used to print the nanoporous membrane as Nafion-junction device. Various analytes such as polystyrene particle, fluorescent dye, and dsDNA were preconcentrated and extracted with the recovery ratio of 85.5%, 79.0%, and 51.3%, respectively. Furthermore, we used a super inkjet printer to print the silver electrode instead of nanoporous membrane to preconcentrate either type of charged analytes as printed-electrode device. A Faradaic reaction was used as the main mechanism, and we successfully demonstrated the preconcentration of either negatively or positively charged analytes. The presented bufferchannel-less radial preconcentrator would be utilized as a practical and handy platform for analyzing low-abundant molecules.Chapter 1. Introduction 1 Chapter 2. Ion-selective Transport Phenomena 4 2.1. Permselectivity of a Nanoporous Membrane 4 2.2. Ion Concentration Polarization 8 Chapter 3. Detection of target blood cancer mutation using DNA-dCas9 specific binding for liquid biopsy 11 3.1. Introduction 11 3.2. Experimental methods 16 3.2.1. Device fabrications 16 3.2.2. Materials and Chemical 17 3.2.3. Experiment Apparatus 18 3.3. Results and Discussions 19 3.3.1. Concentrating rate comparison through fluorescence dye 19 3.3.2. Electrokinetic behavior of on/off-target DNA with dCas9 24 3.3.3. Detection sensitivity depending on the ratio of target gene 27 3.3.4. Detection Sensitivity with 1 bp differ off-target 30 3.4. Conclusions 33 Chapter 4. Nanoelectrokinetic bufferchannel-less radial preconcentrator and online extractor by tunable ion depletion layer 35 4.1. Introduction 35 4.2. Experimental methods 40 4.2.1. Device design 40 4.2.2. Device fabrications 43 4.2.3. Materials 44 4.2.4. Experimental setup 44 4.3. Results and Discussion 46 4.3.1. Nafion-junction device 46 4.3.1.1 Polystyrene microparticle demonstration 46 4.3.1.2 Fluorescence dye demonstration 50 4.3.1.3 dsDNA demonstration 55 4.3.2. Printed-electrode device 58 4.3.2.1 Schematics of printed-electrode device 58 4.3.2.2 Gaseous production at the printed-electrode device by Faradaic reaction 62 4.3.2.3 Experimental demonstration of printed-electrode device 66 4.4. Conclusions 69 Chapter 5. Concluding Remarks 72 Appendix 73 A. Inkjet-printed nanoporous juinction 73 B. Radial preconcentrator and extractor integrated with PCB board 80 Bibliography 85 Abstract in Korean 94 Acknowledgements 96๋ฐ•

    ํŒฝํ™”ํ™์‚ผ์˜ ์ƒ๋ฆฌ๊ธฐ๋Šฅ์„ฑ ๊ตฌ๋ช…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2017. 2. ๋ฌธํƒœํ™”.Ginseng (Panax ginseng C.A. Meyer) has been cultivated and consumed as a medicinal herb in East Asia for a long time. Ginseng has a lot of bioactive components including ginsenosides, polyacetylenes, polysaccharides, and phenolic compounds. Among them, ginsenosides have been regarded as major active components of ginseng and used as index component for the quality control. Many researches have been conducted to develop methods for increasing the pharmacological effect of ginseng by conversion of the dammarane-based saponin by high temperature and high pressure thermal processing. However, it is complicated and time-consuming to extract the active components of ginseng because of its dense texture. Thus, researchers have conducted the studies on the production of expanded ginseng using an extruder and explosive puffing process. This study was designed to examine the effect of puffing process on the