12 research outputs found
๋ฅ๋ฌ๋ ๊ธฐ๋ฐ ๊ตฐ์งํ ๋ฐฉ๋ฒ์ ์ด์ฉํ์ฌ FDG PET์์ ์์ธ ํ์ด๋จธ๋ณ์ ๊ณต๊ฐ์ ๋ ๋์ฌ ํจํด์ ํน์ง์ ์ํ ๋ถ๋ฅ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์ตํฉ๊ณผํ๊ธฐ์ ๋ํ์ ๋ถ์์ํ ๋ฐ ๋ฐ์ด์ค์ ์ฝํ๊ณผ, 2022.2. ์ด๋์.์์ธ ํ์ด๋จธ๋ณ์ ์๋ฐ๋ก์ด๋์ ํ์ฐ ์นจ์ฐฉ๊ณผ ๊ฐ์ ๋ณ๋ฆฌํ์ ํน์ง์ ๊ณต์ ํจ์๋ ๋ถ๊ตฌํ๊ณ ๊ด๋ฒ์ํ ์์๋ณ๋ฆฌํ์ ํน์ฑ์ ๋ณด์ธ๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ๋ฅ๋ฌ๋ ๊ธฐ๋ฐ ๊ตฐ์งํ ๋ฐฉ๋ฒ์ ์ด์ฉํ์ฌ FDG PET ์์์์ ์์ธ ํ์ด๋จธ๋ณ ํน์ง์ ์ํ์ ๋ถ๋ฅํ์ฌ ์ ๊ฒฝ ํดํ์ ๊ณต๊ฐ์ ๋ ๋์ฌ ํจํด์ ์ดํดํ๊ณ ์ ํ์์ผ๋ฉฐ, ๊ณต๊ฐ์ ๋ ๋์ฌ ํจํด์ ์ํด ์ ์๋ ์ํ์ ์์๋ณ๋ฆฌํ์ ํน์ง์ ๋ฐํ๊ณ ์ ํ์๋ค.
Alzheimerโs Disease Neuroimaging Initiative(ADNI) ๋ฐ์ดํฐ๋ฒ ์ด์ค๋ก๋ถํฐ ์ฒซ๋ฒ์งธ ๋ฐฉ๋ฌธ ๋ฐ ์ถ์ ๋ฐฉ๋ฌธ์ ํฌํจํ ์์ธ ํ์ด๋จธ๋ณ, ๊ฒฝ๋์ธ์ง์ฅ์ , ์ธ์ง ์ ์๊ตฐ์ ์ด 3620๊ฐ์ FDG ๋ ์์ ์๋จ์ธต์ดฌ์(PET) ์์์ ์์งํ์๋ค. ์์ธ ํ์ด๋จธ๋ณ์์ ์ง๋ณ์ ์งํ ์ธ์ ๋ ๋์ฌ ํจํด์ ๋ํ๋ด๋ ํํ(representation)์ ์ฐพ๊ธฐ ์ํ์ฌ, ์กฐ๊ฑด๋ถ ๋ณ์ดํ ์คํ ์ธ์ฝ๋(conditional variational autoencoder)๋ฅผ ์ฌ์ฉํ์์ผ๋ฉฐ, ์ธ์ฝ๋ฉ๋ ํํ์ผ๋ก๋ถํฐ ๊ตฐ์งํ(clustering)๋ฅผ ์ํํ์๋ค. ์์ธ ํ์ด๋จธ๋ณ์ ๋ FDG PET (n=838)๊ณผ CDR-SB(Clinical Demetria Rating Scale Sum of Boxes) ์ ์๊ฐ cVAE ๋ชจ๋ธ์ ์
๋ ฅ๊ฐ์ผ๋ก ์ฌ์ฉ๋์์ผ๋ฉฐ, ๊ตฐ์งํ์๋ k-means ์๊ณ ๋ฆฌ์ฆ์ด ์ฌ์ฉ๋์๋ค. ํ๋ จ๋ ๋ฅ๋ฌ๋ ๋ชจ๋ธ์ ๊ฒฝ๋์ธ์ง์ฅ์ ๊ตฐ (n=1761)์ ๋ FDG PET์ ์ ์ด(transfer)๋์ด ๊ฐ ์ํ์ ์๋ก ๋ค๋ฅธ ๊ถค์ (trajectory)๊ณผ ์ํ๋ฅผ ๋ฐํ๊ณ ์ ํ์๋ค. ํต๊ณ์ ํ๋ผ๋ฏธํฐ ์ง๋์์ฑ๋ฒ(Statistical Parametric Mapping, SPM)์ ์ด์ฉํ์ฌ ๊ฐ ๊ตฐ์ง์ ๊ณต๊ฐ์ ํจํด์ ์๊ฐํ ํ์์ผ๋ฉฐ, ๊ฐ ๊ตฐ์ง์ ์์์ ๋ฐ ์๋ฌผํ์ ํน์ง์ ๋น๊ตํ์๋ค. ๋ํ ์ํ ๋ณ ๊ฒฝ๋์ธ์ง์ฅ์ ๋ก๋ถํฐ ์์ธ ํ์ด๋จธ๋ณ์ผ๋ก ์ ํ๋๋ ๋น์จ์ ๋น๊ตํ์๋ค.
