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I 

 

Abstract 

 

Ginseng (Panax ginseng C.A. Meyer) has been cultivated and consumed as a 

medicinal herb in East Asia for a long time. Ginseng has a lot of bioactive 

components including ginsenosides, polyacetylenes, polysaccharides, and 

phenolic compounds. Among them, ginsenosides have been regarded as major 

active components of ginseng and used as index component for the quality control. 

Many researches have been conducted to develop methods for increasing the 

pharmacological effect of ginseng by conversion of the dammarane-based saponin 

by high temperature and high pressure thermal processing. However, it is 

complicated and time-consuming to extract the active components of ginseng 

because of its dense texture. Thus, researchers have conducted the studies on the 

production of expanded ginseng using an extruder and explosive puffing process.  

This study was designed to examine the effect of puffing process on the 

biofunctional property of red ginseng. Red ginseng was puffed using a rotary 

puffing machine at 0.30 MPa. After puffing, the changes in physicochemical 

properties, antioxidant activity and volatile components in puffed red ginseng 

were investigated. Puffing process increased the total ginsenoside content 

including ginsenoside Rg3 with anticancer activity. Extraction yields (16.7-

42.2%) from puffed red ginseng were higher than those from non-puffed red 
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ginseng (9.0-32.7%) at all extraction times. When comparing the free sugars and 

amino acids, the contents of maltose and arginine drastically decreased because 

puffing process accelerated the reaction of maltose and arginine to produce 

maltulosyl arginine.  

Effects of explosive puffing on the changes of volatiles in red ginseng were 

investigated using headspace-solid phase microextraction (HS-SPME)-gas 

chromatograph (GC) with a mass selective detector (MS). Formation of porous 

structures and smaller pieces were clearly observed on the surface of puffed red 

ginseng by scanning electron microscopy. Total volatiles in puffed red ginseng 

increased by 87% compared with those in red ginseng. Hexanal, Δ-selinene, and 

β-panasinsene were major volatiles in red ginseng, whereas α-gurjunene, β-

panasinsene, and calarene were main volatiles in puffed red ginseng. Puffing 

process decreased volatiles from lipid oxidation including aldehydes, ketones, and 

2-pentylfuran and increased terpenoids in red ginseng. Selective ion monitoring 

(SIM) mode for GC/MS results showed that 2-furanmethanol and maltol were 

present at the concentrations of 0.20 and 0.24%, respectively, in red ginseng and 

5.86 and 3.99%, respectively, in puffed red ginseng. Explosive puffing process 

increased 2-furanmethanol and maltol in puffed red ginseng significantly (p<0.05) 

with the changes of microstructure. 

The antioxidant properties of extracts of red ginseng and puffed red ginseng 

were determined in bulk oil and oil-in-water (O/W) emulsions. Bulk oils were 
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heated at 60°C and 100°C and O/W emulsions were treated under riboflavin 

photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-

picrylhudrazyl (DPPH), 2,2’-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid 

(ABTS), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), 

and total flavonoid content (TFC), were also performed. The total ginsenoside 

contents of extract from red ginseng and puffed red ginseng were 42.33 and 49.22 

mg/g, respectively. All results from these in vitro antioxidant assays revealed that 

extracts of puffed red ginseng had significantly higher antioxidant capacities than 

those of red ginseng (p<0.05). Generally, extracts of puffed red and red ginseng 

had antioxidant properties in riboflavin photosensitized O/W emulsions. However, 

in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated 

rate of lipid oxidation, depending on the treatment temperature and the type of 

assay used. 

These results suggest that the puffing process can provide us with an 

alternative means to produce functional red ginseng products with the additional 

advantage of reduced processing time.  

 

Keywords: puffed red ginseng, volatile component, ginsenoside, antioxidant 

property, bulk oil, oil-in-water emulsion, radical scavenging activity. 
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 1.1. Background 

 

Ginseng occupies a prominent position in the list of best-selling natural products 

in the world (Qi et al., 2011). Ginsenosides have been regarded as major active 

components of ginseng and used as index components for the quality control 

(Nam et al., 1998). Therefore, the researches has been conducted to develop the 

methods for increasing the pharmaceutical effect of ginseng.  

However, it is complicated and time-consuming to extract the active 

components of ginseng because of its dense texture (Gui and Ryu, 2014). Thus, 

researchers have conducted the studies on the production of expanded ginseng 

using an extruder and explosive puffing process (An et al., 2011).  

There have been a few studies on the extrusion and puffing process applied to 

ginseng. Ha and Ryu (2005) conducted the studies using the extrusion to improve 

the physical and chemical properties of ginseng sample. They reported that acidic 

polysaccharide content increased by 2-3% and ginsenoside Rg3 was detected in 

extruded red ginseng after extrusion cooking. Han et al. (2006) reported that α-

amylase susceptibility of extruded ginseng has been found to be higher than that 

of traditionally dried ginseng. Like this, although extrusion is an efficient and 

widely used industrial technology for the production of expanded product from 

ginseng, it has disadvantages that ginseng sample has to be ground and there are a 
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lot of parameters to be controlled.  

In comparison with extrusion, puffing process is simple and low cost industrial 

technology which small company can operate. Han et al. (2007) studied the effect 

of puffing treatment on ginsenosides, acidic polysaccharide, and pepsin 

digestibility of dried red ginseng tail root. They reported that acidic 

polysaccharide content was slightly decreased and pepsin digestibility was 

increased by puffing treatment. Kim et al. (2008) elucidated the elevated 

production of ginsenoside Rg3 with some changes in the chemical structure of 

major ginsenosides after puffing.  

So far, while most of researches of puffing and extrusion process have been 

focused on the change of the bioactive constituents of ginseng, such as 

ginsenosides, little attention has been given to the research of the change of 

physicochemical properties, antioxidant activity and volatile components after 

puffing process. Therefore, this study was conducted to investigate the effects of 

puffing process on the biofunctional properties. 
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1.2. Botanical species of ginseng 

 

Panax ginseng has been used for medicinal purposes for centuries. The term 

ginseng is derived from Chinese “jen-shen”, which means “images of man 

(Hosettmann and Marston, 1995). Ginseng roots physically resemble the human 

body. Russian botanist Carl Anton von Meyer botanically named the ginseng as 

Panax ginseng C.A. Meyer in 1843 (Court, 2000). In Greek, “pan” means all and 

“axos” means cure. As a whole, Panax indicates “all-heal” (Jia and Zhao, 2009). 

Ginseng has been used as a traditional medicine in Asian countries for more than 

2000 years.  

Traditionally, ginseng refers to the root of Panax ginseng, and the other parts of 

ginseng, such as the leaves and berries, are rarely used (Baek et al., 2012). 

According to the report (Ahn et al., 2008), the contents of each ginsenoside reveal 

significant differences between the epidermal part and inner part of the ginseng 

root. Some experimental results reveal that the concentration of protopanaxadiol 

ginsenosides is shown to be high in the epithermal parts but is low inside the body 

part. Protopanaxatriol ginsenosides are evenly distributed in all parts of red 

ginseng relatively (Lee et al., 2015). 

Ginseng is also named after its native habitat, such as Korean, Chinese, 

American, and Japanese ginseng. Of these, ginseng (Korea) is the most well-
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known ginseng with potent pharmacological efficacies (Keifer et al., 2003). 

Chinese ginseng is P. notoginseng (Burk.) F. H. Chen native to China. American 

ginseng is P. quinquefolius L. native to North America, including Canada and 

United States. These 3 species are widely used as a functional food and in 

traditional medicine. In addition, P. japonicus Meyer (Japanese ginseng), P. 

pseudoginseng subspecies Himalacius (Himalayan ginseng), and P. trifolius 

(dwarf ginseng)) are lesser known Panax species (Angelova et al., 2008) 
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1.2.1. Types of ginseng preparations 

P. ginseng cultivated in Korea is harvested after 4 to 6 years of cultivation, and 

it is classified into three types depending on how it is processed. Fresh ginseng 

refers to immediate harvest without any additional processing. It is easily 

deteriorated at room temperature. Therefore, fresh ginseng is normally processed 

in the forms (white and red ginseng) with lower water content and longer shelf-

life compared to fresh ginseng (Park et al., 2001). 

White ginseng is produced by drying fresh ginseng, while red ginseng is 

produced by multiple steps of steaming and then drying. Red ginseng exhibits 

greater bioactivities than white ginseng due to their much more ginsenoside 

contents (Wang et al., 2007) and is commonly used as herbal medicines in South 

Korea.  

The basic process of red ginseng production from fresh ginseng simply consists 

of three steps of washing, steaming, and drying. Fig. 1-1 is a diagram for 

manufacturing red ginseng in the major companies of red ginseng in Republic of 

Korea. Most manufacturers are producing red ginseng by using the traditional 

production processes which can be summarized as follows (Lee et al., 2015). The 

fresh ginseng grown for 6 years is selected by size and shape, the dirt is shaken off 

and then the root is washed with clean water. Subsequently, washed fresh ginseng 

is steamed for 1-3h at 90-98℃. Then the steamed ginseng is dried by hot air and 

laid in the sun until its moisture contents drops to 15% and 18%.  
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Fig. 1-1. Manufacturing process of red ginseng from fresh ginseng (Lee et al., 

2015). 
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Red ginseng is not skinned before it is steamed or otherwise heated and 

subsequently dried. During the steaming process, ginseng starch is gelatinized, 

causing an increase in saponin content (Lee et al., 2013; Lee, 2014). 

  Black ginseng is prepared by repeated cycles of atmospheric steaming and sun-

drying (Yun et al., 2010). Taekuksam is the fresh ginseng blanched in the water 

and dried (Baeg and So, 2013). Other types of processed ginseng have been 

developed using modified steaming, explosive puffing, or fermentation with 

specific microorganisms, such as intestinal microbial flora. Puffed ginseng is 

prepared by applying an optimized puffing pressure and residual moisture content 

in ginseng (Han et al., 2008).  

Fermentation with intestinal microbial flora leads to structural modification of 

the ginsenosides. Compound K, the intestinal metabolite of ginsenoside, is a 

representative bioengineered ginsenoside that shows potent anti-cancer effects 

(Choi et al., 2009). New types of processed ginseng preparations will be 

developed in the future.  
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1.2.2. Puffing process 

The puffing phenomenon results from the sudden expansion of water vapour 

(steam) in the internal structure of the granule. Puffing process involves the 

release of gas within a product either to expand or rupture an existing structure 

(Dutta et al., 2015). The puffing processes can be divided into two types, 

atomospheric pressure procedures and pressure-drop processes (Luh, 1991). 

Atmospheric pressure procedures rely on the sudden application of heat to obtain 

the necessary rapid vaporization of water. Pressure-drop procedures involve 

sudden transferring of superheated water vapour into a space at lower pressure. In 

this case, the pressure drop may be achieved by releasing the seal on a vessel 

containing a product that has been equilibrated with high-temperature steam. The 

treatment of heating the sample for puffing is generally done either with hot sand, 

hot air or hot oil as well as by gun-puffing where the grains at high temperature 

and pressure are suddenly released to atmospheric condition (Chandrashekhar and 

Chattopadhyay, 1990).  

Commercial puffing is largely conducted by two processes, gun-puffing and 

oven-puffing (Kim et al., 2008). The former process is much more widely used. 

Gun-puffing may result in an increase of apparent volume (bulk density decrease) 

of six- to eightfold. Oven puffing causes a lesser increase about three- to four fold. 

Oven-puffing is performed using high-temperature, short-time (HTST) treatment 

with heated sand. In either case, the sample is expanded by the dehydration 
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resulting from the rapid diffusion of the water vapour out of it. Puffing process is 

accompanied by some chemical reactions including dehydration, gelatinization of 

carbohydrates, increase of the product volume, and textural changes (Hoke et al., 

2007). As a result of that, the changes of the nutritional and sensory quality of 

foods can be induced (Lee et al., 2009; Mariotti et al., 2006). 

Although ginseng shows various nutraceutical effects without appropriate 

processing, the bioavailability tends to be very low because the structure of the 

cell walls is tough and rigid. Puffing process in ginseng factory has been tried as 

an efficient method to reduce the extraction time and improve the extraction yield 

(An et al., 2011). 

A lot of studies revealed the change of physicochemical properties and moisture 

absorption of puffed red ginseng. Kim et al. (2009) examined the changes in the 

chemical components of red and white ginseng after puffing. Explosive puffed red 

ginseng had more 2-furanmethanol and maltol and higher porous structures than 

non-puffed red ginseng (Lee et al., 2010). An et al (2011) reported that puffed red 

ginseng showed higher crude saponin contents (201.0-219.0 mg/g extract) than 

non-puffed one (161.7-189.0 mg/g extract). Kim et al (2008) observed in HPLC 

analysis that amounts of measured major ginsenosides (Rb1, Rb2, Rc, Rd, Re, and 

Rg1) decreased with increasing puffing pressure, and ginsenoside Rg3 was 

produced after puffing. This fact means that chemical structure of some 

ginsenosides might be altered during the puffing process. 
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1.2.3. Ginsenosides 

Saponin was first mentioned as an active ingredient of ginseng in 1957 by 

Brekhman of Russia, and its structure was elucidated and named as ginsenoside 

by the Shibata research group of Japan (Shibata et al., 1963; Cho et al., 2013). 

Ginsenoside is one of the derivatives of triterpenoid dammarane consisting of 

thirty carbon atoms (Lee et al., 2007). Ginsenosides are different from general 

saponins, since they have very mild effects and show much less toxicity even at 

high doses (Nah, 1997). Ginsenoside has been used to establish the quality 

specifications of ginseng (Cho et al., 2013). 

Shibata et al. (1966) separated saponin components of ginseng using thin layer 

chromatography and named ginsenoside Rx (x=o, a, b1, b2, c, d, e, f, g1, g2, g3, 

h1, h2) with the increasing order of Rf value. Rg1 was first identified, and 

recently the chemical structure of many ginsenoside Rx has been determined (Jee 

et al., 2014). As shown in Fig. 1-2, ginsenosides are divided into three types by 

the differences in the aglycone. They are protopanaxadiol ginsenoside, 

protopanaxtriol ginsenoside, and oleanan-type saponin. As four-ring structure 

triterpenoid dammarane-type saponin, there are protopanaxadiol (Rb1, Rb2, Rb3, 

Rc, Rd, Rg3, Rg5, Rh2) and protopanaxatriol (Re, Rf, Rg1, Rg2, Rh1). Oleanan-

type saponin (Ro) has five-ring structure and is not a dammarane group glycoside 

(Cho et al., 2014). The chemical structures of ginsenosides are different from each 

other in the linkage position and kind of sugar (Anoja et al., 1999). 
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(Zhen et al., 2013) 

Fig. 1-2. Structures of ginsenosides based on chemical structure, there are 

two major groups: protopanaxadiol (A) and protopanaxatriol (B), ginsenoside 

Ro, a nonsteroidal saponin, is shown in (C).

Protopanaxadiol 

(R1=R2=OH) 

Protopanaxatriol 

(R1=R3=H, R2=OH) 

Oleanic acid 

COOR2 
Glc= β-D-glucose Rha= α-L-rhamnose 

Ara (p)= α-L-arabinose (pyranose) 

Ara (f)= α-L-arabinose (furanose) R1O 
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  Each type of ginsenoside has at least three side chains called R1, R2, and R3 

and these three side chains are free or connected with sugars containing a 

monomer, dimmer, or trimer. With the development of modern technology, more 

than 150 ginsenosides have been isolated from Panax species (Christensen, 2009; 

Shi et al., 2010). In the aspect of quantity in ginseng, the main ginsenosides of 

raw ginseng are the ginsenoside Rb1, Rb2, Rc, Rd, Re, Rg1 and Rf (Lu et al., 

2009). Park (2004) reported that the major ginsenosides of Panax ginseng were 

Rb1, Rc, Rg1, Re, Rb2, Rd in the order of their prevalence and they made up 

about 90% of the total amount of ginsenosides.  

The amounts of some major protopanaxadiol ginsenosides in red ginseng such 

as ginsenosides Rb1, Rc, Rb2, and Rd are higher than the amounts of those in 

fresh ginseng (Lee et al., 2015). The reason is that protopanaxadiol ginsenosides 

are contained as malonyl ginsenosides in fresh ginseng and the malonyl 

ginsenosides are demalonylated by heat and inner acidity in processing of red 

ginseng (Kitagawa et al., 1983).
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1.2.4. Potential health effects of ginsenosides 

Ginsenoside has also been determined to be the active ingredient that confers a 

wide range of beneficial health effects of ginseng. The cytotoxic and 

antiproliferative effects of ginsenosides toward human and animal cancer cell 

lines have been demonstrated in numerous investigations (Yoon et al., 2010).  

Wang et al. (2007) tested the cytotoxicity of 10 ginsenosides isolated from the 

fruits of P. ginseng, toward several human cancer cell lines, including breast 

cancer cell lines (e.g. MCF-7 cells). Among the ginsenosides tested, ginsenoside 

20(S)-PPD, Rh2 showed substantial activity in all cell lines and were clearly the 

most effective inhibitors of cancer cell growth and proliferation. 

As immunomodulatory effect, Ginsenosides of P. notoginseng and P. ginseng, 

such as Rb1, Rb2, and Rg1, have also shown to strongly suppress the production 

of TNF-α in macrophages treated with LPS (Cho et al., 2001). 

 Allergic diseases of type 1, such as asthma, allergic rhinitis, atopic dermatitis, 

and food allergy afflict up to 20% of the human population in many countries 

(Park et al., 2003). Ginsenosides Rb1, Rc, Rd, F2, and Rh1 have been shown to 

inhibit histamine and/or leukotriene release from peritoneal mast cells (Choo et al., 

2003). 

Many studies have shown that ginseng has a protective effect on the 

development of atherosclerosis that may lead to myocardial infarction and other 

cardiovascular diseases (Kim, 2012). Ginsenoside Rb1, Re, and Rg1 cause 
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endothelium-dependent vascular relaxation through increased NO production 

(Chen, 1996). 