biofunctional property of red ginseng. Red ginseng was puffed using a rotary puffing machine at 0.30 MPa. After puffing, the changes in physicochemical properties, antioxidant activity and volatile components in puffed red ginseng were investigated. Puffing process increased the total ginsenoside content including ginsenoside Rg3 with anticancer activity. Extraction yields (16.7-42.2%) from puffed red ginseng were higher than those from non-puffed red ginseng (9.0-32.7%) at all extraction times. When comparing the free sugars and amino acids, the contents of maltose and arginine drastically decreased because puffing process accelerated the reaction of maltose and arginine to produce maltulosyl arginine. Effects of explosive puffing on the changes of volatiles in red ginseng were investigated using headspace-solid phase microextraction (HS-SPME)-gas chromatograph (GC) with a mass selective detector (MS). Formation of porous structures and smaller pieces were clearly observed on the surface of puffed red ginseng by scanning electron microscopy. Total volatiles in puffed red ginseng increased by 87% compared with those in red ginseng. Hexanal, ฮ”-selinene, and ฮฒ-panasinsene were major volatiles in red ginseng, whereas ฮฑ-gurjunene, ฮฒ-panasinsene, and calarene were main volatiles in puffed red ginseng. Puffing process decreased volatiles from lipid oxidation including aldehydes, ketones, and 2-pentylfuran and increased terpenoids in red ginseng. Selective ion monitoring (SIM) mode for GC/MS results showed that 2-furanmethanol and maltol were present at the concentrations of 0.20 and 0.24%, respectively, in red ginseng and 5.86 and 3.99%, respectively, in puffed red ginseng. Explosive puffing process increased 2-furanmethanol and maltol in puffed red ginseng significantly (p<0.05) with the changes of microstructure. The antioxidant properties of extracts of red ginseng and puffed red ginseng were determined in bulk oil and oil-in-water (O/W) emulsions. Bulk oils were heated at 60ยฐC and 100ยฐC and O/W emulsions were treated under riboflavin photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-picrylhudrazyl (DPPH), 2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), and total flavonoid content (TFC), were also performed. The total ginsenoside contents of extract from red ginseng and puffed red ginseng were 42.33 and 49.22 mg/g, respectively. All results from these in vitro antioxidant assays revealed that extracts of puffed red ginseng had significantly higher antioxidant capacities than those of red ginseng (p<0.05). Generally, extracts of puffed red and red ginseng had antioxidant properties in riboflavin photosensitized O/W emulsions. However, in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated rate of lipid oxidation, depending on the treatment temperature and the type of assay used. These results suggest that the puffing process can provide us with an alternative means to produce functional red ginseng products with the additional advantage of reduced processing time. Keywords: puffed red ginseng, volatile component, ginsenoside, antioxidant property, bulk oil, oil-in-water emulsion, radical scavenging activity. Student Number: 2000-30738Chapter 1. Introduction 1 1.1. Background 2 1.2. Botanical species of ginseng 4 1.2.1 Types of ginseng preparations 6 1.2.2 Puffing process 9 1.2.3 Ginsenosides 11 1.2.4 Potential health effects of ginsenosides 