๋ฅ๋ฌ๋ ๊ธฐ๋ฐ ๊ตฐ์งํ ๋ฐฉ๋ฒ์ผ๋ก 4๊ฐ์ ํน์ง์ ์ํ์ด ๋ถ๋ฅ๋์๋ค. (i) S1 (angular): ๋ชจ์ด๋(angular gyrus)์์ ํ์ ํ ๋์ฌ ์ ํ๋ฅผ ๋ณด์ด๋ฉฐ ๋ถ์ฐ๋ ํผ์ง์ ๋์ฌ ์ ํ ํจํด, ๋จ์ฑ์์ ๋น๋ ๋์, ๋ ๋ง์ ์๋ฐ๋ก์ด๋ ์นจ์ฐฉ, ๋ ์ ์ ํ์ฐ ์นจ์ฐฉ, ๋ ์ฌํ ํด๋ง ์์ถ, ์ด๊ธฐ ๋จ๊ณ์ ์ธ์ง ์ ํ์ ํน์ง์ ๋ณด์๋ค. (ii) S2 (occipital): ํ๋์ฝ(occipital) ํผ์ง์์ ํ์ ํ ๋์ฌ ์ ํ๋ฅผ ๋ณด์ด๋ฉฐ ํ๋ถ ์ฐ์ธํ ๋์ฌ ์ ํ ํจํด, ๋ ์ ์ ์ฐ๋ น, ๋ ๋ง์ ํ์ฐ, ๋ ์ ์ ํด๋ง ์์ถ, ๋ ๋ฎ์ ์งํ ๋ฐ ์๊ณต๊ฐ ์ ์, ๊ฒฝ๋์ธ์ง์ฅ์ ๋ก๋ถํฐ ์์ธ ํ์ด๋จธ๋ณ์ผ๋ก์ ๋น ๋ฅธ ์ ํ์ ํน์ง์ ๋ณด์๋ค. (iii) S3(orbitofrontal): ์์์ ๋(orbitofrontal) ํผ์ง์์ ํ์ ํ ๋์ฌ ์ ํ๋ฅผ ๋ณด์ด๋ฉฐ ์ ๋ฐฉ ์ฐ์ธํ ๋์ฌ ์ ํ ํจํด, ๋ ๋์ ์ฐ๋ น, ๋ ์ ์ ์๋ฐ๋ก์ด๋ ์นจ์ฐฉ, ๋ ์ฌํ ํด๋ง ์์ถ, ๋ ๋์ ์งํ ๋ฐ ์๊ณต๊ฐ ์ ์์ ํน์ง์ ๋ณด์๋ค. (iv) S4(minimal): ์ต์์ ๋์ฌ ์ ํ๋ฅผ ๋ณด์, ์ฌ์ฑ์์ ๋น๋ ๋์, ๋ ์ ์ ์๋ฐ๋ก์ด๋ ์นจ์ฐฉ, ๋ ๋ง์ ํ์ฐ ์นจ์ฐฉ, ๋ ์ ์ ํด๋ง ์์ถ, ๋ ๋์ ์ธ์ง๊ธฐ๋ฅ ์ ์์ ํน์ง์ ๋ณด์๋ค.
๊ฒฐ๋ก ์ ์ผ๋ก, ๋ณธ ์ฐ๊ตฌ์์ ์ฐ๋ฆฌ๋ ์๋ก ๋ค๋ฅธ ๋ ๋ณ๋ฆฌ ๋ฐ ์์ ํน์ฑ์ ๊ฐ์ง ์์ธ ํ์ด๋จธ๋ณ์ ํน์ง์ ์ํ์ ๋ถ๋ฅํ์๋ค. ๋ํ ์ฐ๋ฆฌ ๋ฅ๋ฌ๋ ๋ชจ๋ธ์ ๊ฒฝ๋์ธ์ง์ฅ์ ๊ตฐ์ ์ฑ๊ณต์ ์ผ๋ก ์ ์ด๋์ด ์ํ ๋ณ ๊ฒฝ๋์ธ์ง์ฅ์ ๋ก๋ถํฐ ์์ธ ํ์ด๋จธ๋ณ์ผ๋ก ์ ํ๋๋ ์ํ๋ฅผ ์์ธกํ ์ ์์๋ค. ๋ณธ ๊ฒฐ๊ณผ๋ FDG PET์์ ์์ธ ํ์ด๋จธ๋ณ์ ํน์ง์ ์ํ์ ๊ฐ์ธ์ ์์ ๊ฒฐ๊ณผ์ ์ํฅ์ ๋ฏธ์น ์ ์๊ณ , ๋ณํ์๋ฆฌํ ์ธก๋ฉด์์ ์์ธ ํ์ด๋จธ๋ณ์ ๊ด๋ฒ์ํ ์คํํธ๋ผ์ ์ดํดํ๋๋ฐ ๋จ์๋ฅผ ์ ๊ณตํ ์ ์์์ ์์ฌํ๋ค.Alzheimerโs disease (AD) presents a broad spectrum of clinicopathologic profiles, despite common pathologic features including amyloid and tau deposition. Here, we aimed to identify AD subtypes using deep learning-based clustering on FDG PET images to understand distinct spatial patterns of neurodegeneration. We also aimed to investigate clinicopathologic features of subtypes defined by spatial brain metabolism patterns.
A total of 3620 FDG brain PET images with AD, mild cognitive impairment (MCI), and cognitively normal controls (CN) at baseline and follow-up visits were obtained from Alzheimerโs Disease Neuroimaging Initiative (ADNI) database. In order to identify representations of brain metabolism patterns different from disease progression in AD, a conditional variational autoencoder (cVAE) was used, followed by clustering using the encoded representations. FDG brain PET images with AD (n=838) and Clinical Demetria Rating Scale Sum of Boxes (CDR-SB) scores were used as inputs of cVAE model and the k-means algorithm was applied for the clustering. The trained deep learning model was also transferred to FDG brain PET image with MCI (n=1761) to identify differential trajectories and prognosis of subtypes. Statistical parametric maps were generated to visualize spatial patterns of clusters, and clinical and biological characteristics were compared among the clusters. The conversion rate from MCI to AD was also compared among the subtypes.