According to the World Health Organization (WHO), more than 180 million 

people suffer from diabetes and more than 90% of these have type 2 diabetes 

(T2D) and this number is likely to be doubled by 2030 due to the increasing 

prevalence of obesity (Wild et al., 2004). Animal experiments have demonstrated 

that ginseng and ginsenosides are able to lower blood glucose. Ginsenoside Rh2 

has been shown to increase insulin secretion and to lower plasma glucose in 

Wistar rats (Lee et al., 2006). 
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1.3. Volatile compounds of ginseng 

 

In recent, ginseng is used in diverse types of culinary dishes (e.g., salad, soup, 

stew, steamed dishes, tea, and other beverages) as well as processed food due to 

its distinct flavor characteristics (Cho, 2015). Volatile compounds in ginseng are 

very important as the main contributor to its characteristic aroma properties 

affecting consumer acceptability. While there are extensive studies on the 

bioactive constituents of ginseng, such as ginsenosides, little attention has been 

given to the volatile components of ginseng. In particular, the research on the 

change of volatile components after diverse manufacturing process is rare. 

 

1.3.1. Volatile compounds of fresh ginseng 

Since Takahashi and Yoshikura (1966) isolated panaxynol from the ether extract 

of P. ginseng, a few studies have been conducted to investigate the volatile 

components of ginseng. Yoshihara and Hirose (1975) also identified 15 

sesquiterpene hydrocarbons extracted from P. ginseng, including apanasinsene, 

β-panasinsene, α-neoclovene, and β-neoclovene. Another study found thirteen 

pyrazines in the basic fraction of P. ginseng, and that 3-sec-butyl-2-methoxy-5-

methyl pyrazine was the main contributor to its characteristic aroma properties 

(Iwabuchi et al., 1984). More sesquiterpene hydrocarbons compounds (e.g., 
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ginsenol, panasinsenol A, panasinsenol B, (+)-spathulenol) and sesquiterpenoids 

were additionally identified in the neutral fraction of P. ginseng (Iwabuchi et al., 

1987, 1989, 1990). Sesquiterpenes are a class of terpenes that consist of three 

isoprene units, with the molecular formula C15H24. In general, sesquiterpenes, 

together with monoterpenes (C10H16), are strongly associated with the aroma 

characteristics of plants (Reineccius, 2007).  

 

1.3.2. Volatile compounds of red ginseng  

Generally, red ginseng is produced by steaming the root followed by drying 

(Nam, 2005). Many characteristic volatile compounds of fresh ginseng might 

disappear, while some new compounds could be produced through processing 

steps during the heat treatment. In reality, red ginseng exhibited different profile 

of volatile compounds as compared with that of white ginseng (Cho, 2015).  Ko 

et al. (1996) profiled and compared the volatiles of white and red P. ginseng. As 

shown in Fig. 1-3, the volatiles of red ginseng were primarily of the following 

compounds: β-caryophyllene, spathulenol, β-panasinsene, bicyclogermacrene, 

aneoclovene, selina-4,11-diene, and α-panasinsene. Sohn et al. (1997) focused on 

the ratios of β-panasinsene and c-muurolene as contributors of the discrimination  
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Adapted from Cho (2015)  

Fig. 1-3. Representative sesquiterpene hydrocarbons and sesquiterpene 

alcohols of ginseng. 
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between Korean and Chinese white and red ginseng. Abd El-Aty et al. (2008) 

compared the volatile profiles from fresh, white, and red P. ginseng. They reported 

that fresh ginseng was characterized by a high proportion of 3-actyl-1-(3,4-

dimethoxyphenyl)-5-ethyl-4,5-dihydro-7,8-dimethoxy-4-methylene-3H-2,3-

benzodiazepine and 23,24-dinor-3-oxolean-4,12-dien-28-oic acid. In addition, 2-

furanmethanol and 3-hydroxy-2-methyl-4H-pyran-4-one were main compounds of 

white ginseng, while the major compounds of red ginseng were 1,2-

benzenedicarboxylic acid dibutyl ester and 2-furanmethanol.  

 

1.3.3. Volatile compounds of processed red ginseng 

Han et al. (2008) evaluated changes in concentrations of volatile compounds 

contained in red ginseng tail roots after puffing treatment. They showed that 59 

out of 63 volatile compounds were detected from the puffed red ginseng tail roots. 

While most of alcoholic, aldehyde and acid compounds are decreased, while 

terpene and furan compounds were increased through puffing treatment. Terpene 

compounds content accounted for 70% of the 63 volatile components in the 

puffed red ginseng tail roots. Park et al. (1999) identified 29 volatile compounds 

from red ginseng marc roasted at 200 ℃for twenty minute. Of them 7 pyrazines 

and maltol are thought to be compounds which have characteristic odor such as 

roasted odor and scorched-rice odor in the roasted red ginseng marc. Lee et al. 
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(2010) reported that total volatiles in puffed red ginseng increased by 87% 

compared to those in red ginseng. Hexanal, ∆-selinene, and β-panasinsene were 

major volatiles in red ginseng, whereas α-gurjunene, β-panasinsene, and calarene 

were main volatiles in puffed red ginseng. 

As other research of volatile components, a few researches have been tried to 

identify the ginseng origin. Actually, similar researches have been conducted to 

distinguish olive oil from different cultivars. Vichi et al. (2006) developed the 

headspace SPME method coupled to GC mass spectrometry (GC/MS) to 

determine the composition of mono- and sesquiterpenic hydrocarbon in virgin 

olive oils of different olive origin. They reported that the monoterpenes and, 

particularly, the sesquiterpene composition of olive oil may be used to distinguish 

samples from different cultivar and geographical areas. In recent, Lee et al. (2012) 

attempted GC analysis equipped with solid-phase microextraction (SPME) 

apparatus to identify the volatile compounds of ginseng cultivated by 3 different 

cultivating methods.  
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1.4. Antioxidant activity of ginseng 

 

Oxidative stress contributes to the development of a wide range of diseases: 

neurodegenerative disorders, cardiovascular diseases, diabetes, cancer, and 

chronic fatigue syndrome (Giustarini et al., 2009; Heistad et al., 2009). The cause 

of oxidative stress is reactive oxygen species (ROS), which are formed by 

incomplete reduction of molecular oxygen. They include superoxide anion (O2
-), 

hydrogen peroxide (H2O2), hydroxyl (·OH) radical, and singlet oxygen (1O2). 

Generally, they are toxic and induce an oxidative cell damage through lipid 

peroxidation and alteration of protein structure (Baud and Ardaillou, 1986). 

Ameliorating oxidative stress with antioxidants might be an effective strategy for 

treating various diseases. Therefore, many researchers have tried to find safe and 

effective scavengers of reactive oxygen species for prevention and treatment of 

oxidative stress-related diseases. 

  Ginseng is one of the most widely used medicinal plants in the Orient. Many 

studies have revealed that ginseng has a lot of bioactive components, which are 

the major sources of antioxidant activity.  Chae et al. (2010) evaluated the 

antioxidant activities of ginsenosides on the intracellular reactive oxygen species 

(ROS). Ginsenoside Rb2 and Rc showed the strongest antioxidant activity, 

followed by (in decreasing order) Rg2, Rh2, Rh1, Rf, Rg3, Rg1, Rb1, Re and Rd. 

The presence of arabinose linked at the glucopyranosyl group may have enhanced 
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the antioxidant activity. This means that antioxidant activity of ginsenosides was 

influenced by the types of dammarane, as well as the number of sugar moieties, 

and substitutive groups.  

A lot of studies have mainly been focused on ginsenosides, and other 

constituents of ginseng have been studied in less detail in terms of antioxidant 

activity. Kang et al. (2006) elucidated that the phenolic compounds and Maillard 

reaction products were more active free radical scavenging components than 

ginsenoside from the study of sun ginseng (steamed ginseng at 120℃). They 

suggested that phenolic compounds such as maltol, salicylic acid, vanillic acid 

and p-coumaric acid are principal antioxidant components of ginseng.  

 Phenolic compounds are commonly found in plants, and they have been reported 

to have multiple biological effects, including antioxidant activity (Cai et al., 2004). 

Maltol, one of the Maillard reaction products (MRPs), was reported to be an 

antioxidant component of red ginseng.   
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1.5. Research objectives 

 

Many researchers have been studying the diverse methods to produce new 

types of ginseng products. Recently, the number of studies on the high 

temperature and pressure treatment in ginseng have been on the rise. Among them, 

the researches on how puffing process affects the biofunctional properties of red 

ginseng are still rare. In particular, there are a lot of unrevealed facts regarding the 

change of physicochemical properties, bioactive, and volatile components after 

puffing process.   

 Until now, although many researchers have investigated the change of major 

ginsenosides, no study has reported the changes of minor ginsenosides with 

pharmacological activities after puffing. Also, there is a need to investigate the 

antioxidant activity in food matrix model with in vitro assay. 

The objectives of this study were to elucidate the change of effective 

components including ginsenosides after puffing, to determine the antioxidant 

activity of extracts of red ginseng and puffed red ginseng, and to identify 

characteristic volatile compounds in puffed red ginseng. 

 



24 

 

1.6. References 

 

Abd El-Aty, A. M., Kim, I. K., Kim, M. R., Lee, C., and Shim, J. H. 2008. 

Determination of volatile organic compounds generated from fresh, white and red 

Panax ginseng (C.A. Meyer) using a direct sample injection technique. 

Biomedical Chromatography 22:556-562. 

 

Ahn, I. O., Lee, S. S., Lee, J. H., Lee, M. J., and Cho, B. G. 2008. Comparison of 

ginsenoside contents and pattern similarity between root parts of new cultivars in 

Panax ginseng C.A. Meyer. Journal of Ginseng Research 32:15-18. 

 

An, Y. E., Ahn, S. C., Yang, D. C., Park, S. J., and Kim, B. Y. 2011. Chemical 

conversion of ginsenosides in puffed red ginseng. LWT-Food Science and 

Technology 44:370-374. 

 

Angelova, N., Kong, H. W., van der Heijden, R., Yang, S. Y., Choi, Y. H., Kim, H. 

K., Wang, M., Hankemeier, T., van der Greef, J., and Xu, G. 2008. Recent 

methodology in the phytochemical analysis of ginseng. Phytochemical Analysis 

19:2-16. 

 



25 

 

Anoja, S., Arrele, Wu, J. A., and Yuan, C. S. 1999. Ginseng pharmacology. 

Biochemical Pharmacology 38:1683-1693. 

 

Baeg, I. H., and So, S. H. 2013. The world ginseng market and the ginseng (korea). 

Journal of Ginseng Research 37:1-7. 

 

Baek, S. H., Bae, O. N., and Park, J. H. 2012. Recent methodology in ginseng 

analysis. Journal of Ginseng Research 36:119-134. 

 

Baud, L., and Ardaillou, R. 1986. Reactive oxygen species: production and role in 

the kidney. American Journal of Physiology 251:F765-F776. 

 

Cai, Y., Luo, Q., Sun, M., and Corke, H. 2004. Antioxidant activity and phenolic 

compounds of 112 traditional Chinese medicinal plants associated with anticancer. 

Life Sciences 74:2157-2184. 

 

Chae, S., Kang, K. A., Youn, U., Park, J. S., and Hyun, J. W. 2010. A comparative 

study of the potential antioxidant activities of ginsenosides. Journal of Food 

Biochemistry 34:31-43. 

 

Chandrashekhar, P. R., and Chattopadhyay, P. K. 1990. Studies on micro-structural 



26 

 

changes of parboiled and puffed rice. Journal of Food Processing and Preservation 

14:27–37. 

 

Chen, X. 1996. Cardiovascular protection by ginsenosides and their nitric oxide 

releasing action. Clinical and Experimental Pharmacology and Physiology 

23:728-732. 

 

Cho, C. W., Kim, Y. C., Kang, J. H., Rhee, Y. K., Choi, S. Y., Kim, K. T., Lee, Y. 

C., and Hong, H. D. 2013. Characteristic study on the chemical components of 

Korean curved ginseng products. Journal of Ginseng Research 37:349-354. 

 

Cho, C. W., Kim, Y. C., Rhee, Y. K., Lee, Y. C., Kim, K. T., and Hong, H. D. 2014. 

Chemical composition characteristics of Korean straight ginseng products. Journal 

of Ethnic Foods 1:24-28. 

 

Cho, I. H. 2015. Volatile compounds of ginseng (Panax sp.): a review. Journal of 

the Korean Society for Applied Biological Chemistry 58:67-75. 

 

Cho, J. Y., Yoo, E. S., Baik, K. U., Park, M. H., and Han, B. H. 2001. In vitro 

inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-

α production and its modulation by known TNF-α antagonists. Planta Medica 



27 

 

67:213-218. 

 

Choi, K. S., and Choi, C. H. 2009. Proapoptotic ginsenosides compound K and Rh 

enhance Fas-induced cell death of human astrocytoma cells through distinct 

apoptotic signaling pathways. Cancer Research and Treatment 41:36-44. 

 

Choo, K. M., Park, E. K., Han, M. J., and Kim, D. H. 2003. Antiallergic activity 

of ginseng and its ginsenosides. Planta Medica 69:518-522. 

 

Christensen, L. P. 2009. Ginsenosides: Chemistry, biosynthesis, analysis, and 

potential health effects. Advances in Food and Nutrition Research 55:1-73. 

 

Court, W. E. 2000. Ginseng: The Genus Panax. Newark, New Jersey: Harwood 

academic publishers.  

 

Dutta, A., Mukherjee, R., Gupta, A., Ledda, A., and Chakraborty, R. 2015. 

Ultrastructural and physicochemical characteristics of rice under various 

conditions of puffing. Journal of Food Science and Technology 52: 7037-7047. 

 

Giustarini, D., Dalle-Donne, I., Tsikas, D., and Rossi, R. 2009. Oxidative stress 

and human diseases: Origin, link, measurement, mechanisms, and biomarkers. 



28 

 

Critical Reviews in Clinical Laboratory Sciences 46:241-281. 

 

Gui, Y., and Ryu, G. H. 2014. Effects of extrusion cooking on physicochemical 

properties of white and red ginseng (powder). Journal of Ginseng Research 

38:146-153. 

 

Ha, D. C., and Ryu, G. H. 2005. Chemical components of red, white and extruded 

root ginseng. Journal of the Korean Society of Food Science and Nutrition 

34:247-254. 

 

Han, C. K., Choi, S. Y., Kim, S. S., Sim, G. S., and Shin, D. B. 2008. Changes of 

volatile component contents in a red ginseng tail root by puffing. Journal of 

Ginseng Research 32:311-314. 

 

Han, C. K., Hong, H. D., Kim, Y. C., Kim, S. S., and Sim, G. S. 2007. Effect of 

puffing on quality characteristics of red ginseng tail root. Journal of Ginseng 

Research 31:147-153. 

 

Han, J. Y., Kim, M. H., Jin, T., Solihin, B. W., and Ryu, G. H. 2006. Extrusion of 

ginseng toot in twin screw extruder: pretreatment for hydrolysis and 

saccharification of ginseng extrudate. Journal of the Korean Society of Food 



29 

 

Science and Nutrition 11:318-322. 

 

Heistad, D. D., Wakisaka, Y., Miller, J., Chu, Y., and Pena-Silva, R. 2009. Novel 

aspects of oxidative stress in cardiovascular diseases. Circulation Journal 73:201-

207. 

 

Hoke, K., Houska, M., Pruchova, J., Gabrovska, D., Vaculova, K., and Paulıckova, 

I. 2007. Optimisation of puffing naked barley. Journal of Food Engineering 80: 

1016-1022. 

 

Hostettmann, K., and Marston, A. 1995. Saponins. Cambridge University Press. 

 

Iwabuchi, H., Yoshikura, M., Obata, S., and Kamisako, W. 1984. Studies on the 

aroma constituents of crude drugs.I. On the aroma constituents of ginseng radix. 

Yakugaku Zasshi 104:951-958. 

 

Iwabuchi, H., Yoshikura, M., Ikawa, T., and Kamisako, W. 1987. Studies on the 

sesquiterpenoids of Panax ginseng C.A. Mayer. Isolation and structure 

determination of sesquiterpene alcohols, panasinsanols A and B. Chemical and 

Pharmaceutical Bulletin 35:1975-1981. 

 



30 

 

Iwabuchi, H., Yoshikura, M., and Kamisako, W. 1989. Studies on the 

sesquiterpenoids of Panax ginseng C.A. Meyer (III). Chemical and 

Pharmaceutical Bulletin 37:509-513. 

 

Iwabuchi, H., Kato, N., and Yosikura, M. 1990. Studies on the sesquiterpenoids of 

Panax ginseng C.A. Meyer (IV). Chemical and Pharmaceutical Bulletin 38:1405-

1407. 

 

Jee, H. S., Chang, K. H., Park, S. H., Kim, K. T., and Paik, H. D. 2014. 

Morphological characterization, chemical components, and biofunctional 

activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng roots: 

A comparative study. Food Reviews International 30:91-111. 

 

Jia, L., and Zhao, Y. 2009. Current evaluation of the millennium phytomedicine-

ginseng (Ⅰ): Etymology, pharmacognosy, phytochemistry, market and regulations. 

Current Medicinal Chemisty 16:2475-2484.  

 

Kang, K. S., Kim, H. Y., Pyo, J. S. and Takako, Y. 2006. Increase in the Free 

Radical Scavenging Activity of Ginseng by Heat-Processing. Biological and 

Pharmaceutical Bulletin 29:750-754. 

 



31 

 

Kiefer, D., and Pantuso, T. 2003. Panax ginseng. American Family Physician 

68:1539-1542. 

 

Kim, J. H. 2012. Cardiovascular diseases and Panax ginseng: A review on 

molecular mechanisms and medical applications. Journal of Ginseng Research 

36:16-26.  

 

Kim, J. H., Ahn, S. C., Choi S. W., Hur, N. Y., Kim, B. Y., and Baik, M. Y. 2008. 

Changes in effective components of ginseng by puffing. Journal of the Korean 

Society for Applied Biological Chemistry 51:188-193.  

 

Kim, S. T., Jang, J. H., Kwon, J. H., and Moon, K. D. 2009. Changes in the 

chemical components of red and white ginseng after puffing. Korean Journal of 

Food Preservation 16:355-361. 

 

Kitagawa. I., Taniyama T, Hayashi T, and Yoshikawa M. 1983. 

Malonylginsenoside Rb1, Rb2, Rc, and Rd, four new malonylated dammarane-

type triterpen oligosaccharides from Ginseng Radix. Chemical and 

Pharmaceutical Bulletin 31:3353-3356. 