14 1.3 Volatile compounds of ginseng 16 1.3.1 Volatile compounds of fresh ginseng 16 1.3.2 Volatile compounds of red ginseng 17 1.3.3 Volatile compounds of processed red ginseng 19 1.4. Antioxidant activity of ginseng 21 1.5 Research objectives 23 1.6. References 24 Chapter 2. The physicochemical properties of red ginseng by puffing 38 2.1. Introduction 39 2.2. Materials and Methods 42 2.2.1. Materials 42 2.2.2. Free amino acids 42 2.2.3. Free sugar 43 2.2.4. Puffing 43 2.2.5. Extraction yield 44 2.2.6. Color analysis 45 2.2.7. Ginsenoside analysis 45 2.2.8. Fatty acid analysis by gas chromatography with a flame ionization detector (FID) 46 2.2.9. Crude fat analysis 47 2.2.10. Statistical analysis 48 2.3. Results and Discussion 49 2.3.1. The change of extraction yield 49 2.3.2. Ginsenoside analysis 52 2.3.3 Free amino acids 56 2.3.4. Free sugars 59 2.3.5. Color measurement 63 2.3.6. Analysis of crude lipid and fatty acid 66 2.4. Conclusions 69 2.5 References 70 Chapter 3. Increases of 2-furanmethanol and maltol in Korean red ginseng during explosive puffing process 77 3.1. Introduction 78 3.2. Materials and Method 81 3.2.1 Materials 81 3.2.2. Sample preparation 81 3.2.3. Scanning electron microscopy (SEM) 82 3.2.4. HS-SPME analysis of volatile compounds 82 3.2.5. Statistical analysis 84 3.3. Results and Discussion 85 3.3.1. Puffing effects on the structures of red ginseng 85 3.3.2. Distribution of volatiles in red and puffed red ginsengs 87 3.3.3. Increase of 2-furanmethanol and maltol in puffed red ginseng 92 3.4. Conclusions 99 3.5. References 100 Chapter 4. Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water (O/W) emulsion matrix 106 4.1 Introduction 107 4.2. Materials and Methods 110 4.2.1 Materials 110 4.4.2. Sample preparation 110 4.2.3 Ethanol extract of puffed red ginseng and non-puffed red ginseng 111 4.2.4. Sample preparation of O/W emulsion containing ginseng extract 111 4.2.5. Sample preparation of corn oil containing ginseng extracts 112 4.2.6. In vitro antioxidant assays 113 4.2.7 Analysis of ginsenosides in ginseng extracts 116 4.2.8. Headspace oxygen analysis 116 4.2.9. Lipid hydroperoxides in O/W emulsion 117 4.2.10 Conjugated dienoic acid and p-anisidine value analyses in bulk oil 118 4.2.11 Statistical analysis 118 4.3. Results and Discussion 119 4.3.1. Antioxidant activities and ginsenoside profiles in extracts of red ginseng and puffed red ginseng determined using in vitro assays 119 4.3.2 Oxidative stability of red ginseng and puffed red ginseng extracts in O/W emulsions 130 4.3.3. Oxidative stability of red ginseng and puffed red ginseng extracts in bulk oil 137 4.4 Conclusions 144 4.5 References 145 Overall discussion 153 ๊ตญ๋ฌธ์ดˆ๋ก 158Docto

    ๋‹ค์‹œ ์ฝ๋Š” ํ‘ธํ‹ด: Mr. Putin(2013)๊ณผ '๋‰ด ์ฐจ๋ฅด'(2016)

    Get PDF

    ์ž๊ฒฉ์ฆ ์ž„๊ธˆํšจ๊ณผ์ธ๊ฐ€ ๊ทผ์†ํšจ๊ณผ์ธ๊ฐ€? : ์žฌ์ง์ค‘ ์ž๊ฒฉ์ทจ๋“์ž๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ์ž๊ฒฉ์ฆ์˜ ํšจ๊ณผ์— ๋Œ€ํ•œ ์˜๋ฌธ์€ ์—ฌ์ „ํžˆ ๊ด€์‹ฌ๊ฑฐ๋ฆฌ์ด๋‹ค. ํŠนํžˆ ์ž๊ฒฉ์ฆ์˜ ์ž„๊ธˆํšจ๊ณผ, ๊ทผ์†ํšจ๊ณผ, ์ง์—…์ผ์น˜, ์ฑ„์šฉ, ์ง์žฅ ๋งŒ์กฑ๋„ ๋“ฑ์€ ์ž๊ฒฉ์ฆ ํšจ๊ณผ์˜ ์ฃผ์š” ์ฃผ์ œ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์ค‘์—์„œ ์ž๊ฒฉ์ฆ์˜ ์ž„๊ธˆ๊ณผ ๊ทผ์†ํšจ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๊ณ  ์ด์ค‘ ์–ด๋– ํ•œ ๊ฒƒ์ด ๋” ํšจ๊ณผ๊ฐ€ ํฐ์ง€๋ฅผ ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค.โ… . ์„œ๋ก  1 โ…ก. ์ž๊ฒฉ์ฆ ์ทจ๋“์ž ๋ฐ ๋ฏธ์ทจ๋“์ž์˜ ํŠน์„ฑ 4 โ…ข. ์‹ค์ฆ๋ชจํ˜• 10 โ…ฃ. ์‹ค์ฆ๊ฒฐ๊ณผ 11 โ…ค. ๊ฒฐ๋ก  17 ์ฐธ๊ณ ๋ฌธํ—Œ 19 ๋ถ€๋ก 2