Four distinct subtypes were identified by deep learning-based FDG PET clusters: (i) S1 (angular), showing prominent hypometabolism in the angular gyrus with a diffuse cortical hypometabolism pattern; frequent in males; more amyloid; less tau; more hippocampal atrophy; cognitive decline in the earlier stage. (ii) S2 (occipital), showing prominent hypometabolism in the occipital cortex with a posterior-predominant hypometabolism pattern; younger age; more tau; less hippocampal atrophy; lower executive and visuospatial scores; faster conversion from MCI to AD. (iii) S3 (orbitofrontal), showing prominent hypometabolism in the orbitofrontal cortex with an anterior-predominant hypometabolism pattern; older age; less amyloid; more hippocampal atrophy; higher executive and visuospatial scores. (iv) S4 (minimal), showing minimal hypometabolism; frequent in females; less amyloid; more tau; less hippocampal atrophy; higher cognitive scores.
In conclusion, we could identify distinct subtypes in AD with different brain pathologies and clinical profiles. Also, our deep learning model was successfully transferred to MCI to predict the prognosis of subtypes for conversion from MCI to AD. Our results suggest that distinct AD subtypes on FDG PET may have implications for the individual clinical outcomes and provide a clue to understanding a broad spectrum of AD in terms of pathophysiology.1. Introduction 1
1.1 Heterogeneity of Alzheimer's disease 1
1.2 FDG PET as a biomarker of Alzheimer's disease 1
1.3 Biologic subtypes of Alzheimer's disease 2
1.4 Dimensionality reduction methods 5
1.5 Variational autoencoder for clustering 8
1.6 Final goal of the study 10
2. Methods 11
2.1 Subjects 11
2.2 FDG PET data acquisition and preprocessing 12
2.3 Deep learning-based model for representations of FDG PET in AD 12
2.4 Clustering method for AD subtypes on FDG PET 17
2.5 Transfer of deep learning-based FDG PET cluster model for MCI subtypes 17
2.6 Visualization of subtype-specific spatial brain metabolism pattern 21
2.7 Clinical and biological characterization 21
2.8 Prognosis prediction of MCI subtypes 22
2.9 Generation of subtype-specific FDG PET images 22
2.10 Statistical analysis 23
3. Results 24
3.1 Deep learning-based FDG PET clusters 24
3.2 Spatial brain metabolism pattern in AD subtypes 27
3.3 Clinical and biological characterization in AD subtypes 32
3.4 Subtype-specific spatial metabolism patterns resemble in MCI 43
3.5 Clinical and biological characterization in MCI subtypes 50
3.6 Prognosis prediction of subtypes for conversion from MCI to AD 56
3.7 Generating FDG PET images of AD subtypes 61
4. Discussion 66
4.1 Limitations of previous subtyping approach 68
4.2 Interpretation of results 68
4.3 Strength of our deep learning-based clustering approach 73
4.4 Strength of our deep learning-based AD subtypes 77
4.5 Limitations and future directions 82
5. Conclusion 83
References 84
Supplementary Figures 99
๊ตญ๋ฌธ ์ด๋ก 101๋ฐ
๋ฅ๋ฌ๋์ ์ด์ฉํ ๊ธฐ์ /์์ธํ์กธ์๋ฏธ๋ ๋ถํ ๋ํ๋ฅ SPECT์์ ๋ํ๋ฅ ์๋น๋ฅ ํ๊ฐ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ตํฉ๊ณผํ๊ธฐ์ ๋ํ์ ๋ถ์์ํ ๋ฐ ๋ฐ์ด์ค์ ์ฝํ๊ณผ, 2018. 8. ์ด๋์.Early and accurate detection of cerebrovascular disease is important for its mortality and brain injury. Basal/acetazolamide stress brain perfusion single photon emission computed tomography (SPECT) is a functional diagnostic imaging tool to detect cerebral perfusion decrease and cerebrovascular reserve. The visual interpretation of brain perfusion SPECT image is a standard practice in the clinical setting, often resulting interobserver variability and inconsistence of diagnosis. In this study, we applied Long Short-Term Memory (LSTM) network and 3D convolutional neural network (CNN) model for the deep learning-based interpretation of the text report and image of basal/acetazolamide stress brain perfusion SPECT. LSTM network was successfully trained to classify the text report of each image regarding its hemodynamic abnormality. The LSTM model-predicted results were used for the label of a cerebrovascular reserve decrease on basal/acetazolamide stress brain perfusion SPECT images to train 3D CNN model. Our designed 3D CNN model was trainable but did not show outstanding performance to detect the cerebrovascular reserve decrease on basal/acetazolamide stress brain perfusion SPECT images. Our results suggest that 3D CNN is a trainable model on basal/acetazolamide stress brain perfusion SPECT in the detection of a cerebrovascular reserve decrease using text report prediction of LSTM as a ground truth label. Additional image preprocessing steps with advanced network architecture are required to improve the performance of our deep-learning based interpretation system in future study.Introduction 7
Materials and methods . 9
Results 18
Discussion 23
Conclusions . 26
References . 27
๊ตญ๋ฌธ์ด๋ก . 30Maste
An experimental study on the pronunciation of Korean vowels in patient with class 3 malocclusion
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ํ์ :์ธ์ดํ๊ณผ,2009.2.Maste
์ ๋ณดํต์ ์ ์ผ์๋ฆฌ์ ์ํฅ์ ๋ฏธ์น๋ ๋์ ์ง์ ์์ธ์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ํ๊ฒฝ๋ํ์ ํ๊ฒฝ๊ณํํ๊ณผ, 2020. 8. ์ด์์ฑ.4์ฐจ ์ฐ์
ํ๋ช
์๋ ์ดํ ์ ๋ณดํต์ ์
์ ์ค์์ฑ์ ํ๋๋์์ผ๋ฉฐ, ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์ง์ ๊ณผ ๋ถ์ฐ ํํ๋ ๊ณผ๊ฑฐ์๋ ๋ค๋ฅธ ์๋ก์ด ํํ๋ฅผ ๋ณด์ผ ๊ฒ์ผ๋ก ์์ธก๋๊ณ ์๋ค. ๋ง์ ์ ํ ์ฐ๊ตฌ๋ ์ฐ์
์
์ง ์ธก๋ฉด์์ ๊ธฐ์กด ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ์ค์ฌ์ง๋ก์ ์ง์ ๊ณผ ๊ตฐ์งํ ํํ๊ฐ ๊ฐํ๋๊ณ ์์์ ๋ณด์ฌ ์ฃผ์๋ค. ๊ทธ๋ฌ๋ ์ต๊ทผ ๋์์ ์ฐ์
์ ์ฑ์ฅ์๋ ์ง์๊ต๋ฅ์ ํ์ ์ ์ญ๋์ ์ธ๋ถํจ๊ณผ๊ฐ ํ์ฐ๋๋ ๊ณณ์ ๋ํ ์ข
์ฌ์๋ค์ ์ ํธ๊ฐ ์ปค์ง๋ฉด์, ๊ธฐ์
๋ณด๋ค๋ ์ผ์๋ฆฌ์ ์ธก๋ฉด์ ์ ๊ทผ์ด ํ์ํ๊ฒ ๋์๋ค. ์ผ์๋ฆฌ๊ฐ ํน์ ์ง์ญ์ผ๋ก ์ง์ ํ๊ณ ์๋์ง, ๋น๊ต์ ๋์ ์ง์ญ์ผ๋ก ๋ถ์ฐํ๊ณ ์๋์ง, ์ง์ ํ๋ ํํ๋ผ๋ฉด ์ ์๋กญ๊ฒ ๋ถ์ํ๊ณ ์๋์ง์ ๋ํ ๋ณํ์ ์์ธ์ ํ์
ํด์ผ ํ๋ ๊ฒ์ด๋ค.