 

Ko, S. R., Choi, K. J., and Kim, Y. H. 1996. Comparative study on the essential oil 



32 

 

components of Panax species. Korean Journal of Ginseng Science 20:42-48. 

 

Lee, J. H., Choi, S. H., and Nah, S. Y. 2007. Study on life span extension efficacy 

by Korean red ginseng. Journal of Ginseng Research 31:210-216. 

 

Lee, K. S., Kim, G. H., Kim, H. H., Chang, Y. I., and Lee, G. H. 2012. Volatile 

compounds of Panax ginseng C.A. Meyer cultured with different cultivation 

methods. Journal of Food Science 77:C805-C810. 

 

Lee, S. J., Moon, T. W., and Lee, J. H. 2010. Increases of 2-furanmethanol and 

maltol in Korean red ginseng during explosive puffing process. Journal of Food 

Science 75:C147-151. 

 

Lee, S. M., Bae, B. S., Park, H. W., Ahn, N. G., Cho, B. G., Cho, Y. L., and Kwak, 

Y. S. 2015. Characterization of Korean red ginseng (Panax ginseng Meyer): 

history, preparation method, and chemical composition. Journal of Ginseng 

Research 39:384-391. 

 

Lee, S. M., Kim, S. C., Oh, J. S., Kim, J. H., and Na, M. K. 2013. 20(R)-

Ginsenoside Rf: A new ginsenoside from red ginseng extract. Phytochemistry 

Letters 6:620-624. 



33 

 

 

Lee, S. M. 2014. Thermal conversion pathways of ginsenoside in red ginseng 

processing. Natural Product Sciences 20:119-125. 

 

Lee, S. W, and Lee, J. H. 2009. Effects of oven-drying, roasting, and explosive 

puffing process on isoflavone distributions in soybeans. Food Chemistry 112: 

316-320. 

 

Lee, W. K., Kao, S. T., Liu, I. M., and Cheng, J. T. 2006. Increase of insulin 

secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clinical and 

Experimental Pharmacology and Physiology 33:27–32. 

 

Lu, J. M., Yao, Q., and Chen, C. 2009. Ginseng compounds: an update on their 

molecular mechanisms and medical applications. Current Vascular Pharmacology 

7:293-302. 

 

Luh, B. S. 1991. Rice, volume 2: Utilization. Second ed. New York: Van Nostrand 

Reinhold. P180-181.  

 

Mariotti, M., Alamprese, C., Pagani, M. A., and Lucisano, M. 2006. Effect of 

puffing on ultrastructure and physical characteristics of cereal grains and flours. 



34 

 

Journal of Cereal Science 43: 47-56. 

 

Nah, S. Y. 1997. Ginseng; Recent advances and trends. Korean Journal of Ginseng 

Science 21:1-12. 

 

Nam, K. Y., Ko, S.R., and Choi, K.J. 1998. Relationship of saponin and non-

saponin for the quality of ginseng. Journal of Ginseng Research 22:274-283. 

 

Park, E. K., Choo, M. K., Kim, E. J., and Kim, D. H. 2003. Antiallergic activity of 

ginsenoside Rh2 (pharmacognosy). Biological and Pharmacutical Bulletin 

26:1581-1584. 

 

Park, J. H. 2004. Sun ginseng-a new processed ginseng with fortified activity. 

Food Industry and Nutrition 9:23-27. 

 

Park, S. Y, Jung, I., Jung, T. L., and Park, M. K. 2001. Difference between 

steaming and decocting ginseng. Journal of Ginseng Research 25:37-40. 

 

Park, M. H., Sohn, H. J., Jeon, B. S., and Kim, N. M. 1999. Studies on flavor 

components and organoleptic properties in roasted red ginseng marc. Journal of 

Ginseng Research 23:211-216. 



35 

 

 

Qi, L. W., Wang, C. Z., and Yuan, C. S. 2011. Isolation and analysis of ginseng: 

advances and challenges. Natural Proudct Reports 28:467-495. 

 

Reineccius, G. 2007. In Flavor chemistry and technology, 2nd ed. CRC Press, 

USA 

 

Shi, YSC., Zheng, B., Li, Y., and Wang, Y. 2010. Simultaneous determination of 

nine ginsenosides in functional foods by high performance liquid chromatography 

with diode array detector detection. Food chemistry 123:1322-1327. 

 

Shibata S, Tanaka O, Sato, M., and Tsushima, S. 1963. On genuine sapogenin of 

ginseng. Tetrahedron Letters 12:795-800. 

 

Shibata, S., Tanaka, O., Ando, T., Sado, M., Tsushimo, S., and Ohswa, T. 1966. 

Chemical studies on oriental plant drugs. ⅩⅣ. Protopanaxadiol, a genuine 

sapogenin of ginseng saponins. Chemical and Pharmaceutical Bulletin 14:595-600. 

 

Sohn, H. J., Lee, S. K., and Wee, J. J. 1997. Flavor characteristics of Korean red 

ginseng. Journal of Ginseng Research 24:148-152. 

 



36 

 

Takahashi, M., and Yoshikura, M. 1966. Studies on the compounds of Panax 

ginseng C.A. Meyer. V. On the structure of a new acetylene derivative 

‘‘panaxynol’’. Synthesis of 1,9-(cis)-heptadecadiene-4,6-diyn-3-ol. Yakugaku 

Zasshi 86:1051-1053. 

 

Vichi, S., Guadayol, J. M., Caixach, J., L´opez-Tamames, E., and Buxaderas, S. 

2006. Monoterpene and sesquiterpene hydrocarbons of virgin olive oil by 

headspace solid-phase microextraction coupled to gas chromatography/mass 

spectrometry. Journal of Chromatography A 1125:117-123. 

 

Wang, W., Zhao, Z.-J., Rayburn, E. R., Hill, D. L., Wang, H., and Zhang, R. 2007. 

In vitro anti-cancer activity and structure-activity relationships of natural products 

isolated from fruits of Panax ginseng. Cancer Chemotheraphy and Pharmacology 

59:589-601. 

 

Wild, S., Roglic, G., Green, A., Sicree, R., and King, H. 2004. Global prevalence 

of diabetes. Diabetes Care 27:1047–1053. 

 

Yoon, S. R., Lee, G. D., Kim, H. K., and Kwon, J. H. 2010. Monitoring of 

chemical changes in explosively puffed ginseng and the optimization of puffing 

conditions. Journal of Ginseng Research 34:59-67 



37 

 

 

Yoon, S. R., Lee, G. D., Park, J. H., Lee, I. S., and Kwon, J. H. 2010. Ginsenoside 

composition and antiproliferative activities of explosively puffed ginseng (Panax 

ginseng C. A. Meyer). Journal of Food Science 75:c378-c382 

 

Yoshihara, K., and Hirose, Y. 1975. The sesquiterpenes of ginseng. Bulletin of the 

Chemical Society of Japan 48:2078-2080. 

 

Yun, B. S., Lee, M. R., Oh, C. J., Cho, J. H., Wang, C. Y., Gu, L. J., Mo, E. K., 

and Sung, C. K. 2010. Characterization of black ginseng extract with acetyl-and 

butyrylcholinesterase inhibitory and antioxidant activities. Journal of Ginseng 

Research 34:348-354. 

 

Zhen, Y., Nan, H., H, M., Song C., Zhou, Y., and Gao, Y. 2013. Antiproliferative 

effects of protopanaxadiol ginsenosides on human colorectal cancer cells. 

Biomedical reports 1:555-558. 

 

 

 

 

 



38 

 

 

 

 

 

 

 

Chapter 2. 

The physicochemical properties of red ginseng 

by puffing process 

 



39 

 

2.1. Introduction 

 

Ginseng (Panax ginseng C. A. Meyer) is a flowering plant, which belongs to 

the Araliaceae family (Choi et al., 2014). The root of ginseng has been widely 

used as a traditional herbal medicine in Asia for its pharmacological effects over 

thousands of years (Gui and Ryu, 2014). Pharmacological effects of ginseng 

include anti-tumor, anti-inflammatory, anti-diabetic, and antioxidant activity 

(Bachran et al., 2008; Wang et al., 2011; Xie et al., 2005; Cho et al., 2008). The 

major bioactive components of ginseng are ginsenosides, polyaetylenes, phenolic 

compounds, alkaloids, acidic polysaccharides, and amino acids (Attele et al., 

1999).  

Ginseng deteriorates easily within a few days after harvest. So, the process for 

decreasing the moisture content of ginseng is necessary. Drying is the process, 

which is commonly used to maintain their desirable qualities and extend their 

shelf life. Currently, ginseng products are sold in the three types such as fresh 

ginseng, white ginseng, and red ginseng. White ginseng is produced by simple 

drying process of fresh ginseng, but red ginseng is manufactured by steaming and 

drying process of fresh ginseng (Jeong et al., 2015).  

It has been reported that red ginseng has more powerful pharmacological 

activities than white ginseng (Nam, 2005). The difference in the biological 

activities of red and white ginseng may result from a change in the chemical 
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constituents that occur during the steaming process (Ha et al., 2007). Several 

investigators have reported new ginsenosides from red ginseng, which are not 

usually found in fresh ginseng. These ginsenosides are Rg3, Rg5, Rg6, Rh2, Rh4, 

Rs3, and Rf (Park, 1996). 

Since it has been elucidated that red ginseng has a lot of bioactive components 

and numerous pharmaceutical activities, many manufacturers of ginseng have 

tried to develop the diverse functional food containing bioactive components of 

red ginseng. For utilization of ginseng as ingredient of functional food, it is 

necessary to extract the pharmacological components in the root of ginseng. But 

extraction process is difficult and time consuming work because ginseng has 

dense texture. Thus, researchers have investigated the production of expanded 

ginseng using extruder and explosive puffing process (Yoon et al., 2010). 

Extrusion, classified as a high-temperature short-time process, is a versatile, 

low cost, efficient, and widely used industrial technology for the continuous 

production of expanded product from cereals (Gui and Ryu, 2014). Recently, few 

studies have been conducted to improve the physical and chemical properties of 

extruded ginseng samples (Son et al., 2009). 

Explosive puffing is a fast and inexpensive method for drying of fruits and 

vegetables (Kozempel et al., 1989). Moisture in raw materials is converted to high 

temperature vapor through a continuous heating of the raw materials in a rotator 

cylinder. Sudden release of expanded water vapor pressure leads to structural 
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changes of raw materials such as corn, rice, and soybeans (Kim et al., 2007; Lee 

and Lee, 2009). According to the literature, potatoes, carrots, and apples have 

been successfully processed in puffing system (Du et al., 2013). 

Recently, explosive puffing process on the tail roots of dried red ginseng have 

been introduced to produce new types of ginseng products. Yang et al. (2006) 

analyzed the contents of total phenolic compounds and ginsenosides in red 

ginseng treated with high temperature and pressure treatment. Han et al. (2007) 

determined the changes of saponins, total sugars, acidic polysaccharides, phenolic 

compounds, microstructures and pepsin digestibility of the tail roots of dried red 

ginseng by puffing process. Yoon et al. (2010) predicted the optimum conditions 

of explosive puffing process for ginseng using response surface methodology.   

Although explosion puffing is an excellent processing method, there is no 

literature concerning the change of contents of free fatty acids, free sugars and 

free amino acids in puffed ginseng and red ginseng. To achieve a better explosion 

puffing technology and an increased consumption of puffed red ginseng, it is 

critical to fully understand various health-promoting components and their 

concentrations. The objective of this study was to evaluate the effect of explosive 

puffing process on the physicochemical properties of red ginseng. Therefore, the 

contents of the important bioactive compounds of red ginseng and puffed red 

ginseng were determined and compared.  
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2.2. Materials and Methods 

 

2.2.1. Materials  

Ginseng was kindly provided by a local manufacturer (Icheon, Gyinggido, 

Korea). Standards of amino acids and sugars were purchased from Sigma- Aldrich. 

(St. Louis, MO, USA). 22 standards of ginsenosides Rg1, Re, Rf, Rh1(S), Rg2(S), 

Rg2(R), Rh1(R), Rb1, Rc, F1, Rb2, Rb3, Rd, F2, Rg3(S), Rg3(R), PPT(S), 

PPT(R), compound K, Rh2(S), Rh2(R) and PPD (Felton Natural Products, 

Chengdu, P.R. China) were used. All solvents were chromatographic or HPLC 

grade (Merk). Other reagents including ethanol and acetic acid were ACS reagent 

grade.  

 

2.2.2. Free amino acids 

Two hundred milligrams of each sample was extracted by sonification in 10 mL 

of 70% ethanol for 1 h using a Bransonic 2210 sonicator (Danbury, CT, USA). 

Fifty microliters of internal standard (100 μmole/mL L-allylglycine) was added. 

The extracts were centrifuged at 6000xg for 20 min. The supernatant was pooled 

and evaporated under reduced pressure to dryness. To this, 1 mL of deinonizd 

water was added, respectively. The sample were analyzed by HPLC system, 

Dionex Ultimate 3000 (Dionex, Sunnyvale, CA) coupled with fluorescence 
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detector (Emission 450 nm, Excitation 340 nm) and UV detector (338 nm). 

Separations were carried out on an VDSpher 100 C18-E (4.6 mm x 150 mm, 3.5 

㎛, VDS optilab, Germany). The liquid chromatography system was run in binary 

gradient mode, buffer A (40 mM Na2HPO4, pH 7.0) and buffer B (3DW : 

Acetonitrile : Methanol = 10 : 45 : 45 %(v/v)) . The analytes were eluted via 

stepwise gradient mode at 40℃ with buffer A/buffer B 95:5 (3min), 45:55 (21 

min), 20:80 (7 min), 95:5 (4 min) at a flow rate of 1.5 mL/min. 

 

2.2.3. Free sugar 

One g of each sample was extracted by sonification in 20 mL of distilled water 

for 30 min at 50℃. The extracts were filtered through 0.45 ㎛ syringe filter and 

then analyzed using HPLC. A HPLC system, Dionex Ultimate 3000 (Dionex) 

equipped with a pump system, a refractive index detector (RI-101) was used for 

sugar analysis. Sugars in the non-puffed red ginseng and puffed red ginseng were 

analyzed onto a Sugar-pak column (300×6.5 mm) (Waters) and kept at 70°C. The 

analytical conditions used were as follows: flow rate 0.5 mL/min, eluent 3-D.W., 

injection volume 10 μL.  

 

2.2.4. Puffing 



44 

 

Panax ginseng C.A. Meyer was washed and steamed in an autoclave at 100℃ for 

2 h, and then dried at 70℃ until its moisture content was down to 14%. The 

steamed and dried ginseng (red ginseng) was used as a control sample.  Dried 

red ginseng tail root (3 kg) was put in the cylindrical chamber of rotary puffing 

machine with the maximum pressure 1.47 MPa. The cylindrical chamber was 

heated with propane gas burner during rotation at the speed of 20 rpm. When the 

inner pressure of chamber reached 0.30 MPa, the door of cylindrical chamber was 

opened to release the high vapor pressure. The puffed red ginseng was recovered 

for further analysis.  

 

2.2.5. Extraction yield 

Briefly, 50 g of red ginseng and puffed red ginseng was placed into a 2 L round 

flask and 1 L of 70% aqueous ethanol was added. The mixture was refluxed for 20 

h at 70℃. Three mL of the extracts of red ginseng or puffed red ginseng were 

filtered through Whatman #2 filter paper and the filtrate was transferred to a 

weighing bottle for moisture measurement. The weighing bottle was dried at 

105℃, cooled in a desiccator, and monitored until it reached the constant weight. 

When it reached the constant weight, the weight was compared to the weight of 

the empty bottle. The weight difference corresponded to the amount of the soluble 

solids of the sample. Extraction yield was calculated as follows:  
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  Extraction yield (g solid extract/100 g sample) = gram of solid extract/100 g of 

red ginseng or puffed red ginseng.  

 

2.2.6. Color analysis 

The color of the sample was determined using a Minolta Chromo Meter CR-

400 (Minolta, Tokyo, Japan).  Powdered samples were placed on a white 

standard plate to measure Hunter L, a, and b values. The color values were 

recorded in Hunter units: L = 0 (black or darkness) to L = 100 (white or 

brightness); a =−80 (greenness) to a = 100 (redness); and b = −80 (blueness) to b 

= 70 (yellowness). 

 

2.2.7. Ginsenoside analysis 

The ginsenosides of red ginseng and puffed red ginseng were analyzed 

according to the method of Ha et al. (2013). Ultra-high performance liquid 

chromatograph (u-HPLC) equipped with an autoinjection system using a fixed 

injection volume of 5 μL and an ultraviolet detector set to detect at 203 nm 

(Hitachi, Tokyo, Japan) was used. A LaChromUltra C18 short-length column (2 

mm i.d. x 50 mm L., 2 ㎛) and a LaChromUltra C18 middle-length column (2 

mm i.d. x 100 mm L., 2 ㎛) were used to analyzed the sample according to the 

method of Ha et al. (2013). The binary gradient elution solvents were prepared by 
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mixing 20% acetonitrile (solvent A) and 80% acetonitrile (solvent B). The 

gradient profile for the separation of the ginsenosides by u-HPLC was 100% A-

0% B (0 min), which maintained for 10 min. The gradient profile was 

subsequently changed linearly to 25% B in 30 min, 70% B in 10 min, 100% B in 

30 min and returned to 0% B in 5 min, which was then maintained for 5 min. The 

flow rate in the u-HPLC was 0.2 mL/min for the short-length column and 0.3 

mL/min for the middle-length column. The temperature of the analytical column 

was maintained at 30℃. Ethanol extract of ginsengs was dissolved in 20% 

aqueous acetonitrile solution, filtered through a 0.20 ㎛ PTFE membrane and 5 

μL of solution were analyzed. The concentrations of ginsenosides were calculated 

based on calibration curves for each standard compound. 

 

2.2.8. Fatty acid analysis by gas chromatography with a flame 

ionization detector (FID) 

Fatty acids were derivatized to fatty acid methyl esters (FAME) using BF3/ 

MeOH (14% boron trifluoride) with some modification of AOAC 969.33 (2000). 