    Ensemble Learning to Predict Particulate Matter Concentrations Emitted by Diesel Vehicles

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ™˜๊ฒฝ๊ณ„ํšํ•™๊ณผ, 2023. 2. ์žฅ์ˆ˜์€.Diesel vehicles emit an amount of Particulate Matter(PM) compared to other vehicles due to their diesel engine characteristics. As of June 2019, there were 9.97 million diesel vehicles in Korea, accounting for 42.5% of the total in the nation. On the other hand, diesel vehicles account for only 1-3% of all vehicles in the U.S., China, and Japan. Therefore this study is focused on ways to reduce air pollution from diesel vehicles in Korea and is crucial policies for reducing PM. To achieve this goal, a basic study is needed to identify the key factors affecting PM emissions from diesel vehicles. The proposed prediction model aims to improve the accuracy of PM prediction, allowing for a better understanding of the contributing factors and the development of targeted policies. This study also addresses the limitations of existing PM emission prediction models for diesel vehicles, which include their low accuracy with traditional statistical methods and complexity of the relationship between PM emissions and contributing factors. The authors propose a solution that involves applying machine learning techniques and utilizing big data and controlled I/M(Inspection and Maintenance) data to enhance accuracy. This study has three research goals, which were achieved in three stages. The first stage aimed to improve predictive performance with a prediction model using ensemble learning. The first stage of the study divided the ensemble learning prediction model into two modes: KD-147 and Lug-Down3. Analysis of 20 models involved classifying emission test pass/fail data using ensemble learning. These models included regression analysis, decision tree, random forest and three models representing CatBoost, LightGBM, and XGBoost. The statement implies that the performance of a predictive model was optimized by tuning its hyperparameters. Of the six models, the CatBoost model achieved the highest R2 value at 0.815, which indicates a strong correlation between predicted and measured values. On the other hand, the linear regression model showed a lower R2 value of 0.649, indicating weaker correlation between predicted and measured values. Hence, the statement highlights a significant difference in prediction performance between the two models. In the second stage, permutation feature importance(PFI) was calculated for the PM emission prediction model for diesel vehicles using ensemble learning. This helped to identify the common PM emission factors, including emission grade, fuel efficiency, displacement, and weight. The differences in the main factors for each vehicle type were found to be loading weight for special truck and the number of passengers for van. These findings show that the main factors affecting PM emissions align with the intended use of each vehicle type. The third stage of the study aimed to reflect the main factors of diesel vehicle PM emissions in related policies. The purpose of this case analysis was to use these main factors derived from an ensemble learning prediction model to inform PM reduction and environmental policies. The environmental improvement charge per vehicle was calculated based on