์ผ์๋ฆฌ ์ง์ ๊ณผ ๋ถ์ฐ์ ์์ธ์ผ๋ก์ ์ ํ ์ฐ๊ตฌ๋ ์๊ธ, ์๋๊ณผ ๊ฐ์ ๊ฒฝ์ ์ ์์ธ(Classic Pull Factors)๊ณผ ์ด๋งค๋ํฐ(Amenity)์ ๊ด๋ จ๋ ์ฅ์์ ์ง ์์ธ(Quality of Place Pull Factors)์ ์ค๋ช
ํ์๋ค. ํนํ, ๋์๊ณต๊ฐ์ ์ฌ๋๊ณผ ์ฌ๋์ ์ฐ๊ฒฐํ๋ ๊ด๊ณ ์์์ ํ์ฑ๋๋ฉฐ, ๊ธฐ์ ๊ณผ ์ ๋ณด ๊ณต์ ์ ์ ๊ทผ์ฑ์ด ๋์ ๋์์ ๋ํ ์์๋ ์ง์์ ์ผ๋ก ์ฆ๊ฐํ๊ณ ์๋ค. ์ด์ ๊ฐ์ ์ผ์๋ฆฌ๊ฐ ์ง์ ๋๋ ๋ถ์ฐํ๊ฒ ๋๋ ์์ธ์ด ๋ ์ ์๋ ๋์ ์์ธ๋ค์ด ๋ฌด์์ธ์ง ์ ์ํ๊ธฐ ์ํด์๋ ์ ๋์ ์ธ ์๋ฃ๋ฅผ ์ฌ์ฉํ์ฌ ์ผ์๋ฆฌ์ ๋์ ์์ธ์ ๊ด๊ณ์ฑ์ด ๊ฐ๊ด์ ์ธ ์ฌ์ค๋ก์ ๊ฒ์ฆ๋์ด์ผ ํ ๊ฒ์ด๋ค. ํน์ ์ง์ญ์ผ๋ก ์ง์ ํ๋ ๊ฒ์ด ํ๋์ ์์ธ ๋๋ฌธ์ด๋ผ๋ฉด, ๋ค๋ฅธ ์์ธ์ด ๋ชจ๋ ํต์ ๋ ์ํ์์ ํ ๊ฐ์ง์ ์์ธ์ ์ฆ๊ฐ๊ฐ ์์ธ์ด ๋์ด ์ผ์๋ฆฌ๊ฐ ์ค์ ๋ก ์ฆ๊ฐํ๋์ง์ ๋ํ ์ํฅ ๊ด๊ณ๊ฐ ์ฑ๋ฆฝ๋์ด์ผ ํ๋ค.
๋ฐ๋ผ์ ๋ณธ ์ฐ๊ตฌ๋ 4์ฐจ ์ฐ์
ํ๋ช
์ดํ ์ฐ์
ํจ๋ฌ๋ค์์ ์ ํ์ ์ํ ์ผ์๋ฆฌ์ ๋์๊ณต๊ฐ ์์์ ์ง์ ๊ณผ ๋ถ์ฐ์ ์๋ก์ด ๊ฒฝํฅ์ ์ฃผ๋ชฉํ๋ฉฐ, ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์ํฅ์ ๋ฏธ์น๋ ๋์์ ์์ธ๊ณผ ํน์ฑ์ ํ์
ํ์๋ค. ์ข
์ฌ์๋ค์ ์ ์ธํ๋ ๋์์ ํน์ฑ์ธ ํ๋ถํ ์ธ์ ์๋ณธ๊ณผ ๋์ ์ถ์ ์ง ์ถ๊ตฌ์ ์ํ ์ 3์ ์ฅ์์ ํจ๊ณผ์ ์ด์ ์ ์ค์ฌ์ผ๋ก ์์ธ์ ๊ตฌ์ฑํ๋ฉฐ, ์ผ์๋ฆฌ๋ฅผ ์ฑ๋ณ, ์ ๋ณดํต์ ์
์ธ๋ถ์ฐ์
๋ณ๋ก ๊ตฌ๋ถํ์ฌ ์ง์ ์์ธ์ ๊ตฌ๋ถํ์๋ค. ๋ณธ ์ฐ๊ตฌ๋ ๋ค์์ ์ธ ๊ฐ์ง ์ธก๋ฉด์์ ์ ํ ์ฐ๊ตฌ์ ์ฐจ๋ณํ๋๋ ๋ถ์๊ณผ ๊ฒ์ฆ์ ์ํํ์๋ค.