Red ginseng and puffed red ginseng was pulverized and 15 g of fine powder was 

put in the porous thimble to extract the lipid. After extraction for 16 h, 

triundecanoin (C11:0), an internal standard, was dissolved in n-hexane and added 

to the extracted lipid to the concentration of 1,000 ppm (w/v) and solvent was 
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removed under nitrogen gas flow. Two mL of BF3 and 1mL of toluene was mixed 

in glass methylation tube and maintained for 45 min at 100℃. After cooling, 1 mL 

of hexane and 5 mL of distilled water was added to the vial. Fatty acid methyl 

esters were moved in hexane phase. The upper hexane layer was removed and 

concentrated under nitrogen gas. The residue was re-dissolved in 200 μL hexane, 

subsequently subjected to GC analysis. FAME was analyzed by Hewlett-Packard 

6890 gas chromatograph (Agilent Technologies) with a FID, and a DB-23 column 

(60 m x 0.32 mm i.d., 0.25 mm film thickness) from J&W Scientific (Folsom, CA, 

USA). The oven temperature started at 100°C for 1 min, increased to 195°C at 

15°C/min, to 210°C at 1°C/min, and to 240°C at 5°C/min and held at 240°C for 

7.5 min. The temperatures of both injector and detector were 260°C. The flow rate 

of helium carrier gas was 1.1 mL/min, the injection volume was 1 mL, and the 

split ratio was 1:50. Peaks of GC chromatograms were identified comparing the 

retention times of a mixture of standard fatty acid methyl esters (Sigma-Aldrich). 

Each peak of fatty acid was quantified using an equivalent of the concentration of 

the internal standard. Samples were separately analyzed in triplicate. 

 

2.2.9. Crude fat analysis   

Crude fat in samples was determined using the Soxhlet method. The gram of 

ground sample was placed in a porous thimble. Solvent was diethylether and 
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extraction was continued for 8 h. 

 

2.2.10. Statistical analysis 

The Data were analyzed statistically by independent-paired t-test using SPSS 

software program (SPSS Inc., Chicago, IL, USA). Significant differences were 

defined at p < 0.05. 
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2.3. Results and Discussion 

 

2.3.1. The change of extraction yield 

The extraction yield of non-puffed red ginseng and puffed red ginseng was 

shown in Table 2-1. The extraction yields (16.7-42.2%) from puffed red ginseng 

showed higher than those from non-puffed red ginseng (9.0-32.7%) at all 

extraction times. The tendency of increase in the extraction yield after puffing was 

well agree with the study by An (2011), who reported that extraction yield 

increased from 29.7% at 4 h to 45.7% at 24 h after puffing red ginseng. Kim et al. 

(2008) obtained the highest extraction yield (61.9%) from the puffed red ginseng, 

which is puffed at 10 kgf/㎠. Yoon et al. (2010) also reported that extraction yields 

in explosively puffed ginseng at 98, 294, and 490 kPa were 53.93%, 55.87%, and 

57.00%, respectively. This means that the puffing pressure has an effect on the 

extraction yield. Mariotti et al. (2006) elucidated that the new organization of the 

outer layers with the high porosity of the matrix was responsible for the rapid 

hydration of the puffed material and the predominance of capillary water 

absorption. Therefore, the increase of extraction yield in puffed red ginseng could 

be explained by the fact that explosive puffing process softened the rigid cell wall 

structure and induced expanded and porous structure to make the solvent access 

easy (An et al., 2011). As shown in Table 2-1, extraction yield from both puffed 
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and non-puffed red ginsengs gradually increased with extraction time but yields 

did not increase drastically at times greater than 16 h. This suggests that extraction 

for 16 h economically provides optimal yield in terms of time and energy.  
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Table 2-1. Changes in extraction yield (%) of puffed and non-puffed red 

ginseng  

 

Sample 
Extraction time (h) 

4 8 12 16 20 

Non-puffed red ginseng 9.0±0.2 14.8±0.4 23.4±0.2  29.7±1.8 32.7±0.7 

Puffed red ginseng 16.7±0.4* 26.1±0.3* 33.5±0.5* 40.7±0.4* 42.2±0.2* 

a mean±standard deviation (n=3) 

bIn the same column, data with ‘*’ were significantly different from each other at 

α=0.05 
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2.3.2. Ginsenoside analysis 

The amount and composition of ginsenoside are presented in Table 2-2 and 

Table 2-3. The ginsenoside content of non-puffed red ginseng and puffed red 

ginseng was 11.98 mg/g, and 13.65 mg/g, respectively. This result is similar to the 

study of Kim et al. (2008), which reported that the total content of major 

ginsenoside (Rb1, Rb2, Rc, Rd, Re and Rg1) in puffed red ginseng was higher 

than that of non-puffed ginseng. In that report, the total content of major 

ginsenoside (Rb1, Rb2, Rc, Rd, Re and Rg1) was 7.23 mg/g in comparison to 

non-puffed ginseng, 5.40 mg/g. Yoon et al. (2010) reported that puffing treatment 

of dried raw ginseng roots at 294 kPa induced an increase in the content of main 

ginsenoside (Rb1, Rb2, Rc, Rd, Re, Rg1 and Rg3) compared to red ginseng from 

6.90 mg/g to 7.82 mg/g. There is another study that shows different result with 

this study. An et al. (2011) elucidated that the major ginsenosides (Rb1, Rb2, Rc, 

Rd, Re and Rg1) of red ginseng decreased from 13.32 mg/g to 9.39 mg/g through 

puffing at 686 kPa, while the minor ginsenosides (Rg3, F2, Rk1 and Rg5) 

increased from 0.5 mg/g to 7.39 mg/g. In this study, the content of major 

ginsenosides increased from 11.54 mg/g to 12.96 mg/g and the content of minor 

ginsenosides (Rg2, Rg3, Rh1) increased from 0.44 mg/g to 0.70 mg/g after 

puffing process. Among minor ginsenosides, Rg3(S) increased by 25 times, from 

0.08 mg/g to 0.20 mg/g. Experimental studies have demonstrated that ginsenoside 

Rg3 could inhibit cancer cell growth by promoting the apoptosis of cancer cells 
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and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, 

gastric, liver and lung cancer (Nam et al., 2014). According to Ha et al. (2007), 

ginsenoside Rg3 is typically considered as a unique ginsenoside which only exists 

in red ginseng products. Rg3 was naturally absent in white ginseng but was 

produced by a thermal process like steaming white ginseng at 98 to 100℃ for 2 to 

3 h. Kang et al. (2013) reported that the concentrations of less-polar ginsenosides 

(20(S)-Rg3, 20(R)-Rg3) in P. ginseng were significantly increased in a heat-

processing temperature-dependent manner. They also observed that the formation 

of Rg3 was associated with the breakdown of the more abundant ginsenoside Rc. 

Ginsenoside Rg3, which contains two glucose residues bound to C-3, is formed 

through the thermal decomposition of glucoses linked at the C-20 residue in 

ginsenosides of the 20 (S)-protopanaxadiol (PPD) type (Rb2, Rc, and Rd) (Nam, 

2005).  

The puffed red ginseng is produced by releasing high pressure in the cylindrical 

chamber. This process can reduce processing time (within 10 min) as compared to 

the conventional ginseng process. So, puffing process could be an alternative 

method to produce ginseng with increased amount of bioactive ginsenoside Rg3.
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Table 2-2. Comparison of ginsenosides belonging to main group in non-puffed red ginseng and puffed red 

ginseng 

 

Sample 
Ginsenoside content (mg/g) 

Rb1 Rb2 Rb3 Rc Rd Re Rf Rg1 Total 

          

Red ginseng 3.13±0.11 1.43±0.05 0.25±0.02 1.44±0.04 0.26±0.01 2.28±0.09 0.65±0.03 2.10±0.04 11.54±0.21 

Puffed red 

 ginseng 
4.35±0.19* 1.13±0.04* 0.19±0.02* 1.27±0.06* 0.27±0.01 2.53±0.02* 0.80±0.02* 2.42±0.06* 12.96±0.27 

a mean±standard deviation (n=3) 

bIn the same column, data with ‘*’ was significantly different from each other at α=0.05 
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Table 2-3. Comparison of ginsenosides belonging to minor group in non-puffed red ginseng and puffed red 

ginseng 

 

Sample Ginsenoside content (mg/g) 

 
Rg2(S) Rg2(R) Rg3(S) Rg3(R) Rh1(S) Rh1(R) Total 

Red ginseng 0.20±0.00 0.05±0.01 0.08±0.01 0.05±0.01 0.04±0.01 0.02±0.00 0.44±0.14 

Puffed red 

 ginseng 
0.26±0.02* 0.06±0.01 0.20±0.01* 0.09±0.01 0.06±0.00 0.03±0.00 0.70±0.09 

a mean±standard deviation (n=3) 

bIn the same column, data with ‘*’ were significantly different from each other at α=0.05 
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2.3.3. Free amino acids 

Table 2-4 summarizes the contents of twenty free amino acids including GABA 

in non-puffed red ginseng and puffed red ginseng. Total content of free amino 

acids, 12.7 mg/g in non-puffed red ginseng was reduced to 7.1 mg/g in puffed red 

ginseng. Cho et al. (2008) compared the total content of free amino acids in white 

ginseng, red ginseng (steamed at 100℃) and steamed ginseng (steamed at 120℃). 

They reported that the total content of free amino acids in white ginseng (17.9 

mg/g) was reduced to 12.2 mg/g in red ginseng (steamed at 100℃) and 2.79 mg/g 

in steamed ginseng (steamed at 120℃). The content of most of the amino acids 

except for histidine, tyrosine and valine, decreased after puffing process. The 

major amino acids were arginine (4.39 mg/g), asparagine (0.60 mg/g), GABA 

(0.31 mg/g), aspartic acid (0.28 mg/g), and alanine (0.46 mg/g) after puffing 

process while the predominant amino acids in red ginseng were arginine (8.6 

mg/g), asparagine (0.79 mg/g), GABA (0.72 mg/g), aspartic acid (0.53 mg/g), 

alanine (0.46 mg/g).  The reduction of amino acid with the intensity of the steam 

treatment means that instability at high temperature and amino carbonyl reaction 

is one of the reasons. There is report that some of amino acids increased after heat 

treatment. In the experiment about the effect of steaming on the free amino acid 

contents, aspartic acid increased when white ginseng was changed to red ginseng 

(Cho et al., 2008).  
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  By the report of Nam (2005), arginine is main amino acid and takes 60% of 

total free amino acids in the ginseng. In this study, the content of arginine (4.39 

mg/g) was decreased greatly after puffing process, compared to that of red 

ginseng (8.62 mg/g). This result agrees well with the study of Cho et al. (2008) in 

which the content of arginine was abruptly reduced after steaming process. But 

the decrease of arginine content induced by steaming was larger than that by 

puffing process. This difference presumably results from accelerated Maillard 

reaction, which is in line with the report that high temperature, high relative 

humidity, and alkaline conditions all promote browning reaction when working 

with reducing sugars found in food. (Nam, 2005; Turkmen et al., 2006). In other 

words, puffing process has relatively little adverse effect on the nutritional 

characteristics such as the loss of amino acids. Like this, although puffing process 

causes the loss of amino acids, it also produces the brown color substance that has 

antioxidant activity in food (Suzuki et al., 2004). Therefore, it is more important 

to maintain the puffing condition not to deteriorate the quality of puffed red 

ginseng.  
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Table 2-4. The contents of free amino acids (mg/g of dry matter) in non-puffed red 

ginseng and puffed red ginseng 

 

Amino acid 
Non-puffed red 

ginseng 

 
Puffed red ginseng 

 
Mean SD  Mean SD 

Aspartic acid 0.526 0.005  0.282* 0.003 

Glutamic acid 0.048 0.004  0.048 0.006 

asparagine 0.785 0.005  0.603* 0.002 

Serine 0.128 0.008  0.137* 0.004 

Glutamine 0.574 0.002  0.018* 0.003 

Histidine 0.077 0.003  0.113* 0.009 

Glycine 0.017 0.006  0.016 0.001 

Threonine 0.117 0.008  0.110 0.008 

Arginine 8.636 0.012  4.388* 0.003 

Alanine 0.463 0.004  0.462 0.002 

GABA 0.724 0.006  0.310* 0.006 

Tyrosine 0.072 0.005  0.122* 0.010 

Valine 0.070 0.002  0.104* 0.003 

Methionine 0.015 0.008  0.007 0.001 

Tryptophane 0.063 0.005  0.088 0.002 

Phenylalanine 0.079 0.007  0.092 0.003 

Isoleucine 0.070 0.003  0.076 0.005 

Leucine 0.083 0.004  0.063 0.003 

Lysine 0.064 0.005  0.070 0.001 

proline 0.039 0.007  0.012 0.002 

Total content 12.650 0.081  7.119 0.041 
aGABA: γ-aminobutyric acid 
bIn the same row, data with ‘*’ were significantly different from each other at α=0.05 
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2.3.4. Free sugars 

Four of free sugars, maltose, glucose, mannose and fructose were determined as 

sugar components in red ginseng and puffed red ginseng. Maltose is present in the 

largest amounts for red ginseng (233.83 mg/g) and puffed red ginseng (130.46 

mg/g), account for about 97.9% and 90.6% of total sugar content in red ginseng 

and puffed red ginseng, respectively. Total amounts of sugar were 238.78 mg/g 

and 143.92 mg/g in red ginseng and puffed red ginseng, respectively (Table 2-5). 

The decrease of free sugar contents in the puffed red ginseng is attributed to heat 

decomposition of disaccharide at high temperature and participation in the 

Maillard reaction. Lee et al. (2006) reported that among sugar tested, maltose 

resulted in the greatest acceleration of browning followed in decreasing order by 

glucose and lactose, whereas pentose, fructose, sucrose and raffinose had 

negligible effect.  

The Maillard, or nonenzymatic browning reaction between carbonyl and amino 

groups is a common reaction in foods which undergo thermal processing. As is 

well known, browning reactions are very complex and a lot of different products 
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may be formed from sugars, depending on the conditions used. Generally, the 

Maillard reaction is a desirable consequence of many industrial and domestic 

processes and is responsible for the attractive flavor and brown color of some 

cooked foods. On the other hand, undesirable consequence of the Maillard 

reaction in foods is the destruction of some essential amino acids, such as lysine. 

In addition to this, cytotoxicity, mutagenicity, and immunochemical aspects of 

selected Maillard reaction products have also been examined (O’Brien and 

Morrissey, 1989).  

In the process of steaming to make red ginseng, maltose reacts with amino acid 

like arginine and produces 4-O-α-D-glucosyl-1-deoxy-2,3-diketosaccharide. Since 

this compound is unstable, 2 ketone group and C-6-hydroxyl group condensate to 

be glycoside B. After that, glycoside B takes further hydrolysis of glucose and 

rearrangement to be maltol (Li, 1992). Therefore, it was considered that puffing 

process may accelerate the reaction of maltose and amino acids in red ginseng to 

produce maltol. 

 After puffing process, the contents of fructose, glucose and mannose increased 
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1.96-fold, 1.72-fold, and 13.2-fold, respectively. Ko et al. (1996) reported that the 

content of glucose and fructose increased 27.5% and 15%, respectively as white 

ginseng was changed into red ginseng by steaming process. The contents of free 

sugars showed a tendency to increase as heating temperatures were increased 

(Kwak et al., 2008). 
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Table 2-5. The contents of free sugars (mg/g of dry matter) in non-puffed red 

ginseng and puffed red ginseng 

Free sugar 
Non-puffed red 

ginseng 

 
Puffed red ginseng 

 
Mean SD  Mean SD 

Maltose 233.83 0.02  130.46* 0.04 

Glucose 3.87 0.03  6.68* 0.02 

Mannose 0.61 0.02  5.42* 0.03 

Fructose 0.46 0.01  1.36* 0.01 

Total content 238.78   143.92  

aIn the same row, data with ‘*’ were significantly different from each other at 

α=0.05. 
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2.3.5. Color measurement 

The color analysis results of the puffed red ginseng and red ginseng are shown 

in Table 2-6. The three Hunter color parameters measured, L (lightness), a 

(greenness-redness), and b (blueness-yellowness), were significantly affected (p < 

0.05) by the puffing process. The L value (76.72) of red ginseng was higher than 

that of puffed red ginseng (62.90). It means that the puffed red ginseng is darker 

than red ginseng. Park et al. (1993) reported in the study of roast ginseng that the 

color distribution of roast ginseng demonstrated lower L values and higher a 

values were observed according to higher temperature, while b values were almost 

not changed. Yoon et al. (2010) studied the effect of the explosive puffing process 

on the color of ginseng and noted that the puffed red ginseng at higher pressure 

was darker than that of red ginseng. This result may come from the formation of 

some Maillard reaction products, which cause darkening of the ginseng.  

An increase in Hunter a value, indicating increase in redness, was observed in 

the puffed red ginseng as compared to red ginseng. The Hunter a values of red 

ginseng and puffed red ginseng were 2.68 and 7.35, respectively. The result 
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showed that the color of puffed red ginseng turned to be red but the difference 

was little. This result may be due to the increase in the formation of Maillard 

reaction products. Generally, the formation of such products increases 

temperature dependently. It has been reported that Maillard reaction products are 

formed from the reaction of the free amino group of amino acids with the 

carbonyl group of a reducing sugar during thermal treatment of raw ginseng 

below 100℃ and in the drying period after steaming (Suzuki et al., 2004). The 

Hunter b value represents the change from blue to yellow. The Hunter b values 

were obtained as 20.09 in red ginseng and 20.95 in puffed red ginseng. It indicates 

that the puffed red ginseng has a tendency to be yellow. When people choose the 

food, the selection point is its various appearance characteristics, such as its color, 

surface structure, and shape. Color of ginseng, in particular, is an important 

sensory attribute to determine the consumer acceptability. As the result of color 

measurement, the difference of L between the puffed red ginseng and non-puffed 

red ginseng was not degree to affect to consumer acceptability. 
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Table 2-6. Comparison of Hunter color values of red ginseng and puffed red 
ginseng. 

 L a b 

Red ginseng 76.72±0.35 2.68±0.05 20.09±0.29 

Puffed red ginseng  62.90±0.62*  7.35±0.38*  20.95±0.43* 

a mean±standard deviation (n=3) 

bIn the same column, data with ‘*’were significantly different from each other at 
α=0.05 
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2.3.6. Analysis of crude lipid and fatty acid 

The effect of puffing process on the lipid content and fatty acid composition of 

red ginseng were investigated. The content of crude lipid was decreased from 

1385 mg/100 g solid to 1058 mg/100 g solid after puffing. This result is due to the 

oxidation of fat by the high heat treatment in the puffing process of red ginseng. 