the importance of each PM emission factor, and vehicles were classified into high, medium, and low concentrations in terms of their PM emissions. The study also evaluated how the environmental improvement charges per vehicle change by type of vehicle and region. This information can help with designing targeted policies to effectively reduce PM emissions from diesel vehicles and improve air quality. In order to consider the equity of those subject to environmental improvement charges, weight coefficient and Korean emission standards coefficient were additionally applied to the calculation formula instead of the regional coefficient. Applying the derived Korean emission standards of this study and the PFI of the model year as weights made it possible to confirm the structure in which the levy was further transferred to the drivers of high-concentration PM emitting vehicles. This study reviewed the predictive performance of PM emission prediction models for vehicles through ensemble learning and identified the main factors of PM emissions. The model can be used as basic data for evaluating the effectiveness of PM emission reduction policies or establishing other eco-friendly policies and strategies in the future.๊ฒฝ์œ ์ž๋™์ฐจ๋Š” ๋””์ ค์—”์ง„ ํŠน์„ฑ์œผ๋กœ ๋‹ค๋ฅธ ์ฐจ๋Ÿ‰์— ๋น„ํ•ด ๋ฏธ์„ธ๋จผ์ง€(PM)๋ฅผ ์••๋„์ ์œผ๋กœ ๋งŽ์ด ๋ฐฐ์ถœํ•œ๋‹ค. 2019๋…„ 6์›” ๊ธฐ์ค€์œผ๋กœ ํ•œ๊ตญ์˜ ๊ฒฝ์œ ์ž๋™์ฐจ๋Š” ์ด 997๋งŒ์—ฌ ๋Œ€๋กœ ์ „์ฒด ์ฐจ๋Ÿ‰์—์„œ ์ฐจ์ง€ํ•˜๋Š” ๋น„์ค‘์ด 42.5%์— ์ด๋ฅธ๋‹ค. ๋ฐ˜๋ฉด ๋ฏธ๊ตญ๊ณผ ์ค‘๊ตญ, ์ผ๋ณธ์€ ๋””์ ค์ฐจ ๋น„์ค‘์ด 1โˆผ3% ์ˆ˜์ค€์— ๊ทธ์ณ ํ•œ๊ตญ์€ ์ด๋“ค ๊ตญ๊ฐ€์— ๋น„ํ•ด ๊ฒฝ์œ ์ž๋™์ฐจ ๋น„์ค‘์ด ๋†’์€ ํŽธ์ด๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์šฐ๋ฆฌ๋‚˜๋ผ๋Š” ๊ฒฝ์œ ์ž๋™์ฐจ ๋Œ€๊ธฐ์˜ค์—ผ์ €๊ฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์™€ ์ •์ฑ…์ด ๋”์šฑ ์ค‘์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๋ ค๋ฉด ๋ฌด์—‡๋ณด๋‹ค๋„ ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์š”์ธ์„ ๋ช…ํ™•ํ•˜๊ฒŒ ๊ทœ๋ช…ํ•˜๋Š” ๊ธฐ์ดˆ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ ์˜ˆ์ธก๋ชจํ˜•์„ ์ œ์•ˆํ•˜๊ณ , ์ด ๋ชจํ˜•์—์„œ ๋„์ถœ๋œ PM ๋ฐฐ์ถœ์˜ ์ฃผ์š”์ธ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ ์˜ˆ์ธก๋ชจํ˜•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ•œ๊ณ„์ ์„ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๋ถ€๋ถ„ ์ „ํ†ต์ ์ธ ํ†ต๊ณ„๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์˜ˆ์ธก์„ฑ๋Šฅ์ด ๋น„๊ต์  ๋‚ฎ์€ ํŽธ์ด๋‹ค. ๊ฒฝ์œ ์ž๋™์ฐจ PM๊ณผ ๋ฐฐ์ถœ์š”์ธ๊ณผ์˜ ์ธ๊ณผ๊ด€๊ณ„๋Š” ๋งค์šฐ ๋ณต์žกํ•˜๋ฉฐ, ์™ธ์ƒ๋ณ€์ˆ˜ ํ†ต์ œ๊ฐ€ ์–ด๋ ค์šด PM ์ธก์ •๋ฐฉ์‹์„ ์ฑ„ํƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น…๋ฐ์ดํ„ฐ์ด์ž ๋ณ€์ธ ํ†ต์ œ๋œ ์ž๋™์ฐจ ๋ฐฐ์ถœ๊ฐ€์Šค ์ •๋ฐ€๊ฒ€์‚ฌ ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋จธ์‹ ๋Ÿฌ๋‹๊ธฐ๋ฒ•์ด ์ ์šฉ๋œ ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ ์˜ˆ์ธก๋ชจํ˜•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ธ ๊ฐ€์ง€ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์น˜๋ฉด์„œ ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๊ฐ ๋‹จ๊ณ„๋ณ„ ๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์˜ˆ์ธก๋ชจํ˜•์˜ ์ •ํ™•๋„๋ฅผ ๋†’์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋จธ์‹ ๋Ÿฌ๋‹๊ธฐ๋ฒ•์ธ ์•™์ƒ๋ธ” ํ•™์Šต๊ธฐ๋ฐ˜ PM ๋ฐฐ์ถœ ์˜ˆ์ธก๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋จผ์ € 1์ฐจ ์•™์ƒ๋ธ” ํ•™์Šต ์˜ˆ์ธก๋ชจํ˜•์€ KD-147๋ชจ๋“œ์™€ Lug- Down3๋ชจ๋“œ๋กœ ๊ตฌ๋ถ„ํ•˜๊ณ , ๋ฐฐ์ถœ๊ฐ€์Šค๊ฒ€์‚ฌ ํ•ฉ๊ฒฉ๊ณผ ๋ถˆํ•ฉ๊ฒฉ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•˜์—ฌ ์•™์ƒ๋ธ” ํ•™์Šต ๊ธฐ๋ฐ˜ 20๊ฐœ ๋ชจํ˜•์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ ํ†ต๊ณ„๊ธฐ๋ฒ•์„ ๋Œ€ํ‘œํ•˜๋Š” ํšŒ๊ท€๋ถ„์„๊ณผ ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด, Bagging์„ ๋Œ€ํ‘œํ•˜๋Š” ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ, ๋‚˜๋จธ์ง€ 3๊ฐœ ๋ชจํ˜•์€ Boosting์„ ๋Œ€ํ‘œํ•˜๋Š” CatBoost, LightGBM, XGBoost๋ฅผ ์„ ์ •ํ•˜์˜€๋‹ค. 2์ฐจ ์•™์ƒ๋ธ” ํ•™์Šต์—์„œ๋Š” ์ฐจ์ข…๋ณ„ PM ๋ฐฐ์ถœ ์˜ˆ์ธก๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์˜ˆ์ธก๋ชจํ˜•์˜ ์„ฑ๋Šฅ์€ ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์„ ํ†ตํ•ด ์˜ˆ์ธก์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. KD-147๋ชจ๋“œ 6๊ฐœ ๋ชจํ˜• ์ค‘ CatBoost ๊ฐ€ 0.815๋กœ ๋ถ„์„๋˜์—ˆ๋‚˜ ์„ ํ˜•ํšŒ๊ท€๋ชจํ˜•์˜ ๋Š” 0.649๋กœ ๋‘ ๋ชจํ˜• ๊ฐ„์˜ ์˜ˆ์ธก์„ฑ๊ณผ์ง€ํ‘œ ํŽธ์ฐจ๋Š” ๋†’์•˜๋‹ค. ์ด ์ •๋„ ํŽธ์ฐจ๋Š” ๋ชจ๋“  ๋ถ€์ŠคํŒ…๋ชจํ˜•๊ณผ ํ†ต๊ณ„๋ชจํ˜•์—์„œ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘˜์งธ, ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ์˜ ์ฃผ์š”์ธ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค ์•™์ƒ๋ธ” ํ•™์Šต ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ ์˜ˆ์ธก๋ชจํ˜•์€ ์ž…๋ ฅ๋ณ€์ˆ˜ ๊ฐ„์˜ ์˜ํ–ฅ๋ ฅ์„ ์ˆ˜์น˜ํ™”ํ•˜์—ฌ ์ˆœ์—ด ํŠน์„ฑ ์ค‘์š”๋„(Permutation Feature Importance: PFI)๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ชจํ˜•๋ณ„๋กœ PFI๋ฅผ ๋น„๊ตํ•ด๋ณด๋ฉด ๋ชจํ˜•๋ณ„๋กœ ๋‹ค์†Œ ์ฐจ์ด๋ฅผ ๋ณด์ด๊ณ  ์žˆ์œผ๋‚˜ ๊ณตํ†ต์ ์ธ PM ๋ฐฐ์ถœ์š”์ธ์€ ๋ฐฐ์ถœ๊ฐ€์Šค๋“ฑ๊ธ‰, ์—ฐ์‹, ๋ฐฐ๊ธฐ๋Ÿ‰, ์ด์ค‘๋Ÿ‰์œผ๋กœ ๋„์ถœ๋˜์—ˆ๋‹ค. ์ฐจ์ข…๋ณ„ PM ๋ฐฐ์ถœ์š”์ธ์˜ ์ฐจ์ด์ ์€ ํŠน์ˆ˜์ฐจ๋Š” ์ ์žฌ์ค‘๋Ÿ‰, ์Šนํ•ฉ์ฐจ๋Š” ์Šน์ฐจ์ธ์›์ด ์„ ์ •๋˜์—ˆ๋‹ค. ์ด๋Š” ์ฐจ๋Ÿ‰๋ณ„ ์ œ์ž‘ ๋ชฉ์ ๊ณผ PM ๋ฐฐ์ถœ ์ฃผ์š”์ธ์ด ์ผ์น˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์…‹์งธ ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ ์ฃผ์š”์ธ์„ ๊ด€๋ จ ์ •์ฑ…์— ํ™œ์šฉํ•˜์˜€๋‹ค. ์‚ฌ๋ก€๋ถ„์„์˜ ์ฃผ์š” ๋ชฉ์ ์€ ์•™์ƒ๋ธ” ํ•™์Šต PM ์˜ˆ์ธก๋ชจํ˜•์—์„œ ๋„์ถœ๋œ PM ๋ฐฐ์ถœ์˜ ์ฃผ์š”์ธ์„ ๋ฏธ์„ธ๋จผ์ง€ ์ ˆ๊ฐ ๋ฐ ํ™˜๊ฒฝ ๊ด€๋ จ ์ •์ฑ…์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค. ํ˜„์žฌ ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์‚ฐ์ •๋ฐฉ์‹์€ ๋‹ค๋ฐฉ๋ฉด์œผ๋กœ ๋ฌธ์ œ์ ์„ ์•ˆ๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” PM ๋ฐฐ์ถœ์š”์ธ๊ณผ ์ฃผ์š”์ธ๋ณ„ PFI๋ฅผ ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์‚ฐ์ •๊ณ„์ˆ˜์˜ ๊ฐ€์ค‘์น˜๋กœ ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ PM ๋ฐฐ์ถœ ๊ณ ยท์ค‘ยท์ €๋†๋„ ์ฐจ๋Ÿ‰์„ ๋ถ„๋ฅ˜ํ•˜๊ฑฐ๋‚˜ ์ฐจ์ข… ๋ฐ ์ง€์—ญ๋ณ„์— ๋”ฐ๋ผ ๊ธฐ์กด ์‚ฐ์ •๋ฐฉ์‹๊ณผ ๊ฐœ์„ ๋ฐฉ์•ˆ์˜ ์ž๋™์ฐจ 1๋Œ€๋‹น ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ๋ณ€ํ™”๋ฅผ ๋น„๊ตํ•ด๋ณด์•˜๋‹ค. ์ง€์—ญ๊ณ„์ˆ˜ ๋Œ€์‹  ์ค‘๋Ÿ‰๊ณ„์ˆ˜์™€ ๋ฐฐ์ถœ๊ฐ€์Šค๋“ฑ๊ธ‰๊ณ„์ˆ˜๋ฅผ ์‚ฐ์ •์‹์— ์ ์šฉํ•ด๋ณธ ๊ฒฐ๊ณผ์—์„œ๋Š” ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ๋ถ€๊ณผ๋Œ€์ƒ์ž์˜ ํ˜•ํ‰์„ฑ์„ ํ•œ์ธต ๊ณ ๋ ค๋œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐฐ์ถœ๊ฐ€์Šค๋“ฑ๊ธ‰๊ณผ ์—ฐ์‹์˜ PFI๋Š” ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์‚ฐ์ •๊ณ„์ˆ˜ ๊ฐ€์ค‘์น˜์— ์ ์šฉ์‹œํ‚ค๋ฉด ๊ณ ๋†๋„ PM ๋ฐฐ์ถœ ์šด์ „์ž์—๊ฒŒ ๋ถ€๋‹ด๊ธˆ์ด ๋” ์ „๊ฐ€๋˜๋Š” ๊ตฌ์กฐ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” ์˜ค์—ผ์ž ๋ถ€๋‹ด์›์น™ ๊ฐ•ํ™”์— ๋ถ€ํ•ฉ๋จ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•™์ƒ๋ธ” ํ•™์Šต ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ ์˜ˆ์ธก๋ชจํ˜•์˜ ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•จ์„ ๊ฒ€ํ† ํ•˜์˜€๊ณ , PM ๋ฐฐ์ถœ ์ฃผ์š”์ธ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ์ด ์˜ˆ์ธก๋ชจํ˜•์˜ ํ™œ์šฉ๋ฐฉ์•ˆ์œผ๋กœ๋Š” PM ๋ฐฐ์ถœ ์ €๊ฐ์ •์ฑ…ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ฑฐ๋‚˜ ํ–ฅํ›„ ์นœํ™˜๊ฒฝ ์ •์ฑ… ๋ฐ ์ „๋žต ์ˆ˜๋ฆฝ์— ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ ์ด์šฉ๋  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.