์ฒซ์งธ, ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๊ณต๊ฐ ์ ๋ฐ์ ์ธ ๋ถ๊ท ๋ฑ๋๋ฅผ ํ์ธํ๊ณ , ๋ถ๊ท ๋ฑ๋๊ฐ ๋์ ์ง์ญ๋ง์ ๋์์ผ๋ก ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์๋ก์ด ๊ตฐ์ง ํํ ๋ณํ์ ๋์ ์์ธ๊ณผ์ ๊ด๋ จ์ฑ์ ํ์
ํ์๋ค. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ ์ ๊ตญ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๋๋น ์ง์ญ ์ผ์๋ฆฌ์ ๋น์จ์ ํ์ธํ ์ ์๋ ์
์ง๊ณ์ ๋ฐฉ๋ฒ์ ์ ์ฉํ์๋ค. ๋ณธ ์ฐ๊ตฌ๋ ์ง๋๊ณ์๋ก์ ์ง์ญ์ ๊ณต๊ฐ ์ ๋ฐ์์๋ ์ผ์๋ฆฌ๊ฐ ์น์ฐ์ณค๋์ง ์น์ฐ์น์ง ์์๋์ง๋ฅผ ์ธก์ ํ์๋ค. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋ถ๊ท ๋ฑ๋๊ฐ ์ ๊ตญ ๋๋น ๋น๊ต์ ๋์ ์์ค์ธ ์์ธ ์ง์ญ์ ๊ณต๊ฐ์ ํ์์๋ฃ ๋ถ์์ ์ฌ์ฉํ์ฌ ์ผ์๋ฆฌ์ ๊ตฐ์งํํ๋ฅผ ๊ฒ์ฆํ์๋ค. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๊ณต๊ฐ์ ๊ตฐ์งํํ ๋ถ์ ๊ฒฐ๊ณผ ๊ธฐ์กด์ ๊ฐ๋จ๊ตฌ, ์์ด๊ตฌ์ ์ค์ฌ์ง์ญ๋ณด๋ค๋ ์๋กญ๊ฒ ๋งํฌ๊ตฌ, ์ค๊ตฌ, ์ฑ๋๊ตฌ, ์ข
๋ก๊ตฌ๋ฅผ ์ค์ฌ์ผ๋ก ํ๋ ์๋ก์ด ๊ตฐ์ง ๊ฒฝํฅ์ ํ์ธํ์๋ค. ์์ธ๋ถ์์ผ๋ก๋ ์ผ์๋ฆฌ์ ๊ด๋ จ๋ ๋ณ์๋ฅผ ์ ํฉ์ฑ ๊ฒ์ฆ์ผ๋ก์ ๊ณตํต๋ ์์ฑ์ผ๋ก ๋ฌธํโง์์โง์ฌ๊ฐ ์์ธ, ์ฃผํ๊ฐ๊ฒฉโง์๋ ์์ธ, ์ธ์ ์๋ณธ ์์ธ, ์๋ฃ ์์ธ, ์ธ์ ์๋ณธ ์์ฑ ์์ธ์ ๋์ถํ์๋ค. ํนํ ๋ฌธํโง์์โง์ฌ๊ฐ ์์ธ์ ์ค์ฌ์ผ๋ก ์๋กญ๊ฒ ์ผ์๋ฆฌ ๋น์จ์ด ๋์ ๊ตฐ์ง ์ง์ญ๊ณผ์ ๊ณต๊ฐ์ ํํ์ ์ ์ฌ์ฑ๊ณผ ์ํธ ๊ด๋ จ์ฑ์ด ์์์ ํ์ธํ์๋ค.
๋์งธ, ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ์ ์ค์ฆ์ ์ํฅ ๊ด๊ณ๋ฅผ ํ์
ํ์๋ค. ๊ณต๊ฐํ๊ท๋ถ์ ๋ฐฉ๋ฒ์ ์ฌ์ฉํ์ฌ ํด๋น ์ง์ญ์ ์ผ์๋ฆฌ์ ์ํฅ์ ๋ฏธ์น ์ ์๋ ์ธ์ ์ง์ญ์ ์ํฅ๋ ฅ๊ณผ ๊ณ ๋ คํ์ง ๋ชปํ ๋ณ์์ ์ํ ์ค์ฐจ์ ๊ณต๊ฐ์ ์ข
์์ฑ์ ํต์ ํ์๋ค. ๊ธฐ์กด ์ฐ๊ตฌ๋ ์ฃผ๋ก ์ธํฐ๋ทฐ๋ ์ค๋ฌธ์กฐ์ฌ๋ก ์ข
์ฌ์์ ๋์์ ๋ํ ์ ํธ๋ฅผ ์ธก์ ํ์๋ค๋ฉด, ๋ณธ ์ฐ๊ตฌ๋ ์ ๋์ ์ธ ์งํ๋ฅผ ์ฌ์ฉํ์ฌ ์ผ์๋ฆฌ์ ๋์ ์์ธ์ ๊ด๊ณ์ ๋ํ ์ค์ฆ์ ์ธ ๋ถ์์ ์ํํ์๋ค. ๋ํ ์ค์ ์ ๋ณดํต์ ์
์ ์ผ์๋ฆฌ์ ์ํฅ์ ๋ฏธ์น๋ ๋์ ์์ธ์ ๊ณ ์ ์ฑ์ ๊ฒ์ฆํ๊ธฐ ์ํด์ ์ฐฝ์์ฑ์ด ๋ฐํ๋๋ ์์ , ์คํฌ์ธ ๋ฐ ์ฌ๊ฐ ์๋น์ค์
๊ณผ ์ ๋ฌธ, ๊ณผํ ๋ฐ ๊ธฐ์ ์๋น์ค์
์ผ์๋ฆฌ ์ง์ ์์ธ๊ณผ ๋น๊ตโง๋ถ์ํ์ฌ ์ฐจ๋ณ์ฑ์ ํ์ธํ์๋ค. ๋ฌธํโง์์โง์ฌ๊ฐ์์ธ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ฟ๋ง ์๋๋ผ ์ธ๋ถ ์ฐ์
๋ณ, ์ฑ๋ณ ์ผ์๋ฆฌ์ ์ํฅ ๊ด๊ณ์ ์๋ ๋ณดํธ์ ์ด๋ฉฐ ๋์ผํ ๊ฒฐ๊ณผ์์ ํ์
ํ์๋ค.