Ko et al. (1996) reported that the content of crude lipid in white ginseng and red 

ginseng was 1180 mg/g and 1140 mg/g, respectively. Six free fatty acids 

including palmitic acid were isolated and identified from red ginseng and puffed 

red ginseng. As shown in Table 2-7, linoleic acid showed the highest content 

among six fatty acids identified. The contents were 68.7% of the total free fatty 

acids in red ginseng and 68.9% in puffed red ginseng. Zhang et al. (2013) reported 

linoleic acid (C18:2 n-6), palmitic acid (C16:0) and oleic acid (C18:1 n-9) were 

main fatty acids in Panax ginseng C.A. Meyer. There was the change of 

composition of free fatty acids after puffing process. Palmitoleic acid was 

detected in the puffed red ginseng and the ratio of unsaturated fatty acids in the 

puffed red ginseng was higher than that of red ginseng. The unsaturated fatty 

acids, including monounsaturated fatty acids (MUFA) and polyunsaturated fatty 

acids (PUFA), are health-promoting components. This means fatty acids in red 

ginseng might partly contribute to the whole beneficial effects of red ginseng 

together with ginsenosides and polysaccharides. Also, the free fatty acid profile 
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has been suggested as an indicator for determining the authenticity of red ginseng 

(Zhang et al., 2013). 
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Table 2-7. Fatty acid composition of non-puffed red ginseng and puffed red 

ginseng (mg%) 

Fatty acid Non puffed red ginseng Puffed red ginseng 

Palmitic acid (C16:0) 280.96±0.96 185.11±0.91* 

Palmitoleic acid (C16:1) 0.00 16.49±0.06* 

Stearic acid (C18:0) 23.96±0.14 17.60±0.06* 

Oleic acid (C18:1) 71.71±0.72 67.66±1.07* 

Linoleic acid (C18:2) 951.71±1.31 728.74±0.48* 

Linolenic acid (C18:3) 57.41±0.21 42.79±0.23* 

Total fatty acid 1385 1058 

SFA(%) 22.00 19.15 

USFA(%) 78.00 80.85 

SFA/UFA 0.28 0.24 

Crude fat(mg/100g) 1385 1058 

a mean±standard deviation (n=3) 

bIn the same row, data with ‘*’were significantly different from each other at 

α=0.05 
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2.4. Conclusions 

 

The effects of puffing process on the extraction yield, ginsenoside content and 

the change of physicochemical properties of ginseng were investigated. Puffed red 

ginseng showed higher extraction yields than those of non-puffed red ginseng at 

all extraction times. As the result of analyzing the amount of ginsenoside after 

puffing, the contents of major and minor ginsenosides were both increased. 

Among minor ginsenosides, Rg3(S) with anti-cancer activity was increased by 25 

times in comparison to red ginseng. Total content of free amino acids decreased 

after puffing due to the instability at high temperature and amino carbonyl 

reaction. In particular, the content of arginine was greatly reduced after puffing 

process. Puffing influenced the content of free sugars, as revealed by the decrease 

of maltose, glucose, mannose, and fructose. Puffing process induced a color 

change by browning reaction. Puffed red ginseng showed lower L value (darker) 

and higher a value than that of red ginseng. There was the change of composition 

of free fatty acids after puffing process. Palmitoleic acid was detected in the 

puffed red ginseng. Based on these results, puffing process could be an alternative 

technology to produce biofunctional red ginseng products with the advantage of 

short extraction time. 
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Chapter 3. 

 

Increases of 2-furanmethanol and maltol in Korean 

red ginseng during explosive puffing process 
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3.1. Introduction 

 

Ginseng (Panax ginseng C.A. Meyer) has been cultivated and consumed as a 

medicinal herb in East Asia for a long time. Red ginseng is produced by steaming 

fresh ginseng first, and then drying the steamed ginseng while white ginseng is 

made of fresh ginseng by drying process only (Cho et al., 1995). Sensory 

evaluation has shown that fresh ginseng has strong fresh, earthy, herbaceous, and 

floral flavor notes, while steamed ginseng has only moderate earthy flavor notes. 

Red ginseng has strong fragrant, sweet, and roast flavor notes (Lee et al. 2005). 

Major volatile compounds identified in ginsengs are monoterpenes, esters, ethers, 

and sesquiterpenoids such as α-gurjunene, α-guaiene, β-patchoulene, (-

)aromadendrene, and β-elemene (Park et al., 1985; Richter et al., 2005). Iwabuchi 

et al. (1989) reported that 3-sec-butyl-2-methoxy-5-methyl pyrazine from ether 

extracts of white ginseng was the characteristic flavor of white ginseng, and 

sesquiterpene alcohols with a mass of 220 or 222 including ginsenol, panasinsenol 

A, panasinsenol B, (+)-spathulenol, (-)-4β,10α-aromadendrandiol, and (-)-
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neointermedeol were also identified in ether extracts of white ginseng. Lee et al. 

(2005) elucidated the characteristic aroma component of red ginseng as 3-

hydroxy-2-methyl-pyran-4-one or maltol through a combination of GC/MS and 

nuclear magnetic resonance (NMR) spectrometry.  

Puffing has been used to alter the structural characteristics of foods such as 

puffed rice and to improve the rehydration characteristics of air-dried fruits and 

vegetables (Payne et al., 1989). Explosive puffing heats raw material with 

superheated steam, holds it under pressure for some time, and then releases the 

pressure suddenly to expand the product. In the course of puffing process using 

high temperature and high pressure, diverse chemical reactions including 

browning reaction can be occurred and there is possibility that characteristic 

volatile compounds can be produced. Recently, Korean ginseng has been puffed 

using a rotary gun puffing machine to produce new types of ginseng products (An 

et al., 2011). Han et al. (2008) puffed the tail roots of red ginseng and reported 

volatile changes using a simultaneous steam distillation and extraction method. 

Although explosive puffing process could provide different physicochemical 
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properties in red ginseng, studies on the changes of volatile distribution and 

microstructure in puffed red ginseng are rare in the literature. 

Headspace-solid phase microextraction (HS-SPME) is a rapid, solvent-free, and 

simple method for volatile analysis and has been widely applied to many types of 

foods including fruit juices (Foley et al., 2002), fats and oils (Lee et al., 2007), 

and dairy products (Lee et al., 2003). Previous studies for volatile analysis of 

ginseng used steam distillation, solvent extraction (Sohn et al., 2000; Lee et al., 

2005), or solvent-free solid injector vaporization (Abd El-Aty et al., 2008). HS-

SPME study on the profiles changes of volatiles from red ginseng has been 

reported (Ryu et al., 2002) while to my knowledge, no literature is available on 

the volatile profiles from puffed red ginseng by HS-SPME. 

The objectives of this study were to analyze the volatiles from puffed red 

ginseng using HS-SPME method and to identify characteristic volatiles in puffed 

red ginseng. 
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3.2. Materials and Method 

 

3.2.1. Materials  

Panax ginseng C.A. Meyer was purchased at a wholesale market in Keumsan, 

Korea in autumn of 2005. 2-Furanmethanol and maltol were obtained from Wako 

Chem. Co. (Osaka, Japan) and Sigma-Aldrich (St. Louis, MO, USA), respectively. 

Standard volatile compounds and n-paraffin were purchased from Sigma-Aldrich, 

Teflon-coated rubber septa, 65 µm polydimethylsiloxane/divinylbenzene 

(PDMS/DVB), aluminum caps, serum bottles, and a SPME fiber assembly holder 

were purchased from Supelco, Inc. (Bellefonte, PA, USA).  

 

3.2.2. Sample preparation  

Panax ginseng C.A. Meyer was washed and steamed in an autoclave at 100℃ 

for 2 h, and then dried at 70℃ until its moisture content was down to 14%. The 

steamed and dried ginseng or red ginseng was used as a control sample. Explosive 

puffing facilities were composed of a cylindrical drum, heating unit with propane 
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gas and a motor for rotating the drum (JSP021, Jinsung, Seoul, Korea). Red 

ginseng was put in the cylindrical drum, which was rotated at the speed of 20 rpm. 

The temperature and time of the cylindrical drum were maintained at 120~150℃ 

and for 30 min, respectively. When the inner pressure of the drum reached to 1.47 

MPa, the door of cylindrical drum was opened to release the high vapor pressure. 

The puffed red ginseng was recovered for further analysis. 

 

3.2.3. Scanning electron microscopy (SEM)  

A scanning electron microscope (JSM 5410LV; JEOL, Tokyo, Japan) was used 

to observe the microstructure of red and puffed red ginsengs. About 3 g of dried, 

finely ground sample was placed on double-sided tape, mounted on an aluminum 

specimen holder, coated with a thin film of gold, and examined at 20 kV. 

 

3.2.4. HS-SPME analysis of volatile compounds 

One gram of samples was put in 10 mL bottles and left in the dark at room 

temperature for 30 min for the equilibrium of volatiles in the headspace of the 
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bottles. Sample bottles were prepared in triplicate. The volatile compounds in 

samples were isolated by 65 µm PDMS/DVB solid phase at 30°C for 30 min in a 

water bath. The isolated volatile compounds were analyzed in a gas 

chromatograph equipped with a mass selective detector (MS).  

GC/MS conditions for volatile analysis were adapted from Lee et al. (2009) 

with slight modification. Briefly, a Hewlett-Packard 6890 GC-5975B mass 

selective detector (MS) (Agilent Technology 5973, Palo Alto, CA, USA) equipped 

with a 30 m × 0.25 mm i.d., 0.25 µm film thickness, HP-5ms column was used. 

The oven temperature was programmed starting at 40°C for 2 min and increased 

from 40 to 160°C at 6°C/min and from 160 to 220°C at 10°C/min and held for 

3min. Helium carrier gas flow rate was at 0.6 mL/min (10.3 kPa). The isolated 

volatile compounds in the solid phase of SPME were desorbed at 250°C for 2 min 

in a GC injector. All mass spectra were obtained at 70 eV and 230°C ion source 

temperature. Identification of compounds was tentatively made by the 

combination of NIST Mass Spectra, linear retention indices (RI) of each 

compounds using n-paraffin (C 5, 6, 7, 8, 10, 12, 14, and 16) as external 



84 

 

references, and gas chromatographic retention times of some standard compounds.  

Selective ion monitoring (SIM) analysis was conducted to detect target 

compounds in the chromatograms of GC/MS. A mass to charge ratio of 98 and 

126, which are molecular weight of 2-furanmethanol and maltol, respectively, 

were used to detect these volatile peaks in mass spectra from red and puffed red 

ginsengs.  

 

3.2.5. Statistical analysis 

The results of SIM analysis for detecting 2-furanmethanol and maltol were 

analyzed statistically by ANOVA and Duncan’s multiple range test using SPSS 

software program (SPSS Inc., Chicago, IL, USA). A p value of 0.05 or less was 

considered significant.  
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3.3. Results and Discussion 

 

3.3.1. Puffing effects on the structures of red ginseng 

SEM photographs of red and puffed red ginsengs are shown in Fig. 3-1. Large 

changes in the surface structures caused by explosive puffing were clearly 

observed in both scanning electron micrographs magnified by 1000 and 2000 

times (Fig. 3-1). Puffed red ginseng had a more porous structure and smaller 

pieces than red ginseng. Surfaces of observed structures in red ginseng were 

relatively smooth, while those in puffed red ginseng were coarse and scattered. 

The high pressure of vapor during sudden explosive puffing may lead to swelling 

of the matrix and rupturing of inner structures to outside.  

Puffing process has been introduced to various grain products to modify 

textural properties and sensory qualities. Mariotti et al. (2006) puffed cereal grains 

and reported that size of puffed grains was enlarged and ultrastructure, especially 

the distribution of porosity, was radically changed. As expected, explosive puffing 

induced substantial changes in the microstructure of red ginseng. 
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Fig. 3-1. SEM photographs of red and puffed red ginsengs. Pictures of: a) red 

ginseng x 1000 magnification, b) puffed red ginseng x 1000 magnification, c) 

red ginseng x 2000 magnification, and d) puffed red ginseng x 2000 

magnification. 

 

a b 

c d 
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3.3.2. Distribution of volatiles in red and puffed red ginsengs 

Distributions of major volatiles in red and puffed red ginsengs are shown in 

Table 3-1. The number of identified volatile peaks from red and puffed red 

ginsengs was 20 and 17, respectively. Red ginseng had 4 alcohols, 4 aldehydes, 2 

acids, 5 terpenoids, 2 ketones and 3 other volatiles, while puffed red ginseng had 3 

alcohols, 13 terpenoids, and 1 acid. Total peak areas of volatiles from red and 

puffed red ginsengs were 3.85 x 108 and 7.02 x 108 ion counts, respectively. 

Puffed red ginseng possessed 87% more total peak areas than red ginseng. 

Hexanal, Δ-selinene, and β-panasinsene were major volatiles in red ginseng, and 

α-gurjunene, β-panasinsene, and calarene were identified as main volatiles in 

puffed red ginseng. Hexanal, heptanal, 2-pentyl furan, 1-octen-3-ol, and octanal in 

red ginseng are typical volatiles generated from lipid oxidation (Frankel, 1985; 

Lee et al., 2009). Generally, red ginseng is produced through first steam treatment 

and then drying process, which may accelerate the lipid oxidation in red ginseng. 

α-Gurjunene, β-panasinsene, calarene structurally belong to sesquiterpenes. 

They could be generated from Δ-selinene, which was drastically decreased after 
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puffing process through internal shifts of electron pairs and hydride shift along 

with ring opening.  Volatiles from lipid oxidation are relatively low molecular 

weight compounds and these compounds may be evaporated easily into the 

atmosphere with high moisture vapor pressure during explosive puffing process. 

Therefore, remained major volatiles in puffed red ginseng are terpenoids with 

relatively high molecular weight and low volatility.  

Two peaks with the retention time of 7.60 and 14.53 min, were greatly 

increased in puffed red ginseng compared with those in red ginseng. These two 

peaks were identified as 2-furanmethanol and maltol later. Also, they were 

constantly detected and reported as major compound for characteristic fragrant in 

red ginseng by the studies of other researchers (Lee et al., 2005; El-Aty et al., 

2008). The production via Maillard reaction in ginseng was elucidated. In addition, 

considering the antioxidative activity of maltol and 2-furanmethanol (Wei et al., 

2001), they could be used as biomarkers to discriminate puffed red ginseng from 

other types of ginseng without puffing process. 

The changes of volatiles in ginseng have been studied through diverse analysis 
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methods and processing conditions. Han et al. (2008) puffed the tail roots of red 

ginseng and reported the increases of terpenes and furans and the decrease of 

alcohols, aldehydes, and acids in puffed red ginseng. Lee et al. (2005) used gas 

chromatograph equipped with an electric nose unit with metal oxide sensors to 

differentiate profiles of volatiles from fresh, steamed and red ginsengs. Sohn et al.  

(1997) used sensory evaluation and headspace volatile analysis for the comparison 

of red ginseng from Korea and China. Red ginseng from Korea had sweet and 

pleasant odor, while China-originated red ginseng possessed earthy, woody and 

hay notes. In this study, explosive puffing process clearly increased the total peak 

areas of volatiles and changed the profiles of volatiles from red ginseng. Red 

ginseng possessed more volatile compounds from lipid oxidation, while puffed 

red ginseng had more terpenoids including aristolene, β-panasinsene, and calarene 

(Table 3-1). However, the profiles of volatiles from ginseng samples by HS-

SPME analysis may not be compared directly with those by electronic nose 

method or by solvent extraction because the distribution of volatiles depends on 

the volatile extraction and concentration methods greatly.
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Table 3-1. Total peak areas and major volatiles identified in red and puffed red ginsengs 

 

RT1 RI2 Volatile compounds Aroma description3 
Relative percent (%) 

ID4 Red 
 ginseng 

Puffed red 
ginseng 

2.11 - Ethanol ethanol-like, pungent, sweet 8.92 3.08 MS/RS 
3.06 616 Acetic acid sour, vinegar, pungent ND5 0.97 MS/RI 
5.39 748 Toluene pungent, caramel, solvent-like 3.32 ND MS/RI/RS 
6.17 784 Hexanal green, fruity, fishy, grassy 19.42 ND MS/RI/RS 
7.60 836 2-Furanmethanol weak, creamy, burnt sugar 0.20 5.86 MS/RI 
7.91 847 Xylene geranium, oily, fatty, pungent 2.23 ND MS/RI/RS 
8.76 879 Heptanal green, rancid, pesticide, solvent 3.75 ND MS/RI/RS 

10.40 939 Benzaldehyde burnt sugar, almond 2.08 ND MS/RI/RS 
10.88 956 1-Octen-3-ol mushroom, soap, plastic 1.89 ND MS/RI/RS 
11.22 969 2-Pentyl furan buttery, green bean-like 4.29 ND MS/RI/RS 
11.42 976 Hexanoic acid sweaty, pungent, goat-like, rancid 4.42 ND MS/RS 
11.53 980 Octanal stew-like, boiled meat, rancid, soapy 7.59 ND MS/RI 
12.50 1017 3-Octene-2-one - 3.45 ND MS 
13.34 1050 3,4-Octadiene-2-one - 1.85 ND MS 
14.53 1096 Maltol caramel-like 0.24 3.99 MS/RI/RS 
16.51 1174 Octanoic acid fatty acid, cheese, fresh, moss 2.19 ND MS/RI 
19.94 1319 Bicycloelemene - ND 0.86 MS 
20.48 1343 Longiborn-8-nen - ND 0.90 MS 
21.04 1366 β-Panasinsene - 9.88 11.82 MS/RI/RS 
21.18 1372 β-Elemene waxy, herbaceous 4.19 5.91 MS/RI 
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( continued ) 
21.84 1402 Caryophyllene oily, fruity, woody ND 2.43 MS/RS 
22.14 1418 Calarene - 5.21 8.13 MS 
22.26 1425 Aromadendrene - ND 2.88 MS/RS 
22.55 1441 Δ-Selinene - 10.81 ND MS/RI 
22.71 1443 α-Gurjunene Earthy, Mango-like ND 18.64 MS/RI 
22.86 1458 trans-Caryophyllene woody, terpene, fruity, sweet ND 3.79 MS/RI/RS 
22.99 1465 β-Neoclovene - 2.23 1.78 MS/RI 
23.19 1476 β-Selinene herbaceous ND 1.62 MS/RI 
23.37 1486 Bicyclogermacrene spicy, mushroom-note, dry-wood ND 6.90 MS/RI 
24.76 1562 Spathulenol fruity, herbaceous, weak herbal ND 0.90 MS/RI 

Total peak areas of volatiles (x 108 ion counts) 3.85 7.20  
1 Retention times (RT) of each volatile in minute 

2 Linear retention indices (RI) were determined using n-paraffin (C 5, 6, 7, 8, 10, 12, 14, and 16) as external references and compared with those in flavornet (http://flavornet.org.; 

Accessed at Apr. 30, 2009). 