์ œโ… ์žฅ ์„œ ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 5 ์ œ3์ ˆ ์—ฐ๊ตฌ์˜ ์ˆ˜ํ–‰์ฒด๊ณ„ 6 ์ œโ…ก์žฅ ์„ ํ–‰์—ฐ๊ตฌ ๊ณ ์ฐฐ 7 ์ œ1์ ˆ ๊ฐœ์š” 7 ์ œ2์ ˆ ์ž๋™์ฐจ ๋ฐฐ์ถœ ๋ฏธ์„ธ๋จผ์ง€ ๋†๋„ ์ธก์ •๋ฐฉ์‹ 8 1. ์‹คํ—˜์‹ค ์ธก์ •๋ฒ• 8 2. ๊ณ ์ • ์‹ค๋„๋กœ ์ธก์ •๋ฒ• 9 3. ์ด๋™์‹ ์ฐจ๋Ÿ‰ ์ธก์ •๋ฒ• 10 ์ œ3์ ˆ ์ž๋™์ฐจ ๋ฏธ์„ธ๋จผ์ง€ ๋ฐฐ์ถœ ์š”์ธ๋ถ„์„ ์—ฐ๊ตฌ 12 ์ œ4์ ˆ ์‹œ์‚ฌ์  ๋ฐ ๋ณธ ์—ฐ๊ตฌ์˜ ์ฐจ๋ณ„์„ฑ 15 1. ์„ ํ–‰์—ฐ๊ตฌ์˜ ์‹œ์‚ฌ์  15 2. ๋ณธ ์—ฐ๊ตฌ์˜ ์ฐจ๋ณ„์„ฑ 16 ์ œโ…ข์žฅ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ• ๋ฐ ํŠน์„ฑ ๋ถ„์„ 18 ์ œ1์ ˆ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ• 18 1. ๋ฐ์ดํ„ฐ ๋ฒ”์œ„ 18 2. ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ 19 3. ๋ฐ์ดํ„ฐ ํ•ญ๋ชฉ 21 ์ œ2์ ˆ ๋ฐ์ดํ„ฐ ํŠน์„ฑ ๋ถ„์„ 24 1. ๊ธฐ์ดˆํ†ต๊ณ„ ๋ถ„์„ 24 2. ์ฐจ๋Ÿ‰ ์ •๋ฐ€๊ฒ€์‚ฌ ๋ฐ์ดํ„ฐ ๋ถ„์„ 35 3. PM ๋†๋„ ๋ฐ์ดํ„ฐ ๋ถ„์„ 43 ์ œโ…ฃ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก  51 ์ œ1์ ˆ ๊ฐœ์š” 51 ์ œ2์ ˆ ๋จธ์‹ ๋Ÿฌ๋‹ 52 ์ œ3์ ˆ ์•™์ƒ๋ธ” ํ•™์Šต 54 1. ํ†ต๊ณ„๊ธฐ๋ฒ• 57 2. ๋ฐฐ๊น… 59 3. ๋ถ€์ŠคํŒ… 65 ์ œ4์ ˆ ์•™์ƒ๋ธ” ํ•™์Šต ๊ฒฝ์œ ์ž๋™์ฐจ PM ์˜ˆ์ธก๋ชจํ˜• ๊ตฌ์ถ• 75 1. ๊ฒฝ์œ ์ž๋™์ฐจ PM ์˜ˆ์ธก ๊ณผ์ • 75 2. ๊ฒฝ์œ ์ž๋™์ฐจ PM ์˜ˆ์ธก๋ชจํ˜• ์„ค๊ณ„ 78 3. ๊ฒฝ์œ ์ž๋™์ฐจ PM ์˜ˆ์ธก๋ชจํ˜• ๊ตฌ์ถ• 79 ์ œโ…ค์žฅ. ๊ฒฝ์œ ์ž๋™์ฐจ PM ์˜ˆ์ธก๊ฒฐ๊ณผ ๋ฐ ํ‰๊ฐ€ 87 ์ œ1์ ˆ 1์ฐจ ์•™์ƒ๋ธ” ํ•™์Šต ๊ธฐ๋ฐ˜ ์˜ˆ์ธก๋ชจํ˜• ํ‰๊ฐ€ 87 1. ๋ชจํ˜• ํ‰๊ฐ€์ง€ํ‘œ ์„ ์ • 87 2. ๋ชจํ˜• ์„ฑ๋Šฅ ํ‰๊ฐ€ ๋ฐ ๋น„๊ต 88 ์ œ2์ ˆ 2์ฐจ ์•™์ƒ๋ธ” ํ•™์Šต ๊ธฐ๋ฐ˜ ์˜ˆ์ธก๋ชจํ˜• ๊ฒฐ๊ณผ ๋ฐ ํ‰๊ฐ€ 93 1. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์ตœ์ ํ™” 93 2. ๋ชจํ˜• ์˜ˆ์ธก ๊ฒฐ๊ณผ ๋ฐ ์„ฑ๋Šฅ ํ‰๊ฐ€ ๋ฐ ๋น„๊ต 96 ์ œ3์ ˆ ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ์š”์ธ ๋ถ„์„ ๊ฒฐ๊ณผ 107 1. ๋ณ€์ˆ˜ ์ค‘์š”๋„ 107 2. PM ๋ฐฐ์ถœ์š”์ธ ์ค‘์š”๋„ ๋ถ„์„๊ฒฐ๊ณผ 111 3. ์„ ํ–‰์—ฐ๊ตฌ์™€ ๊ฒฝ์œ ์ž๋™์ฐจ PM ๋ฐฐ์ถœ์š”์ธ ๋น„๊ต ๋ถ„์„ 123 ์ œโ…ฅ์žฅ. ์‚ฌ๋ก€๋ถ„์„ 124 ์ œ1์ ˆ ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์ •์ฑ… ๊ฒ€ํ†  124 1. ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์ œ๋„์˜ ๋„์ž… ๋ฐฐ๊ฒฝ 124 2. ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์ œ๋„์˜ ์ฃผ์š” ๋‚ด์šฉ 125 ์ œ2์ ˆ ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์ œ๋„ ๋ฌธ์ œ์  129 1. ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์ˆ˜์ž… ํ˜„ํ™ฉ 129 2. ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์‚ฐ์ •๊ธฐ์ค€ ๋ฐ ๋ฐฉ์‹ ๊ฒ€ํ†  130 3. ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์ œ๋„์˜ ๋ฌธ์ œ์  133 ์ œ3์ ˆ ์‚ฌ๋ก€๋ถ„์„ ๊ฒฐ๊ณผ 135 1. ํ™˜๊ฒฝ๊ฐœ์„ ๋ถ€๋‹ด๊ธˆ ์ œ๋„์˜ ๊ฐœ์„ ๋Œ€์•ˆ ์„ค์ • 135 2. ๋Œ€์•ˆ1 ์‚ฌ๋ก€๋ถ„์„ ๊ฒฐ๊ณผ 136 3. ๋Œ€์•ˆ2 ์‚ฌ๋ก€๋ถ„์„ ๊ฒฐ๊ณผ 140 ์ œโ…ฆ์žฅ. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ 152 ์ œ1์ ˆ ๊ฒฐ๋ก  152 ์ œ2์ ˆ ํ–ฅํ›„ ์—ฐ๊ตฌ 156 ์ฐธ๊ณ ๋ฌธํ—Œ 158 ๋ถ€๋ก 170๋ฐ•

    Multi-resolutional Muscle Model for Human Musculoskeletal Dynamic Simulations