์
์งธ, ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์ง์ ์์ธ์ ์ํ ๋์ ํน์ฑ์ ๋ฐํ๋ค. ๊ตฐ์ง๋ถ์์ ์ํด ์ผ์๋ฆฌ์ ๊ด๋ จ ์๋ ๋ฌธํโง์์โง์ฌ๊ฐ ์์ธ, ์ฃผํ๊ฐ๊ฒฉโง์๋ ์์ธ์ ์ ์ฌํ ์ฌ๊ฑด์ ๊ฐ์ถ๊ณ ์๋ ๋์๋ณ๋ก ๊ตฐ์งํํ์ฌ ๊ฐ ๋์์ ์์ธ ์์ค์ ๊ฒ์ฆํ์๋ค. ๋์๋ณ ๊ฐ์ ์์ธ๊ณผ ์ทจ์ฝ์์ธ์ ํ์
ํ๊ณ , ์ผ์๋ฆฌ ํํฉ๊ณผ๋ ๋น๊ตโง๋ถ์ํจ์ผ๋ก์จ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์ ์ง์ ์ถ๊ฐ ์ ์
์ ๊ธฐ๋ํ ์ ์๋ ๋์์ ํน์ฑ์ด ๋ฌด์์ธ์ง ํ์
ํ์๋ค. ๋น๊ต์ ๋ฌธํโง์์โง์ฌ๊ฐ ์์ค์ด ํ๋ถํ ๋์์ผ์๋ก ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๋ณํ๊ฐ ์ปธ์ผ๋, ํฅํ ์ฃผํํ๊ฒฝ๊ณผ ๊ด๋ จํ ์ถ์ ์ง์ ๊ฐ์ ์ด ํ์ํจ์ ํ์ธํ์๋ค.
๋ณธ ์ฐ๊ตฌ๋ 4์ฐจ ์ฐ์
ํ๋ช
์ดํ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๋น์จ์ด ๋์ ๊ตฐ์ง์ง์ญ์ ๋ณํ๋ฅผ ํ์
ํ๊ณ ์๋ก์ด ๊ฒฝํฅ์ฑ์ ๋ฐํ๋ค. ์๋ก์ด ๊ตฐ์ง ๊ฒฝํฅ์ผ๋ก ์ผ์๋ฆฌ๊ฐ ์ ํน์ ์ง์ญ์ ์์ฃผ๋ก ์ฆ๊ฐํ๋์ง์ ๋ํ ์์ธ์ ์์ธ๊ณผ์ ๊ด๋ จ์ฑ์ผ๋ก ๊ฒ์ฆํ์๋ค. ํนํ, ์ง์๊ณผ ์ ๋ณด์ ๊ตํ๊ณผ ์ ๊ทผ์ฑ์ ๋์ฌ์ค์ผ๋ก์จ ๋คํธ์ํฌ๋ฅผ ํ์ฑํ๊ณ , ํ์ ์ ์ฐฝ์ถํ ์ ์๋ ๋ฌธํโง์์โง์ฌ๊ฐ ์์ค๊ณผ ๊ฐ์ ์ 3์ ์ฅ์์ ์ํ ๊ธ์ ์ ์ธ๋ถํจ๊ณผ๋ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ์ฆ๊ฐ์ ์ํฅ์ ๋ฏธ์น๊ณ ์์์ ํ์ธํ์๋ค. ๋ํ ๋์ ์์ค์ ์ง๋จํ๊ณ , ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์ํฅ์ ๋ฏธ์น๋ ๋ค์ํ ์ง์ ์์ธ๋ค์ ๊ณ ๋ คํ์ฌ ๋์ ํน์ฑ์ ๋ง๋ ๊ฐ์ ์ ์ ๋์ถํ ์ ์๋ค๋ ์ ์์ ์์๊ฐ ์๋ค. ๋ณธ ์ฐ๊ตฌ์ ๊ฒฐ๊ณผ๋ก๋ ๋์์ ์ญ๋ ๊ฐํ๋ฟ๋ง ์๋๋ผ ์๋์ ์ผ๋ก ์ฐ์
๊ธฐ๋ฐ์ด ์ทจ์ฝํ ๋์์ ์ผ์๋ฆฌ ์ฐฝ์ถ์ ์ํ ์ ์ฑ
์ ๋์์ ๋ง๋ จํ ์ ์๋ค๋ ์ ์์ ๊ฐ์น๊ฐ ํฌ๋ค๊ณ ํ ์ ์๊ฒ ๋ค.The 4th Industrial Revolution has expanded the importance of information and communication technology(ICT) industry while changes are expected in the employment concentration and dispersion within the industry. From the perspective of physical industrial location, numerous studies have shown increased tendencies for concentration and clustering towards the existing central hub for ICT employment. However, recent trends in the growth of the city and the industry show industry employees prefer places where dynamic external effects such as knowledge exchange and innovation are promulgated, and it has become necessary to approach the matter from an employment perspective rather than a corporate perspective. In other words, we need to find out whether there is employment concentration in a certain region or dispersion over a relatively wide region; and if such concentration do exist, the reasons for its emergence as well as the factors behind such change.