3 Aroma description was adapted from references (http://flavornet.org.; http://pherobase.com. Accessed at Apr. 30, 2009). 

4Volatile identification was performed through a combination of NIST Mass spectra library (MS), linear retention index (RI), and retention times of standard compounds (RS).  

5 Not detected. 
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3.3.3. Increase of 2-furanmethanol and maltol in puffed red ginseng  

Mass spectra of peaks from 7.60 and 14.53 min and those of standard 

compounds of 2-furanmethanol and maltol are shown in Fig. 3-2. Two peaks from 

puffed red ginseng were identified as 2-furanmethanol and maltol using a 

combination of standard compounds, linear retention indices (RI), and the library 

from the GC/MS. Selective ion monitoring (SIM) analysis on 2-furanmethanol 

and maltol in red and puffed red ginsengs are displayed in Fig. 3-2. 2-

Furanmethanol and maltol increased significantly during the puffing process 

(p<0.05). SIM mode for GC/MS results showed that total ion counts for 2-

furanmethanol and maltol were 7.81 x 105 (0.20% of total ion counts) and 9.14 x 

105 (0.24% of total ion counts), respectively, in red ginseng, and 4.22 x 107 

(5.86% of total ion counts) and 2.87 x 107 (3.99% of total ion counts), respectively, 

in puffed red ginseng (Fig. 3-2). The puffing process increased 2-furanmethanol 

and maltol more than 54 and 30 times, respectively, in ion counts.  

The presence of maltol or 3-hydroxy-2-methyl-pyran-4-one has been reported 

in red ginseng by Lee et al. (2005) and Matsuura et al. (1984). The researchers 
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showed that maltol was one of the major compounds for the characteristic fragrant 

and sweet aroma in red ginseng. El-Aty et al. (2008) identified a total of 47 

compounds from fresh, white, and red ginseng using a solvent free solid injection. 

The researchers reported that 3-acetyl-1-(3,4-dimethoxyphenyl)-5-ethyl-4,5-

dihydro-7,8-dimethoxy-4-methylene-3H-2,3-benzodiazepine was the most 

abundant volatile comprising 64.24% of total volatiles in fresh ginseng. Also, 

maltol was detected at 17.59% of total volatiles in white ginseng but not in red 

ginseng (El-Aty et al., 2008). Difference of red ginseng preparation and extraction 

methods for volatiles may give this discrepancy on the distribution of maltol 

between the results from El-Aty et al. (2008) and from current study.  

Maltol has been marketed as a food flavor enhancing agent for the products 

of breads and cakes (E number E636). It is tasteless at the recommend 

concentration at the levels ranging from 50 to 200 mg/kg and up to 2 mg/kg per 

day was acceptable concentration for human beings (Sanfeliu Alonso et al., 2001). 

Maltol is formed by thermal degradation of starch or by pyrolysis of sucrose 

(Bjeldanes et al., 1979). The increases of maltol may play a role on the sensory 
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changes of puffed red ginseng as a food flavoring enhancer.  

Limited studies are found on the detection of 2-furanmethanol or furfuryl 

alcohol in ginseng. El-Aty et al. (2008) reported that 2-furanmethanol in fresh, 

white, and red ginseng was detected about 0.12, 20.26, and 13.82% of total 

volatiles, respectively. White ginseng is processed by drying fresh ginseng and 

applied thermal energy may enhance the formation of 2-furanmethanol in white 

and red ginsengs. 2-Furanmethanol has been frequently found in Maillard 

browning model systems containing amino acids and sugars (Ames et al., 2001). 

The low moisture condition and high temperature during explosive puffing may 

accelerate the formation rate of 2-furanmethanol and maltol in puffed red ginseng. 

Sensory properties of 2-furanmethanol are weak, creamy, and burnt sugar 

while those of maltol are caramel-like (Table 3-1). The increases of 2-

furanmethanol and maltol may provide different characteristic sensory attributes 

to puffed red ginseng although sensory evaluation of red and puff red ginsengs 

were not performed in this study.  

It has been reported that red ginseng has better nutraceutical activities than 
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white ginseng, which may be due to the changes of chemical constituents through 

additional steaming process (Matsuura et al., 1984; Park et al., 2005). Explosive 

puffing process for red ginseng induced the profile changes in volatiles such as the 

increase of maltol and 2-furanmethanol. Considering the antioxidative activity of 

maltol and 2-furanmethanol (Wei et al., 2001), puffed red ginseng may have 

different biological activities compared to red ginseng or white ginseng, which 

needs further studies. 
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Fig. 3-2. GC mass spectra of a) standard compound of 2-furanmethanol, b) 

peak of 7.60 min in puffed red ginseng. 
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Fig. 3-3. GC mass spectra of a)standard compound of maltol, and b) peak 

of 13.53 min in puffed red ginseng.
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Fig. 3-4. SIM analysis on 2-furanmethanol and maltol in red and puffed red 

ginsengs. Bars with '***' were significantly different from each other at α=0.001 
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3.4. Conclusions 

Explosive puffing process of red ginseng, which induced changes in 

microstructure such as formation of pores and swelling, changed the distribution 

of volatile compounds greatly. Generally, volatiles from lipid oxidation decreased 

and terpenoid compounds increased during explosive puffing. 2-Furanmethanol 

and maltol were significantly increased during explosive puffing and these 

compounds could be useful markers to distinguish puffed red ginseng with other 

types of ginseng without puffing process. Explosive puffing process may provide 

different biological functionality and sensory properties to red ginseng products, 

which could meet the consumers’ expectation. More studies on the biological 

activities and sensory properties of puffed red ginseng are needed and various 

factors for puffing process including temperature, time, and moisture contents in 

red ginseng should be optimized.  
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Chapter 4. 

Oxidative stability of extracts from red ginseng and 

puffed red ginseng in bulk oil or oil-in-water (O/W) 

emulsion matrix  
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4.1. Introduction 

 

Ginseng is a perennial plant of the Panax genus that has been consumed as a 

medicinal plant and a functional food ingredient in some parts of Asia due to its 

beneficial physiological effects. From a long time ago, fresh ginseng was either 

dried or steamed to preserve for an extended period of time (Gui et al., 2012).  

Red ginseng is produced via a repeated process of steaming and drying fresh 

ginseng (Cho et al., 1995). This steaming process causes a color change of 

ginseng and improves the biofunctional properties of ginseng by chemical 

conversion of bioactive components such as ginsenosides (An et al., 2011). In 

recent, methods which can enhance the yield of these red ginseng specific 

ginsenosides by high temperature steaming, extrusion, and explosive puffing have 

been developed (Kang et al., 2006).  

Explosive puffing has been used to give food material a porous structure by 

using a combination of high temperature and high pressure (Hui et al., 2004). 

Explosive puffing process involves the use of a puffing gun in which the material 

to be puffed is heated at the condition of high temperature and pressure. The 

puffing gun is then suddenly opened and the material discharged to atmosphere, 

resulting in the explosive puffing of the cereal material (Sullivan and Craig, 1984). 

Since red ginseng has dense texture and low moisture content, explosive puffing 
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process can be used to produce bioactive ginsenosides and antioxidant substances. 

Explosive puffing process has been introduced to develop the new types of 

ginseng products (Han et al., 2007; Lee et al., 2010; An et al., 2011). Han et al. 

(2007) investigated the effect of puffing on quality characteristics of red ginseng 

tail root. They reported that crude saponin content of puffing red ginseng tail root 

was increased 26.5% compared to non-puffing and total phenolic compounds was 

increased from 7.86% to 9.94% by puffing. Lee et al. (2010) elucidated that the 

explosive puffing process increased maltol with antioxidant activity. An et al. 

(2011) found that explosive puffing influenced the ginsenoside composition, as 

revealed by the generation of ginsenosides Rg5 and Rk1.  

Accumulated researches on ginseng have pointed out that its medicinal 

efficacy is closely related to its protective effects against free radical attack. It has 

been reported that ginseng extract has scavenging activity to hydroxyl (· OH), 

1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide anion (O2
-), and 

peroxynitrite (ONOO-) (Kang et al., 2007). On the other hand, the antioxidant 

capacities of chemical compounds are influenced by the concentration and 

polarity of compounds and the environmental conditions under which compounds 

are located (Chaiyasit et al., 2007; Lee et al., 2013; Kim et al., 2015). Generally, 

hydrophilic compounds show better antioxidant capacities in non-polar media, 

such as bulk oil systems, while lipophilic compounds inhibit the rates of lipid 
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oxidation more efficiently in more polar media, such as oil-in-water (O/W) 

emulsions and liposomes; this finding is referred to as the 'antioxidant polar 

paradox'. Recently, the theory of the 'antioxidant polar paradox' has been re-

evaluated and a modification has been suggested (Laguerre et al., 2010, 2015; 

Kim et al., 2012; Shahidi et al., 2011). It is strongly recommended that the 

antioxidant capacities of compounds, mixtures or extracts be tested in real food 

systems. For example, curcumin (Yi et al., 2015) and extracts of roasted hulled 

barley (Oh et al., 2015) had different antioxidant properties depending on the food 

matrices, including bulk oil or oil-in-water emulsions. 

Although the physicochemical properties, in vitro antioxidant capacities, and 

volatile changes in explosively puffed red ginseng have been reported, studies on 

the antioxidant capacities in real food matrices have not been reported in the 

literature. 

The objectives of this study were to utilize in vitro assays to determine the 

antioxidant properties of extracts of red ginseng and puffed red ginseng and to test 

these extracts in the different matrices, including in corn oil and O/W emulsion.  
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4.2. Materials and Methods 

 

4.2.1. Materials  

Red ginseng was kindly provided by a local ginseng supplier (Icheon, 

Gyeonggi, Korea). Aluminum chloride, potassium acetate, and 2,2-diphenyl-1-

picrylhudrazyl (DPPH) were purchased from Sigma- Aldrich (St. Louis, Mo., 

U.S.A.). Folin-Denis’ reagent, and 2,2’-azinobis-3-ethyl-benzothiazoline-6-

sulfonic acid (ABTS) were purchased from Fluka (Buchs, Switzerland). Tannic 

acid was obtained from Riedel-deHaen (Seelze, Germany) and potassium 

phosphate was purchased from Wako (Tokyo, Japan). Isooctane was purchased 

from Junsei Chemical Co. (Tokyo, Japan) and p-anisidine was purchased from 

Kanto Chemical Co. (Tokyo, Japan). Other reagent grade chemicals were 

purchased from Daejung Chemical Co. (Seoul, Korea). 

 

4.4.2. Sample preparation 

Panax ginseng C.A. Meyer was washed and steamed in an autoclave at 100℃ 

for 2 h, and then dried at 70℃ until its moisture content was down to 14%. The 

steamed and dried ginseng (red ginseng) was used as a control sample. Dried red 

ginseng (3 kg) was put in the cylindrical chamber of rotary puffing machine with 

the maximum pressure 1.47 MPa. The cylindrical chamber was heated with 



111 

 

propane gas burner during rotation at the speed of 20 rpm. When the inner 

pressure of chamber reached 0.30 MPa, the door of cylindrical chamber was 

opened to release the high vapor pressure. 

 

4.2.3 Ethanol extract of puffed red ginseng and non-puffed red 

ginseng 

Briefly, 50 g of red ginseng or puffed red ginseng was placed into a 2 L 

Erlenmeyer flask and 1 L of 70% aqueous ethanol was added. The mixture was 

refluxed for 16 h at 70°C. The mixtures of red ginseng or puffed red ginseng and 

70% ethanol were filtered through Whatman #2 filter paper and the filtrate was 

recovered. The solvent was reduced using a vacuum evaporator, lyophilized using 

a freeze-drier (Ilshinbiobase Co, Ltd., Gyeonggi, Korea) and used for further 

studies. The yields from red ginseng and puffed red ginseng after lyophilization 

were 23.1% and 30.0%, respectively.  

 

4.2.4. Sample preparation of O/W emulsion containing ginseng 

extract 

O/W emulsions were prepared according to the method of Ka et al. (2016). 

Tween 20 was added in deionized water at a concentration of 0.25% (w/w) and 

then combined with 2.5% (w/w) corn oil in deionized water. A coarse emulsion 
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was made by homogenizing the mixture for 3 min using a DE/T 25 homogenizer 

(Ika®werke, Staufen, Germany). This coarse emulsion was then passed three 

times through a Nano disperser (ISA – NLM100, Ilshinautoclave Co., Ltd., 

Daejoen, Korea) at 5000 psi. After the O/W emulsion was prepared, riboflavin 

was added to the emulsion at 0.13 mM and the solution was mixed overnight. 

Ginseng extracts were added to the O/W emulsions containing riboflavin at 

concentrations of 0.25, 0.5, and 1.0% (w/v). Two milliliters of each emulsion 

containing riboflavin and the extracts was put in a 10 mL vial and sealed air-tight 

with a rubber septa and an aluminum cap. Sample vials were stored in a light box 

with 1333 lux light intensity under fluorescent light and analyzed at 0, 12, 24, and 

36 h. Sample vials were prepared in triplicate at each sampling. Samples without 

added ginseng extracts served as controls. 

 

4.2.5. Sample preparation of corn oil containing ginseng extract 

Extracts of ginsengs were dissolved in methanol and added to corn oil to 

achieve final concentrations of 0.25, 0.5, and 1.0% (w/w). The solvent in the 

mixture was removed under nitrogen gas flushing. The 0.5 g of corn oil 

containing ginseng extracts was put in 10 mL vials and sealed air-tight with 

Teflon coated rubber septa and aluminum caps. Sample vials were stored at 60°C 

for 20 days and 100°C for 27 h in a drying oven (HYSC Co, Ltd.). Samples 
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without added extracts of ginsengs were prepared as controls. Samples were 

prepared in triplicate at each sample point. 

 

4.2.6. In vitro antioxidant assays 

DPPH free radical scavenging activity 

The free radical scavenging ability of the ginseng extracts was determined 

based on methods used in a previous report with a slight modification (Oh et al., 

2015; Ka et al., 2016). Briefly, 0.75 mL of 0.1 mM DPPH in methanol and 0.25 

mL of 1,000 ppm (w/v) ginseng extract were mixed in a 1.5 mL tube in triplicate. 

The absorbance of samples was measured at 517 nm using a Shimadzu UV-2101 

PC spectrophotometer (Shimadzu, Kyoto, Japan) after a 30 min period of storage 

in the dark. Samples were prepared in triplicate and free radical scavenging 

activity was calculated according to the following equation: 

DPPH radical scavenging activity (%) = [(A0-A1)/A0] x 100,  

where A0 was the absorbance of the blank and A1 the absorbance in the presence 

of the test compound.  

 

ABTS radical cation scavenging activity 

The radical cation scavenging activity of samples was determined using the 
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ABTS method according the method in a previous report (Oh et al., 2015; Ka et 

al., 2016). Briefly, a mixture of 7 mM aqueous ABTS solution and 2.45 mM 

potassium persulfate was diluted with ethanol to an absorbance at 734 nm of 

0.700 ± 0.050. A volume of 1.9 mL of diluted solution was mixed with 50 μL of 

1,000 ppm (w/v) sample, and the absorbance of the sample mixture was 

determined at 734 nm using a spectrophotometer (Shimadzu) after 6 min of 

incubation. Samples were prepared in triplicate. Data was expressed using the 

following equation: 

ABTS radical cation scavenging activity (%) = [(A0-A1)/A0] x 100,  

where A0 was the absorbance of the blank and A1 the absorbance in the presence 

of the test compound.  

 

The ferric reducing antioxidant power (FRAP) method 

The FRAP assay was performed, with some modifications, using the method 

reported by Benzie and Strain (1996) and Ka et al. (2016). The stock solutions 

were 300 mM acetate buffer (pH 3.6), 10 mM TPTZ (2, 4, 6-tripyridyl-s-triazine) 

solution in 40 mM HCl, and 20 mM FeCl3 solution. The freshly prepared FRAP 

working solution was prepared by mixing the above stock solutions at a ratio of 

10:1:1 (v/v/v) and maintained at 37°C prior to use. 50 μL of 1,000 ppm (w/v) 

samples were allowed to react with 1.5 mL of the FRAP solution for 30 min in the 

dark. The amount of colored product (ferrous tripyridyltriazine complex) was 
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determined at 593 nm using a spectrophotometer (Shimadzu). The results are 

expressed in μg ascorbic acid equivalent /g. 

 

Total phenolic content 

Total phenolic content (TPC) was determined according to the method of 

Riedl et al. (2007). Briefly, 0.25 mL of 5,000 ppm (w/v) samples were mixed with 

4 mL water and 0.25 mL Folin-Denis’ reagent (previously diluted with water at 

the ratio of 1:1, v/v). After a 5 min incubation period, 0.5 mL saturated sodium 

carbonate was added to the sample mixture. The absorbance of the mixture was 

measured at 725 nm using a spectrophotometer (Shimadzu, Kyoto, Japan) after a 

30 min incubation. Data are expressed as tannic acid equivalents (μg). Samples 

were prepared in triplicate. 

 

Total flavonoid content  

First, 0.5 mL samples were mixed with 1.5 mL of 95% ethanol, 0.1 mL of 

10% aluminum chloride, 0.1 mL of 1 M potassium acetate, and 2.8 mL of distilled 

water. The mixture was then incubated for 30 min at room temperature and the 

absorbance of the mixture was measured at 415 nm using a spectrophotometer 

(Shimadzu). Samples were prepared in triplicate and the data are expressed using 

quercetin equivalents (μg). 
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4.2.7. Analysis of ginsenosides in ginseng extracts 

The ginsenosides in ginseng extracts were analyzed according to the method 

of Ha et al. (2013). Ultra-high performance liquid chromatograph (u-HPLC) 

equipped with an autoinjection system using a fixed injection volume of 5 μL and 

an ultraviolet detector set to detect at 203 nm (Hitachi, Tokyo, Japan) was used. 