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2013. 2. ์ด๊ฑด์šฐ.์ธ์ฒด ๊ทผ๊ณจ๊ฒฉ ๋™์—ญํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๋™์—ญํ•™ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์— ๋ชจ๋ธ๋ง ๋œ ์ธ์ฒด ๊ทผ์œก๊ณผ ๊ณจ๊ฒฉ์„ ์ด์šฉํ•˜์—ฌ ์ธ์ฒด ์šด๋™์„ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ๋งŽ์€ ๊ฒฝ์šฐ ํ•ด์„์— ์‚ฌ์šฉ๋œ ๊ทผ์œก ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ์ž์„ธํ•œ์ง€์— ์˜ํ•ด ๊ทธ ์ •๋ฐ€๋„๊ฐ€ ๊ฒฐ์ •๋œ๋‹ค. ํŠนํžˆ ์ตœ๊ทผ์—๋Š” ์ดˆ์ŒํŒŒ ๊ฒ€์‚ฌ, ์ปดํ“จํ„ฐ ๋‹จ์ธต์ดฌ์˜, ์ž๊ธฐ๊ณต๋ช…์˜์ƒ ๋“ฑ ์ธก์ • ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋งค์šฐ ์ž์„ธํ•œ ์ธ์ฒด ๋ชจ๋ธ๋“ค์ด ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ์ถ”์„ธ์—์„œ ์ด์ „์ฒ˜๋Ÿผ ๋ฌด์กฐ๊ฑด์ ์œผ๋กœ ๋” ๋ณต์žกํ•œ ๋ชจ๋ธ์„ ์“ฐ๊ธฐ๋ณด๋‹ค๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๋ชฉ์ ๊ณผ ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋ชจ๋ธ์˜ ๋ณต์žก๋„๋ฅผ ์กฐ์ ˆํ•˜๋ ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์ˆ˜์š”๊ฐ€ ์ƒ๊ฒจ๋‚˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทผ์œก ๋ชจ๋ธ์˜ ๋ณต์žก๋„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์ด๋ฃจ์–ด์ง„ ๋ฐ”๊ฐ€ ์—†์œผ๋ฉฐ, ์˜ค๋žœ ๊ธฐ๊ฐ„ ๋‹ค์–‘ํ•œ ๋ณต์žก๋„๋กœ ์ถ•์ ๋œ ์ธ์ฒด ๊ทผ์œก ๋ฐ์ดํ„ฐ๋“ค์„ ํ•˜๋‚˜์˜ ์ฒด๊ณ„ ํ•˜์— ๋‹ด์•„๋‚ด๋Š” ๊ฒƒ์ด ๋งค์šฐ ์‹œ๊ธ‰ํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ปดํ“จํ„ฐ์ด์šฉ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๋˜ '๋‹ค์ค‘ํ•ด์ƒ๋„' ๊ฐœ๋…์„ ์ธ์ฒด ๋™์—ญํ•™ ๊ทผ์œก ๋ชจ๋ธ์— ๋„์ž…ํ•˜์—ฌ, ์กฐ๊ฑด์— ๋”ฐ๋ผ ๊ทผ์œก ๋ชจ๋ธ์˜ ๋ณต์žก๋„๋ฅผ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” '๋‹ค์ค‘ํ•ด์ƒ๋„ ๊ทผ์œก ๋ชจ๋ธ(multi-resolutional muscle model)'์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ทผ์œก ๋ชจ๋ธ์˜ ํ•ด์ƒ๋„๋ฅผ ๊ธฐ๋Šฅ์  ํ•ด์ƒ๋„์™€ ๊ตฌ์กฐ์  ํ•ด์ƒ๋„์˜ ๋‘ ๊ฐ€์ง€ ์ฐจ์›์œผ๋กœ ์ •์˜ํ•˜์˜€๊ณ , ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ•ด์ƒ๋„ ๋ณ€ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋„ ๋…ผ์˜ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋‹ค์ค‘ํ•ด์ƒ๋„ ๊ทผ์œก ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜๋ฉด ์ธ์ฒด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ํšจ์œจ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์€ ๋ฌผ๋ก , ์ œ๊ฐ๊ธฐ ์ถ•์ ๋˜์—ˆ๋˜ ์ธ์ฒด ๊ทผ์œก ๋ฐ์ดํ„ฐ ๋ฐ ๊ทผ๋ ฅ ์‚ฐ์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ํ•˜๋‚˜๋กœ ํ†ตํ•ฉ๋œ ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Recently, with the improvement of measurement techniques, dynamic human models which include highly sophisticated muscle models have been developed. In this trend, the demand for controlling the complexity of muscle models depending on the purpose of the simulation has increased. However, there is no previous study concerning the algorithm for systematically manipulating the complexity of a muscle model. In this reason, this study proposes the 'multi-resolutional muscle model' by introducing the 'multi-resolution' concept into dynamic muscle models for human musculoskeletal simulations. The resolution of a muscle model is defined into two different dimensions, the functional resolution and the structural resolution. Also, in order to make the multi-resolution concept more meaningful, resolution change algorithms for each type are discussed. Although this model needs further modification and improvement, this study can be a cornerstone of the integration of various muscle models in the future.์ œ 1 ์žฅ ์„œ๋ก  ์ œ 2 ์žฅ ๋™์—ญํ•™ ๊ทผ์œก ๋ชจ๋ธ ๊ตฌํ˜„ 2.1 ๊ทผ์œก ๋ชจ๋ธ์˜ ๊ตฌ์กฐ 2.2 ๊ทผ์œก ๋ชจ๋ธ์˜ ๋™์ž‘ ์›๋ฆฌ 2.3 ๊ทผ์œก ๋ชจ๋ธ์˜ ์ ์šฉ ์ œ 3 ์žฅ ๊ทผ์œก ๋ชจ๋ธ์˜ ํ•ด์ƒ๋„ 3.1 ๊ธฐ๋Šฅ์  ํ•ด์ƒ๋„ 3.2 ๊ตฌ์กฐ์  ํ•ด์ƒ๋„ ์ œ 4 ์žฅ ๋‹ค์ค‘ํ•ด์ƒ๋„ ๊ทผ์œก ๋ชจ๋ธ๊ณผ ํ•ด์ƒ๋„ ๋ณ€ํ™” 4.1 ๊ธฐ๋Šฅ์  ํ•ด์ƒ๋„ ๋ณ€ํ™” 4.2 ๊ตฌ์กฐ์  ํ•ด์ƒ๋„ ๋ณ€ํ™” 4.3 ๋” ๋†’์€ ํ•ด์ƒ๋„๋กœ์˜ ํ™•์žฅ ์ œ 5 ์žฅ ๋‹ค์ค‘ํ•ด์ƒ๋„ ๊ทผ์œก ๋ชจ๋ธ์˜ ํ™œ์šฉ 5.1 ์ธ์ฒด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ํšจ์œจ์„ฑ ์ฆ๋Œ€ 5.2 ํ†ตํ•ฉ๋œ ๊ทผ์œก ๋ชจ๋ธ ์‹œ์Šคํ…œ ๊ตฌ์ถ• ์ œ 6 ์žฅ ๊ฒฐ๋ก  ๋ฐ ๋…ผ์˜Maste
    • โ€ฆ
    corecore