Past studies examining the reasons behind employment concentration and dispersion have described Classic Pull Factors such as wage and income and Quality of Place Pull Factors related to amenities. In particular, urban space is formed through relations that connect people while demand for cities that allow high degrees of access to technology and information sharing is persistently increasing. In order to propose the urban factors that may be the reason behind employment concentration or dispersion, the relation between employment and urban factors must be verified as an objective fact using quantitative data. If a single factor is the reason for concentration towards a specific area, it needs to be established that the increase in the said single factor is indeed influencing the increase in employment while ensuring that all other factors are controlled.
As such, this research will focus on the new trends of employment concentration and dispersion within urban space due to the shift in industrial paradigm following the 4th Industrial Revolution while examining the urban factors and characteristics that influence employment in ICT industry. Factors were primarily composed of abundant human capital, an urban characteristic that attract industry employees; and effects and benefits of the Great Good Place, attributed to the desire for higher quality of living. Employment was categorized per gender and specific industries within the information and communication industry in order to categorize the concentration factors. This research conducted analysis and verification that differ from past study in the following three ways.
First, the general inequality in the employment space of the ICT industry was confirmed, with subsequent examination conducted for areas with high degrees of inequality in order to verify the relationship between urban factors and the changes to the concentration pattern for employment in the ICT industry. For ICT employment, a location index method that can verify the ratio of regional employment to national ICT employment was utilized. As a Ginis coefficient, this research measured whether employment was skewered or not in the overall regional space. In the Seoul region where ICT employment inequality was relatively higher than the national average, a spatial search data analysis was used to verify the employment clustering pattern. According to the spatial clustering pattern analysis of ICT employment, a new trend of clustering in Mapo-gu, Jung-gu, Seongdong-gu and Jongno-gu was observed, a shift away from previous central areas of Gangnam-gu and Seocho-gu. For factor analysis, using variables related to employment as the conformance verification, common attributes including culturalยทeating and drinkingยทrecreational factors, housing priceยทincome factors, human capital factor, medical factor, and human capital growth factor were derived. In particular, correlation between culturalยทeating and drinkingยทrecreational factors and the similarity of spatial pattern in the new clusters with high employment rates was observed.
Second, the empirical relationship between ICT employment and urban factors was examined. Spatial regression analysis was used to control the effect from adjacent regions that can influence employment in the target region and the spatial dependency of errors from unexpected variables. While previous studies have measured the preference for cities by employees primarily through interviews or surveys, this study utilized quantitative indices to carry out empirical analysis on the relationship between employment and urban factors. In addition, to verify the uniqueness of urban factors that impact actual ICT employment, industries that require creativity such as arts, sports and recreation service industries were compared to employment clustering factors in professional, science and technology service industries to confirm their differentiation. It was observed that culturalยทeating and drinkingยทrecreational factors were in fact a universal and identical result related to not only ICT employment but also specific gender and industry categories.
Third, urban characteristics due to the clustering factors of ICT employment were recognized. Factors related to employment including culturalยทeating and drinkingยทrecreational factors, housing priceยทincome factors were graded using cluster analysis. These were clustered per cities with similar conditions to verify the factor levels for each city. Strengths and weaknesses per city were identified. Comparative analysis was carried out with current employment data to identify the urban characteristics that is capable of maintaining ICT employment and inducing further influx. Cities with relatively more established culturalยทeating and drinkingยทrecreational facilities showed higher levels of change in ICT employment; however, it was verified that improvements to the quality of living related to the housing environment is necessary in the future.