Two different columns were used to analyze ginsenosides: a LaChromUltra C18 

short-length column (2 mm i.d. x 50 mm L., 2 μm) and a LaChromUltra C18 

middle-length column (2 mm i.d. x 100 mm L., 2 μm). The gradient was prepared 

by mixing 20% acetonitrile (solvent A) and 80% acetonitrile (solvent B). The 

gradient profile for the separation of the ginsenosides using u-HPLC was 100% A-

0% B (0 min), which was maintained for 10 min. The gradient profile was 

subsequently changed linearly to 25% B in 30 min, 70% B in10 min, 100% B in 

30 min and returned to 0% B in 5 min, which was then maintained for 5 min. The 

flow rate in the u-HPLC was 0.2 mL/min for the short-length column and 0.3 

mL/min for the middle-length column. The temperature of the analytical column 

was maintained at 30°C. Ethanol extract of ginsengs were dissolved in 20% 

aqueous acetonitrile solution, filtered through a 0.20-μm PTFE membrane and 5 

μL of the solution was then analyzed. The concentrations of ginsenosides were 

calculated based on calibration curves prepared using each standard compound. 

 

4.2.8. Headspace oxygen analysis 
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The degree of oxidation was determined by the depletion of headspace 

oxygen in air-tight samples containing corn oil or O/W emulsions. The headspace 

oxygen in air-tight sample bottles was analyzed according to methods of Kim et al. 

(2014). First, 20 μL of headspace gas was removed from the sample bottle using 

an air-tight syringe and the oxygen content was determined using a Hewlett-

Packard 7890 GC gas chromatograph (Agilent Technologies, Inc., Santa Clara, 

Ca., USA) equipped with a 60/80 packed column (3.0 m × 2 mm i.d., Restek Ltd., 

Bellefonte, Pa., USA) and a thermal conductivity detector (TCD). The flow rate of 

helium gas was 30 mL/min. The temperatures of the oven, injector, and thermal 

conductivity detector were 60, 180, and 180°C, respectively. 

 

4.2.9. Lipid hydroperoxides in O/W emulsion 

Concentration of lipid hydroperoxides was determined using a modified 

method of Yi et al. (2015). 0.3 mL of sample was mixed with 1.5 mL of 

isooctane/2-propanol (3:2, v:v), vortex-mixed three times for 10 s each, and 

centrifuged for 3 min at 2000 g. The upper layer of 0.2 mL was collected and 

mixed with 2.8 mL of methanol/1-butanol (2:1, v:v). 30 μL of thiocyanate/Fe2+ 

solution was added to the mixture and the mixture was vortex-mixed for 10 s. The 

thiocyanate/Fe2+solution was made by mixing equal volumes of 3.94 M 

thiocyanate solution with 0.072 M Fe2+ solution (obtained from the supernatant of 

a mixture of one part of 0.144 M FeSO4 and one part of 0.132 M BaCl2 in 0.4 M 
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HCl). The samples were incubated for 30 min at room temperature and the 

absorbance at 510 nm was measured using an UV/VIS-spectrometer (Model UV-

1650PC, Shimadzu, Kyoto, Japan). The concentration of lipid hydroperoxide was 

calculated using a cumene hydroperoxide standard curve. 

 

4.2.10. Conjugated dienoic acid and p-anisidine value analyses in 

bulk oil 

The CDA of samples was measured according to AOCS method Ti 1a-64 

(2006) and the p-AV of oxidized samples was determined according to AOCS 

method Cd 18-90 (2006) with minor modifications.  

 

4.2.11. Statistical analysis 

Data from the in vitro assays, headspace oxygen content, CDA, p-AV, and 

lipid hydroperoxides were analyzed statistically via ANOVA and Duncan’s 

multiple range test using SPSS software program (SPSS Inc., Chicago, IL., USA). 

The other data were analyzed statistically by independent-paired t-test using SPSS 

software program (SPSS Inc., Chicago, IL., USA). A p value <0.05 was 

considered significant.  
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4.3. Results and Discussion 

 

4.3.1. Antioxidant activities and ginsenoside profiles in extracts of 

red ginseng and puffed red ginseng determined using in vitro 

assays 

It has been known that ginsenosides and phenolic compounds including 

flavonoids are main antioxidant substances in ginseng (Kim et al., 2008). Recent 

literature indicates that reactive oxygen species (ROS) and metal ions such as 

ferric ion play critical roles in oxidative damage (Forbes et al., 2008). It is 

necessary to measure the radical scavenging activity, ferrous ion chelating activity, 

and ferric reducing antioxidant power to determine the antioxidant activity. The in 

vitro antioxidant properties of the extracts of red ginseng and puffed red ginseng 

were analyzed by DPPH, ABTS, FRAP, TPC, and TFC and their results are 

shown in Fig. 4.1-4.5. The free radical scavenging activity of the extracts of red 

ginseng and puffed red ginseng determined by DPPH assays were 51.0% and 

86.2%, respectively, whereas those determined by ABTS assays were 28.7% and 

72.2%, respectively. The extract of puffed red ginseng showed significantly 

higher free radical scavenging activity than that of red ginseng (p<0.05). 
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The FRAP of red ginseng and puffed red ginseng extracts were 1.04 and 2.34 

μg ascorbic acid equivalents/g, respectively. The ferric ion reducing ability of 

puffed red ginseng extracts was significantly higher than that of red ginseng 

extract (p<0.05). 

The TPC of red ginseng and puffed red ginseng extracts was 1.32 and 6.72 μg 

tannic acid equivalent/g, respectively, while the TFC was 0.27 and 1.35 μg 

quercetin acid equivalent/g, respectively. Therefore, the amount of phenolic 

compounds including flavonoids in the extract of puffed red ginseng were 

significantly higher than those of red ginseng (p<0.05). 

Based on the results of these in vitro assays, extracts of puffed red ginseng were 

demonstrated to have significantly higher in vitro antioxidant properties than the 

extracts of red ginseng (p<0.05). 

This enhancement of the in vitro antioxidant properties could be due to the 

extra puffing process, which may help to convert the bound forms of phenolics 

into free forms or to generate stronger antioxidants from the less active forms in 

ginsengs. Kang et al. (2006) reported that heat-treated ginseng, including red 

ginseng and ginseng steamed at 120°C, showed better superoxide anion (O2
-), 

peroxynitrite (ONOO-) and hydroxyl radical scavenging activities than white 

ginseng. Extrusion cooking of red ginseng was shown to increase DPPH radical 

scavenging activity and reducing power (Gui et al., 2014). Red ginseng extracts 

completely eliminated DPPH radicals at 2 mg/mL (Kim et al., 2002). 
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Fig. 4-1. In vitro antioxidant properties of extract of red ginseng and puffed 

red ginseng by DPPH. Bars with '*' and '***' were significantly different from each 

other at α=0.05 and 0.001, respectively. 'Normal' and 'Puffing' were extracts of red 

ginseng and puffed red ginseng, respectively. 
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Fig. 4-2. In vitro antioxidant properties of extract of red ginseng and puffed 

red ginseng by ABTS.  

Bars with '*' and '***' were significantly different from each other at α=0.05 and 0.001, 

respectively. 'Normal' and 'Puffing' were extracts of red ginseng and puffed red ginseng, 

respectively. 
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Fig. 4-3. In vitro antioxidant properties of extract of red ginseng and puffed 

red ginseng by FRAP. Bars with '*' and '***' were significantly different from each 

other at α=0.05 and 0.001, respectively. 'Normal' and 'Puffing' were extracts of red 

ginseng and puffed red ginseng, respectively. 
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Fig. 4-4. In vitro antioxidant properties of extract of red ginseng and puffed 

red ginseng by TPC. Bars with '*' and '***' were significantly different from each 

other at α=0.05 and 0.001, respectively. 'Normal' and 'Puffing' were extracts of red 

ginseng and puffed red ginseng, respectively. 
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Fig. 4-5. In vitro antioxidant properties of extract of red ginseng and puffed 

red ginseng by TFC. Bars with '*' and '***' were significantly different from each 

other at α=0.05 and 0.001, respectively. 'Normal' and 'Puffing' were extracts of red 

ginseng and puffed red ginseng, respectively. 
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The profiles of ginsenosides in extracts of red ginseng and puffed red ginseng 

are shown in Table 4-1. The total ginsenoside contents in red ginseng and puffed 

red ginseng were 42.33 and 49.22 mg/g, respectively. Puffed red ginseng 

possessed significantly higher ginsenoside content than red ginseng (p<0.05). Rb1 

was the most detected ginsenoside, followed by Re and Rg1 in both red ginseng 

and puffed red ginseng (Table 4-1). Generally, the puffing process increased 

ginsenoside content, including Rg3, Rb1, Re, and Rg1. In particular, ginsenoside 

Rg3 was substantially increased from 0.23 mg/g in red ginseng to 0.46 mg/g in 

puffed red ginseng, which is about 2.0-fold increase. Ginsenoside Rg3(S) has 

various functional activities, including being tumor-suppressive, hepatoprotective 

(Zhang et al., 2012), immune-stimulating, antifatigue (Tang et al., 2008), and anti-

inflammatory (Yoo et al., 2012). An et al. (2011) reported that the puffing process 

increased minor ginsenosides, including Rg3, F2, Rk1, and Rg5, while decreasing 

major ginsenosides, including Rb1, Rb2, Rc, Rd, Re, and Rg1. However, in this 

study, the amounts of Rb2 decreased and those of other ginsenosides increased 

after the puffing process (Table 4-1). Differences in extraction procedures or 

thermal instability of ginsenosides (Yoon et al., 2005) may induce changes in the 

profiles of ginsenosides.  The enhanced in vitro antioxidant activities in puffed 

red ginseng extracts could be partly due to increases in ginsenosides or to the 

generation of a specific ginsenoside such as Rg3. 20(S) and 20(R) are 

stereoisomers of each other that depend on the position of the C-20 hydroxyl in 
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ginsenosides. The hydroxyl radical scavenging activity of 20(S)-Rg3 is higher 

than that of 20(R)-Rg3 (Lee et al., 2008c). 
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Table 4-1. Profiles of ginsenosides belonging to protopanaxadiol group (PPD) in extracts of red ginseng and puffed red ginseng 

 

Sample 

  Ginsenoside content (mg/g) 

Rb1 Rb2 Rb3 Rc Rd Rg3(S) Rg3(R) Total 

Red ginseng 11.72±0.19  5.99±0.18 0.90±07 5.37±0.12 1.29±0.09 0.23±0.01 0.42±0.06 25.92±0.50 

Puffed red ginseng 14.04±0.08*  5.74±0.08* 0.85±0.04 5.76±0.10* 1.52±0.02* 0.46±0.01* 0.59±0.07* 28.97±0.14 

a mean±standard deviation (n=3) 

bIn the same column, data with ‘*’ were significantly different from each other at α=0.05. 
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Table 4-2. Profiles of ginsenosides belonging to protopanaxatriol group (PPT) in extracts of red ginseng and puffed red ginseng 

 

Sample 

  Ginsenoside content (mg/g) 

Re Rf Rg1 Rg2(S) Rg2(R) Rh1(S) Rh1(R) Total 

Red ginseng 7.11±0.29  1.71±0.09 6.02±0.09 0.94±0.03 0.15±0.02 0.14±0.02 0.06±0.00 16.14±0.48 

Puffed red ginseng 8.15±0.31*  2.15±0.07* 7.86±0.42* 1.18±0.03* 0.13±0.02 0.25±0.03* 0.06±0.01 19.78±1.28 

a mean±standard deviation (n=3) 

bIn the same column, data with ‘*’ were significantly different from each other at α=0.05 
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4.3.2. Oxidative stability of red ginseng and puffed red ginseng 

extracts in O/W emulsions 

The effects of red ginseng and puffed red ginseng extract (0-1.0% w/w) on 

headspace oxygen in oil-in-water emulsions under riboflavin photosensitization 

are shown in Fig. 4-6 and Fig. 4-7. After 12 h of treatment, samples containing 

1.0% red and puffed red ginseng extracts showed the highest headspace oxygen 

content, which implies that the 1.0% ginseng extracts acted as antioxidants. The 

headspace oxygen contents in samples containing 0, 0.25, 0.50, and 1.0% red 

ginseng extract after 36 h were 17.0, 17.5, 18.3, and 19.3%, respectively, 

indicating that the extract of red ginseng inhibited the consumption of headspace 

oxygen in a concentration dependent manner (Fig. 4-6). However, puffed red 

ginseng extracts showed a different pattern of headspace oxygen consumption 

after 24 and 36 h of treatment compared to equivalently treated red ginseng. After 

36 h treatment, all the samples containing extracts of puffed red ginseng showed 

lower headspace oxygen contents than control samples, which implies that 

extracts of puffed red ginseng accelerated the consumption of headspace oxygen 

molecules. The oxygen molecules may have been consumed by unsaturated fat in 

corn oils and/or oxidation of phenolic compounds. Because extracts of puffed red 

ginseng had significantly higher levels of phenolic compounds than extracts of red 

ginseng, the possibility of oxygen consumption by phenolic compounds cannot be 
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ruled out. Therefore, excess phenolic compounds in puffed red ginseng extract 

could be targets for oxygen consumption. 
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Fig. 4-6. Effects of extract of red ginseng (0-1.0% w/w) on the headspace 

oxygen in oil-in-water emulsions under riboflavin photosensitization. Different 

letters were significantly different at the same time at 0.05. Symbols without letters were 

not significantly different at α=0.05. 
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Fig. 4-7. Effects of extract of puffed red ginseng (0-1.0% w/w) on the 

headspace oxygen in oil-in-water emulsions under riboflavin 

photosensitization. Different letters were significantly different at the same time at 

α=0.05. Symbols without letters were not significantly different at α=0.05. 
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Changes in lipid hydroperoxides in O/W emulsions under riboflavin 

photosensitization containing extract of red ginseng and puffed red ginseng are 

shown in Fig. 4-8 and Fig. 4-9. The antioxidant properties of extracts of red 

ginseng in O/W emulsions were influenced by the extract concentration and the 

puffing process. The 0.25% red ginseng extracts did not show antioxidant 

properties while 0.50% and 1.0% red ginseng extracts acted as antioxidants based 

on lipid hydroperoxides (Fig. 4-8). Lipid hydroperoxides in O/W emulsion 

containing 1.0% extracts of puffed red ginseng were significantly lower than those 

of controls after 36 h (p<0.05) (Fig. 4-9). However, 0.25 and 0.5% extracts of 

puffed red ginseng did not inhibit the formation of lipid hydroperoxides over 24 h 

(p>0.05) (Fig. 4-9). 
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Fig. 4-8. Changes of lipid hydroperoxides in oil-in-water emulsions under 

riboflavin photosensitization containing red ginseng extract. Different letters 

were significantly different at the same time at α=0.05. 
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Fig. 4-9. Changes of lipid hydroperoxides in oil-in-water emulsions under 

riboflavin photosensitization containing extract of puffed red ginseng. 

Different letters were significantly different at the same time at α=0.05. 
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4.3.3. Oxidative stability of red ginseng and puffed red ginseng 

extracts in bulk oil   

Changes in headspace oxygen, CDA, and p-anisidine values in corn oil with 

addition of extract of red ginseng and puffed red ginseng (0-1.0% w/w) at 60°C 

and 100°C are shown in Tables 4-3 and 4-4, respectively. Headspace oxygen 

content in bulk oil containing extracts of puffed red ginseng was found to be 

increased in a concentration-dependent manner (0.25%, 0.50%, and 1.0%) 

compared to in the control after 20 days. CDA and p-AV in bulk oil containing 

puffed red ginseng extracts were lower than those of controls, which agrees with 

the results of our headspace oxygen assay. Therefore, puffed red ginseng extract 

had antioxidant properties in bulk oil at 60°C when the concentration was greater 

than 1.0% (Table 4-3). However, red ginseng extract showed different patterns. 

Based on the results of the headspace oxygen content assay after 20 days of 

storage, 0.25% and 0.50% red ginseng extracts acted as prooxidants, while 1.0% 

red ginseng extract acted as an antioxidant. Results from CDA and p-AV assays 

showed no significant differences among samples (p>0.05) (Table 4-3).  

The headspace oxygen content in bulk oil containing 1.0% puffed red ginseng 

extract was significantly lower than that of a control at 100°C after 27 h, while 

samples containing1.0% red ginseng extract had significantly higher headspace 

oxygen content than controls (p<0.05) (Table 4-4). These results indicate that 

extracts of puffed red and red ginseng accelerated or retarded the consumption of 
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headspace oxygen molecules, respectively. Samples containing 0.25 and 0.50% 

red ginseng or puffed red ginseng extracts were lower than controls. This trend 

can also be observed in both CDA and p-AV assays. The puffed red ginseng 

extracts acted as prooxidants when present at concentrations ranging from 0.25 to 

1.0%, while 0.25% and 0.50% red ginseng extracts showed prooxidant properties 

and 1.0% red ginseng extract acted as an antioxidant based on the results of CDA 

and p-AV assays after 27 h of treatment at 100°C (Table 4-4). CDA is a typical 

assay for primary oxidation products whereas p-AV can detect alkenals, which are 

secondary oxidation products (Kim et al., 2014). The oxidative stability in oils 

containing extracts of puffed or red ginseng was greatly influenced by the thermal 

temperature. Relatively high temperatures like 100°C may change the thermal 

stability of phenolics and enhance the reaction rates of chemical reactions relative 

to samples incubated at 60°C.  

In vitro assays of extracts of natural resources or standard chemical 

compounds with high antioxidant capacities may not show similar antioxidant 

properties in a food matrix (Yi et al., 2015; Oh et al., 2015; Ka et al., 2016). 

Radical scavenging ability (DPPH or ABTS assays) or ferric ion reducing 

capacity (FRAP assay) can provide information on the chemical potential of 

compounds based on their structural characteristics. However, polarity and the 
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concentration of compounds are important factors in real food matrices like bulk 

oil and O/W emulsions (Laguerre et al., 2010, 2015; Lee et al., 2013; Shahidi et 

al., 2011). For example, curcumin, which inhibited lipid oxidation in O/W 

emulsions, did not act as an antioxidant nor as a prooxidant in corn oil (Yi et al., 

2015). Ka et al. (2016) showed that amino acid cysteine had the highest 

antioxidant properties followed by tryptophan and tyrosine using in vitro assays 

whereas tyrosine inhibited lipid oxidation whereas tryptophan acted as a 

prooxidant in O/W emulsion under RF photosensitization. Aqueous extracts of 

hulled barley (Hordeum vulgare L.) had antioxidant or prooxidant properties in 

bulk oil while showed antioxidant properties in RF photosensitized O/W 

emulsions (Oh et al., 2015). Phenolic compounds with proper polarity showed 

higher antioxidant capacities in O/W emulsions than those with lower or higher 

polarity, which was tested using phenolipids such as rosmarinate esters or 

chlorogenate esters (Laguerre et al., 2010; Lee et al., 2013). Additionally, Shahidi 

et al. (2011) proposed that the concentration of phenolic compounds plays an 

important role in determining the antioxidant properties of these compounds in 
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bulk oils. 

The interface of lipid and water in association colloids where antioxidant or 

prooxidant compounds could be located can be critical places for the regulation of 

the rates of lipid oxidation (Laguerre et al., 2010, 2015). Puffing process 

significantly increased TPC and TFC in the extracts compared to non-puffed red 

ginseng (Fig. 4-4 and Fig. 4-5) and those phenolic compounds could be located on 

the surface of association colloids in O/W emulsions and show enhanced 

antioxidant capacity (Fig. 4-6 and Fig. 4-7). However, extracts did not have 

antioxidant activity in bulk oils, especially at 100°C temperature treatment. In the 

case of bulk oil systems, heat treatment can induce other chemical reactions, like 

the degradation of phenolic compounds, in addition to lipid oxidation. Depending 

on the assays used to for determine the degree of lipid oxidation, slightly different 

oxidative properties of the extracts were observed. The results on the consumption 

of headspace oxygen and of CDA in bulk oil matched each other at 100°C, while 

those of 2-alkenals were a somewhat different, particularly at a concentration of 

1.0% (Table 4-4). It is well known that the results of measuring antioxidant 

capacities differ depending on the types of assays used due to the differences in 

the principles and limitation of each assay. Therefore, it is advisable to use a 

combination of assays that cover the detection of both primary and secondary 

lipid oxidation products, including oxygen molecules, conjugated dienes, 
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anisidine values, and volatiles (Alamed et al., 2009; Decker et al., 2005; Kim et al., 

2014; Yi et al., 2015). 
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Table 4-3. Changes of headspace oxygen, CDA, and p-anisidine values in corn oil with addition of extract of red ginseng and 

puffed red ginseng (0-1.0% w/w) at 60°C treatment 

a mean±standard deviation (n=3) 

b In the same row, different letters are significantly different at α=0.05. 

 

 

 Time Red ginseng Puffed red ginseng 
 (day) 0 % 0.25 % 0.5 % 1.0 % 0 % 0.25 % 0.5 % 1.0 % 

Headspace 
oxygen 

(%) 

0 20.80±0.01aab 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 

10 19.73±0.05c 19.77±0.09c 19.91±0.06b 20.11±0.01a 19.73±0.05a 18.97±1.42a 19.92±0.19a 20.27±0.02a 

15 17.62±0.15ab 17.03±0.12b 16.83±0.83b 18.08±0.28a 17.62±0.15a 15.78±1.77b 17.74±0.57a 18.65±0.05a 

20 13.73±0.58ab 12.63±0.90b 11.80±1.90b 15.14±0.01a 13.73±0.58d 14.35±0.14c 15.14±0.03b 16.51±0.11a 

CDA 
(%) 

0 0.21±0.01ab 0.21±0.01ab 0.20±0.01b 0.21±0.01a 0.21±0.01ab 0.21±0.01ab 0.20±0.01b 0.21±0.01a 

10 0.39±0.01a 0.39±0.01a 0.37±0.01b 0.34±0.01c 0.39±0.01a 0.40±0.02a 0.38±0.02a 0.30±0.01b 

15 1.18±0.06bc 1.33±0.06ab 1.38±0.16a 1.07±0.02c 1.18±0.06b 1.57±0.33a 1.10±0.04b 0.87±0.02b 

20 2.27±0.55a 2.26±0.20a 2.37±0.28a 2.15±0.65a 2.27±0.55a 1.89±0.03ab 1.71±0.01ab 1.56±0.27b 

p-Anisidine 

0 11.98±0.33a 12.37±0.33a 11.42±0.63a 12.22±0.70a 11.98±0.33a 12.37±0.33a 11.42±0.63a 12.22±0.70a 

10 12.65±0.30a 10.20±0.01c 9.67±0.55c 11.48±0.85b 12.65±0.30ab 13.08±1.23a 12.20±0.46ab 11.33±0.72b 

15 12.42±0.49b 13.23±0.43a 13.95±0.51a 13.25±0.17a 12.42±0.49b 15.15±1.82a 13.08±0.53a 13.13±0.49a 

20 18.83±2.98a 19.75±2.67a 21.40±3.75a 21.37±8.43a 18.83±2.98a 15.10±0.30ab 13.73±0.29b 15.83±4.04ab 
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Table 4-4. Changes of headspace oxygen, CDA, and p-anisidine values in corn oil with addition of extract of red ginseng and 

puffed red ginseng (0-1.0% w/w) at 100°C treatment 

 

a mean±standard deviation (n=3) 

b In the same row, different letters are significantly different at α=0.05. 

 Time Red ginseng Puffed red ginseng 
 (h) 0 % 0.25 % 0.5 % 1.0 % 0 % 0.25 % 0.5 % 1.0 % 

Headspace 
oxygen 

(%) 

0 20.80±0.01aab 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 20.80±0.01a 

9 20.17±0.04b 20.22±0.04b 20.27±0.08ab 20.39±0.13a 20.17±0.04b 20.23±0.05b 20.24±0.03b 20.45±0.03a 

18 18.63±0.20b 18.08±0.26c 18.70±0.26b 19.35±0.18a 18.63±0.20b 18.01±0.25c 18.55±0.15b 19.19±0.11a 

27 13.91±0.70b 11.23±0.27c 13.40±0.36b 15.04±0.12a 13.91±0.70a 10.0±0.7b 10.14±1.39b 11.57±1.04b 

CDA 
(%) 

0 0.21±0.01ab 0.21±0.01ab 0.20±0.01b 0.21±0.01a 0.21±0.01ab 0.21±0.01ab 0.20±0.01b 0.21±0.01a 

9 0.37±0.01a 0.36±0.01ab 0.35±0.01b 0.31±0.01c 0.37±0.01a 0.36±0.01a 0.36±0.01a 0.30±0.01b 

18 0.90±0.02b 1.03±0.09a 0.90±0.04b 0.77±0.07c 0.90±0.02b 1.07±0.05a 0.96±0.01b 0.76±0.03c 

27 1.82±0.02b 2.12±0.06a 1.90±0.05b 1.69±0.04c 1.82±0.02b 2.26±0.17a 2.20±0.03a 2.01±0.11b 

p-Anisidine  
value 

0 11.98±0.33a 12.37±0.33a 11.42±0.63a 12.22±0.70a 11.98±0.33a 12.37±0.33a 11.42±0.63a 12.22±0.70a 

9 9.42±0.21b 8.62±0.16b 8.12±0.46b 16.65±1.31a 9.42±0.21a 9.48±0.36a 9.43±0.52a 9.08±0.16a 

18 11.18±0.40b 12.92±0.98a 12.08±0.03ab 12.17±0.99ab 11.18±0.40c 12.87±0.68ab 13.05±0.30a 11.60±1.13bc 

27 32.67±1.11c 50.47±3.68a 38.15±0.15b 30.57±0.90c 32.67±1.11c 73.32±14.48a 61.27±6.71ab 51.83±8.06b 
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4. 4. Conclusions 

 

Using in vitro assays, it was elucidated that extracts of puffed red ginseng had 

higher antioxidant activity than those of red ginseng. The puffing process 

increased the total ginsenoside content and especially the content of Rg3. In 

riboflavin photosensitized O/W emulsions, extracts of red ginseng showed 

concentration-dependent high antioxidant activity. However, in bulk oil systems, 

extracts of puffed red and red ginseng had antioxidant or prooxidant properties 

depending on the treatment temperature, concentration of the extracts, and types 

of assays used. Therefore, the antioxidant or prooxidant properties of samples 

should be tested in food systems as well as in in vitro assays. 
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Overall discussion 

 

 

 

 

 

 

 

 



154 

 

 

Red ginseng was puffed to possess a more porous structure and to reduce the 

extraction time of bioactive compounds in ginseng compared with traditional red 

ginseng extraction. Puffing process changed biofuctional properties of red ginseng 

including ginsenoside composition, antioxidant activity, and volatile components 

profile.  

The puffing process applied to red ginseng changed the total ginsenoside 

content. The content of major ginsenosides increased from 11.54 mg/g to 12.96 

mg/g and the content of minor ginsenosides (Rg2, Rg3, Rh1) increased from 0.44 

mg/g to 0.70 mg/g after puffing process. Among minor ginsenosides, Rg3(S) 

increased by 25 times, from 0.08 mg/g to 0.20 mg/g. Experimental studies have 

demonstrated that ginsenoside Rg3 can inhibit cancer cell growth by promoting 

the apoptosis of cancer cells. Although extraction yield of puffed red ginseng 

gradually increased with extraction time but yields did not increase drastically at 

any time beyond 16 h. This suggests that extraction for 16 h economically 

provides optimal yield in terms of time and energy. Comparing the extraction 
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yields of puffed red ginseng and non-puffed red ginseng at 16 h, the extraction 

yield of puffed red ginseng was 37.0% higher than that of red ginseng. The 

tendency of increase in the extraction yield after puffing was in agreement with 

the studies of other researchers. The increase of extraction yield in puffed red 

ginseng could be explained by the fact that explosive puffing process softened the 

rigid cell wall structure and induced expanded and porous structure to make the 

solvent access easy. Arginine among amino acids was abruptly reduced in the 

process of making puffed red ginseng because it reacted with maltose and 

produced maltulosyl arginine through Maillard reaction. When comparing the free 

sugars in puffed red ginseng and red ginseng, maltose was decreased drastically. 

Presumably, puffing process accelerated the reaction of maltose and amino acids 

in red ginseng to produce maltol.  

Also, explosive puffing affected the profile of volatile compounds in red 

ginseng. Large changes in the surface structures caused by explosive puffing were 

clearly observed in both scanning electron micrographs magnified by 1000 and 
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2000 times (Fig. 3-1). Puffed red ginseng had a more porous structure and smaller 

pieces than red ginseng. These changes in the microstructure of red ginseng led to 

the change of volatile compounds. Red ginseng had 4 alcohols, 4 aldehydes, 2 

acids, 5 terpenoids, 2 ketones and 3 other volatiles, while puffed red ginseng had 

3 alcohols, 13 terpenoids, and 1 acid. While major volatiles in red ginseng were 

hexanal, Δ-selinene, and β-panasinsene, main volatiles in puffed red ginseng were 

α-gurjunene, β-panasinsene, and calarene. Volatiles from lipid oxidation 

decreased and terpenoid compounds increased during explosive puffing. Two 

peaks with the retention time 7.60 and 14.53 min were greatly increased in puffed 

red ginseng compared with those in red ginseng. These two peaks were identified 

as 2-furanmethanol and maltol later. Considering the antioxidative activity of 

maltol and 2-furanmethanol, they could be used as biomarkers to discriminate 

puffed red ginseng from other types of ginseng without puffing process. 

Lastly, the antioxidant properties of extracts of red ginseng and puffed red 

ginseng were determined by in vitro assay and food matrix model including bulk 
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oil and oil-in-water emulsions. The extract of puffed red ginseng showed 

significantly higher free radical scavenging activity than that of red ginseng 

(p<0.05). This enhancement of the in vitro antioxidant properties could be due to 

the extra puffing process, which may help to convert the bound forms of phenolics 

into free forms or to generate stronger antioxidants from the less active forms in 

ginseng. In riboflavin photosensitized O/W emulsions, extracts of red ginseng 

showed concentration-dependent high antioxidant activity. However, in bulk oil 

systems, extracts of puffed red and red ginseng had antioxidant or prooxidant 

properties depending on the treatment temperature, the concentration of the 

extracts, and the types of assays used. 

In conclusion, puffing process could induce the changes in physicochemical 

properties, antioxidant activity, and volatile compounds by altering the 

microstructure such as formation of pores and swelling. Therefore, puffing 

process is an efficient alternative means to produce functional red ginseng 

products with the additional advantage of reduced processing time. 
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국문 초록 

인삼(Panax ginseng C. A. Meyer)의 주요 약리활성 성분으로는 

ginsenoside, 페놀화합물, 다당체 등이 있다. 이러한 성분 중 일부는 원료 

수삼을 증자 또는 건조하여 홍삼과 백삼을 만드는 과정 중 화학구조가 

변환되어 새로운 성분이 생성되기도 하고 일부 생리활성 성분의 함량 

이 증가되기도 한다. 지금까지 많은 연구자들이 인삼과 홍삼에서 

생리활성 성분의 종류, 기능, 구조를 밝혀왔지만, 단단한 뿌리 조직에서 

생리활성 성분들을 효율적으로 추출하기 위한 방법들에 관한 연구는 

상대적으로 많지 않다. 최근에 extrusion 과 팽화 공정을 도입하여 공정 

최적조건, 다량 ginsenoside profile 변화, 산화 방지 활성, 휘발성 성분에 

대한 연구가 일부 보고되고 있는 정도로 산업적 이용을 위해서는 보다 

많은 연구가 필요한 실정이다.  

따라서 본 연구는 산업적 이용을 위한 기초자료를 제공하고자 홍삼을 

팽화하였을 때 일어나는 생리기능성을 구명하기 위해 수행되었다. 

6 년근 인삼을 증자 건조하여 홍삼을 만든 후 고온고압 조건에서 
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팽화하여 홍삼의 미세구조, 휘발성 성분, ginsenoside 를 포함한 

유효성분의 변화를 조사하였고, 팽화홍삼 에탄올 추출물의 산화방지 

활성을 in vitro 방법과 oil in water 에멀션 모형을 통해 비교하였다. 

 팽화 후 20 시간 동안 추출하면서 4 시간 간격으로 추출 수율을 

측정한 결과 팽화홍삼의 추출 수율은 16.7%에서 42.2%로 증가한 반면, 

홍삼의 추출 수율은 9.0%에서 32.7%로 증가했다. 팽화홍삼의 

ginsenoside 함량은 13.65 mg/g 으로 홍삼보다 높았으며, 홍삼에 다량 

존재하는 ginsenoside (Rb1, Rb2, Rc, Rd, Re and Rg1)의 함량은 7.23 

mg/g 으로 팽화하지 않은 홍삼(5.40 mg/g)보다 높았다. 또한 미량으로 

존재하는 ginsenosides (Rg2, Rg3, Rh1)의 함량도 0.44 mg/g 에서 0.70 

mg/g 으로 증가했다. 미량 ginsenoside 중 Rg3 는 0.08 mg/g 에서 0.20 

mg/g 으로, 팽화하지 않은 홍삼보다 25 배 증가했다. 유리아미노산의 총 

함량이 12.7 mg/g 에서 7.1 mg/g 으로 감소했고, 홍삼에 존재하는 

유리아미노산 중 arginine 과 유리당 중 맥아당 함량이 팽화 후 크게 

줄어든 것은 맥아당과 arginine 이 반응하여 갈변물질을 생성하기 
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때문이다. 색차계로 색도 변화를 측정한 결과 L 값은 팽화 후 감소했고, 

a 값은 증가한 것으로 보아, 팽화 후 홍삼은 색이 더 어두워지고, 붉은 

색이 증가했다. 유리 지방산의 변화를 측정한 결과, 팽화 후 홍삼에 

없었던 palmitoleic acid 가 새로 생성되었고, 불포화지방산의 비율이 

증가했다.  

  팽화 후 전자현미경으로 관찰한 결과 홍삼의 조직은 다공성의 

미세입자로 변해있었고, 팽화홍삼의 휘발성 성분이 홍삼보다 87% 

증가했다는 것이 HS-SPME 를 이용한 GC-MS 분석으로 밝혀졌다. 

홍삼의 주요 휘발성 성분은 hexanal, Δ-selinene, and β-panasinsene인 반면, 

팽화홍삼에는 α-gurjunene, β-panasinsene, calarene 이 주요 성분으로 

측정되었다. 홍삼에는 2-furanmethanol 과 maltol 이 각각 0.20%와 0.24% 

존재했었는데, 팽화 후에는 그 함량이 5.86%와 3.99%로 증가했다. 

  홍삼과 팽화홍삼 에탄올 추출물의 산화 방지 활성을 in vitro 실험과 

oil-in-water 에멀션 모형에서 측정한 결과, DPPH, ABTS, FRAP 

방법에서는 팽화홍삼의 산화 방지 활성이 홍삼보다 높게 나타났다. 
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이것은 팽화홍삼 추출액에 홍삼보다 ginsenoside 가 더 많이 존재하고 

있고, 산화 방지 활성을 나타내는 폴리페놀이 함량이 높았기 때문이다. 

실제 식품과 유사한 환경을 만들어 산화 방지 활성을 측정하기 위한 본 

연구의 모델시스템인 riboflavin photosensitized O/W emulsions 에서 반응 

온도 및 팽화홍삼 추출액의 농도에 따라 지방질 산화 속도가 

조절되었다.  

결론적으로 홍삼을 팽화하면 고온고압에 의해 ginsenoside 구조가 

변화되면서 기존에 없던 ginsenoside 가 생성되고, 홍삼이 다공성 

조직으로 팽창되어 페놀성 화합물이 많이 추출되어 산화 방지 활성이 

증가함을 확인하였다. 또한 식품산업에 응용할 경우 짧은 시간에 많은 

생리활성 성분을 추출할 수 있어 원가 절감에 기여할 수 있으리라 

생각된다. 

주요어: 인삼, 홍삼, 팽화, 산화 방지 활성, 휘발성 성분, 에멀션 모형, 

페놀성 화합물 

학번: 2000-30738 
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