This research identifies the changes in the cluster areas with high levels of ICT employment and reveals new trends following the 4th Industrial Revolution. The reasons behind the increase in employment in specific areas as part of the new clustering trend was verified in relation to factors. In particular, it was verified that positive external effects through Great Good Places such as culturalยทeating and drinkingยทrecreational facilities that is capable of forming new networks and creating innovation by knowledgeยท information exchange and increasing accessibility influences in ICT employment increase. Additionally, the research is meaningful in that it diagnoses the level of the city and draws forth possible improvement that is specific to the citys characteristics while considering the diverse clustering factors that impact ICT employment. This research is valuable in the fact that it can enhance a citys capabilities as well as prepare policy measures to create jobs in cities with relatively weak industrial infrastructure.์ 1 ์ฅ ์ ๋ก 1
์ 1 ์ ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์ 1
1. ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ 1
2. ์ฐ๊ตฌ ๋ชฉ์ 5
์ 2 ์ ์ฐ๊ตฌ์ ๋ฒ์ ๋ฐ ๋ด์ฉ 9
์ 3 ์ ์ฐ๊ตฌ ํ๋ฆ๋ 14
์ 2 ์ฅ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ์ ์ด๋ก ์ ๋ฐฐ๊ฒฝ 16
์ 1 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ๋ถํฌ ํํ 16
1. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์ง์ ๊ณผ ๋ถ์ฐ์ ๊ดํ ๋
ผ์ 16
2. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ๊ณต๊ฐ ๋ถ์์ ๊ดํ ์ ํ ์ฐ๊ตฌ 20
์ 2 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ 27
1. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ฅผ ์ ์ธํ๋ ๋์ ํน์ฑ 27
2. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ฅผ ์ ์ธํ๋ ๋์ ์์ธ์ ๊ดํ ์ ํ ์ฐ๊ตฌ 38
์ 3 ์ ์ ํ ์ฐ๊ตฌ์์ ์ฐจ๋ณ์ฑ 48
1. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ๊ณต๊ฐ์ ๊ดํ ์ ํ ์ฐ๊ตฌ์์ ์ฐจ๋ณ์ฑ 48
2. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ์ ๊ดํ ์ ํ ์ฐ๊ตฌ์์ ์ฐจ๋ณ์ฑ 50
์ 3 ์ฅ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ํน์ฑ ์งํ ์ค์ 54
์ 1 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ์งํ 54
์ 2 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ฅผ ์ ์ธํ๋ ๋์ ํน์ฑ ์งํ 60
1. ์ธ์ ์๋ณธ ์งํ 60
2. ์ถ์ ์ง ์งํ 63
3. ์ฐ์
์
์ง ์งํ 74
์ 4 ์ฅ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๊ณต๊ฐ ๋ถ์๊ณผ ๋์ ํน์ฑ ์ธก์ 80
์ 1 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๋ถ๊ท ๋ฑ๋์ ํนํ ๋ถ์ 80
1. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๋ถ๊ท ๋ฑ๋ ๋ถ์ ๊ฒฐ๊ณผ 80
2. ์์ธ ์ง์ญ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ํนํ๋ ๋ถ์ ๊ฒฐ๊ณผ 84
์ 2 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ฅผ ์ ์ธํ๋ ๋์ ํน์ฑ ์ธก์ 95
1. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ฅผ ์ ์ธํ๋ ๋์ ํน์ฑ ์ธก์ ๋ฐฉ๋ฒ 95
2. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ๋ฅผ ์ ์ธํ๋ ๋์ ํน์ฑ ์์ธ๋ถ์ ๊ฒฐ๊ณผ 101
์ 3 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๊ณต๊ฐ์ ๊ตฐ์ง ํํ ์ธก์ 107
1. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๊ณต๊ฐ์ ๊ตฐ์ง ํํ ์ธก์ ๋ฐฉ๋ฒ 107
2. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๊ณต๊ฐ์ ๊ตฐ์ง ํํ ์ธก์ ๊ฒฐ๊ณผ 111
3. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ ๊ณต๊ฐ์ ํํ์ ๋์ ์์ธ์ ๊ด๊ณ์ฑ 127
์ 5 ์ฅ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์์ง์ ์์ธ ์ํฅ ๊ด๊ณ ๋ถ์ 134
์ 1 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ์ ์ํฅ ๊ด๊ณ ๋ถ์ ๋ฐฉ๋ฒ 134
์ 2 ์ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ์ ์ํฅ ๊ด๊ณ ๋ถ์ ๊ฒฐ๊ณผ 138
1. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ ์ํฅ ๊ด๊ณ 138
2. ์์ โง์ ๋ฌธ๊ณผํ ๋ถ์ผ ์ผ์๋ฆฌ์ ๋์ ์์ธ์ ์ํฅ ๊ด๊ณ ๋ถ์ 145
3. ์ฑ๋ณ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ์ ์ํฅ ๊ด๊ณ ๋ถ์ 148
4. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ์ ๋ณดํต์ ์
์ฌ์
์ฒด ์ํฅ ๊ด๊ณ ๋ถ์ 151
5. ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๋์ ์์ธ ์ํฅ ๊ด๊ณ ๋ถ์ ๊ฒฐ๊ณผ ์ข
ํฉ 154
์ 3 ์ ๋์์ง์ ์์ธ๊ณผ ๋์ ํน์ฑ์ ์ํ ๊ตฐ์ง๋ถ์ 161
1. ๋์์ง์ ์์ธ ์์ค๊ณผ ๋์ ํน์ฑ๋ณ ๊ตฐ์ง ์ธก์ ๋ฐฉ๋ฒ 161
2. ๋์์ง์ ์์ธ ์์ค์ ์ํ ๋์ ํน์ฑ๋ณ ๊ตฐ์ง๋ถ์ ๊ฒฐ๊ณผ 163
3. ๊ตฐ์ง ๋์ ํน์ฑ๊ณผ ์ ๋ณดํต์ ์
์ผ์๋ฆฌ์ ๊ด๋ จ์ฑ 168
์ 6 ์ฅ ๊ฒฐ๋ก ๊ณผ ์์ฌ์ 172
์ 1 ์ ๊ฒฐ๋ก 172
์ 2 ์ ์์ฌ์ 177
์ฐธ๊ณ ๋ฌธํ 180Docto
๋ถ๋์ฐ์ฐ์ ์ ๋ฐ์ ๋ฐฉํฅ๊ณผ ํฅํ๊ณผ์ (Development strategy for advancing real eatste industry and its future tasks)
๋
ธํธ : ์ด ์ฐ๊ตฌ๋ณด๊ณ ์์ ๋ด์ฉ์ ๊ตญํ ์ฐ๊ตฌ์์ ์์ฒด ์ฐ๊ตฌ๋ฌผ๋ก์ ์ ๋ถ์ ์ ์ฑ
์ด๋ ๊ฒฌํด์๋ ๊ด๊ณ์์ต๋๋ค
๋ถ๋์ฐ์์ฅ ์ ์งํ ์์คํ ๊ตฌ์ถ ์ฐ๊ตฌ(III)(A study on the KRIHS Model for analysis and prediction of real eatate market(III))
๋
ธํธ : ์ด ์ฐ๊ตฌ๋ณด๊ณ ์์ ๋ด์ฉ์ ๊ตญํ ์ฐ๊ตฌ์์ ์์ฒด ์ฐ๊ตฌ๋ฌผ๋ก์ ์ ๋ถ์ ์ ์ฑ
์ด๋ ๊ฒฌํด์๋ ์๊ด์์ต๋๋ค
๋ถ๋์ฐ์ ์ฑ ์๋ฎฌ๋ ์ด์ ๋ชจํ ๊ฐ๋ฐ๊ณผ ์ ์ฑ ๊ฒฐ์ ์ง์์์คํ ๊ตฌ์ถ(I)(A study on the development of simulation model for real eatate policy and eatablishment of REp-DSS(I))
๋
ธํธ : ์ด ์ฐ๊ตฌ๋ณด๊ณ ์์ ๋ด์ฉ์ ๊ตญํ ์ฐ๊ตฌ์์ ์์ฒด ์ฐ๊ตฌ๋ฌผ๋ก์ ์ ๋ถ์ ์ ์ฑ
์ด๋ ๊ฒฌํด์๋ ์๊ด์์ต๋๋ค