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ABSTRACT

Distinct subtypes of spatial brain
metabolism patterns in Alzheimer’s

disease identified by deep learning-
based FDG PET clusters

Hyun Gee Ryoo
Department of Molecular Medicine and Biopharmaceutical Science,

The Graduate School of Convergence Science and Technology,

Seoul National University

Alzheimer’s disease (AD) presents a broad spectrum of
clinicopathologic profiles, despite common pathologic features
including amyloid and tau deposition. Here, we aimed to identify AD
subtypes using deep learning-based clustering on FDG PET images to
understand distinct spatial patterns of neurodegeneration. We also aimed
to investigate clinicopathologic features of subtypes defined by spatial
brain metabolism patterns.

A total of 3620 FDG brain PET images with AD, mild cognitive

impairment (MCI), and cognitively normal controls (CN) at baseline and



follow-up visits were obtained from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. In order to identify representations of brain
metabolism patterns different from disease progression in AD, a
conditional variational autoencoder (cVAE) was used, followed by
clustering using the encoded representations. FDG brain PET images
with AD (n=838) and Clinical Demetria Rating Scale Sum of Boxes
(CDR-SB) scores were used as inputs of cVAE model and the k-means
algorithm was applied for the clustering. The trained deep learning
model was also transferred to FDG brain PET image with MCI (n=1761)
to identify differential trajectories and prognosis of subtypes. Statistical
parametric maps were generated to visualize spatial patterns of clusters,
and clinical and biological characteristics were compared among the
clusters. The conversion rate from MCI to AD was also compared among
the subtypes.

Four distinct subtypes were identified by deep learning-based
FDG PET clusters: (i) S1 (angular), showing prominent hypometabolism
in the angular gyrus with a diffuse cortical hypometabolism pattern;
frequent in males; more amyloid; less tau; more hippocampal atrophy;
cognitive decline in the earlier stage. (ii) S2 (occipital), showing
prominent hypometabolism in the occipital cortex with a posterior-
predominant hypometabolism pattern; younger age; more tau; less

hippocampal atrophy; lower executive and visuospatial scores; faster
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conversion from MCI to AD. (iii) S3 (orbitofrontal), showing prominent
hypometabolism in the orbitofrontal cortex with an anterior-predominant
hypometabolism pattern; older age; less amyloid; more hippocampal
atrophy; higher executive and visuospatial scores. (iv) S4 (minimal),
showing minimal hypometabolism; frequent in females; less amyloid;
more tau; less hippocampal atrophy; higher cognitive scores.

In conclusion, we could identify distinct subtypes in AD with
different brain pathologies and clinical profiles. Also, our deep learning
model was successfully transferred to MCI to predict the prognosis of
subtypes for conversion from MCI to AD. Our results suggest that
distinct AD subtypes on FDG PET may have implications for the
individual clinical outcomes and provide a clue to understanding a broad

spectrum of AD in terms of pathophysiology.

Keywords: Alzheimer’s disease, subtype, FDG PET, deep learning,

conditional variational autoencoder
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1. Introduction

1.1 Heterogeneity of Alzheimer’s disease

Alzheimer’s disease (AD) is a heterogeneous disease that presents a
broad spectrum of clinicopathologic profiles, despite common
pathologic features including amyloid and tau deposition [1]. AD is
commonly regarded as an amnestic disorder, but it often has a non-
amnestic clinical presentation [2, 3]. Variability in age onset, clinical
presentation, tau-related pathology, and brain atrophy has been reported
[4-8]. Due to its heterogeneous biologic pathology, many studies have
been reported to reveal biological subtypes of AD on structural magnetic
resonance imaging (MRI) and tau positron emission tomography (PET)

[9-11].

1.2 FDG PET as a biomarker of Alzheimer’s disease

["®*F]fluorodeoxyglucose (FDG) PET has been used to support the
differential diagnosis of neurodegenerative disease including dementia
and parkinsonism [12-14]. FDG PET is also used to predict the
progression of cognitive dysfunction in neurodegenerative disease as
well as mild cognitive impairment (MCI) as an imaging-derived
biomarker [15-18]. Since regional glucose hypometabolism precedes

macroscopic brain atrophy detectable on MRI, FDG PET may indicate
1
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an earlier stage of neurodegeneration [19, 20]. Previous studies have
found a relationship between spatial pattern of hypometabolism on FDG
PET and clinical symptoms of AD [21-23], and in addition, recently a
few attempts have been reported to differentiate spatial hypometabolic
patterns of AD subtypes in a data-driven or hypothesis-driven manner

[24, 25].

1.3 Biologic subtypes of Alzheimer’s disease
Because of the variability of AD, various attempts have been made to
explain heterogeneity within AD for several decades. In 1992, Ritchie
and Touchon [26] proposed 3 descriptive hypotheses for the explanation
of heterogeneity of AD: phase, compensation, and subtype models. The
phase model refers to the stage of the disease that is associated with the
severity of the symptom. The compensation model hypothesizes that the
disease progression can be counter-balanced by a compensatory
biological mechanism that is different for each patient. The sub-type
model hypothesizes separate subtypes at functional, clinical, and
biological levels. Ritchie and Touchon suggested that these 3 models
together result in the heterogeneity of the AD population.

Over the last few years, many studies have been reported to
determine the biological subtypes of AD in a hypothesis and a data-

driven manner. Most of the early studies were performed on post-mortem
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data using data-driven clustering methods on pathologic measures of
senile plaques, neurofibrillary tangles, and cerebral amyloid angiopathy
[27-29]. Murray et al. classified 3 subtypes with distinct clinical
characteristics from the distribution of neurofibrillary tangle: typical,
hippocampal sparing, and limbic predominant subtypes [30].
Hippocampal sparing AD was younger and had a higher proportion of
males, whereas limbic predominant AD was older and higher in females.
Late studies focused on neuroimaging biomarkers, mainly tau pathology
(tau PET) and neurodegeneration (MRI), for subtyping AD based on a
hypothesis-driven or data-driven method. Whitwell et al. first proposed
3 subtypes based on entorhinal and cortical uptake on tau PET [31]: low
entorhinal and low cortical uptake (characterized with older age), high
entorhinal and high cortical uptake (worst memory impairment), and low
entorhinal and high cortical uptake (worst impairment in nonmemory
domains). In addition to 3 subtypes identified on postmortem and tau
PET analyses, various MRI studies have consistently identified the
fourth subtype with minimal atrophy [11, 32, 33]. Combining various
neuropathology and neuroimaging studies of AD subtypes, Ferreira et al.
proposed 4 biological subtypes of AD (typical, hippocampal sparing,
limbic predominant, and minimal atrophy) distinguished by 2 core
dimensions (typicality and severity) [9].

Few studies have been reported to identify subtypes based on the

3



pattern of hypometabolism on FDG PET. Bittner et al. proposed 2 AD
groups (temporoparietal area vs. no hypometabolism) [34], and Collette
et al. proposed 2 AD groups (frontal and posterior cortex vs. only in
posterior cortex) [35] with a hypothesis-driven approach. Meyer et al.
also proposed 2 groups (perisylvian areas vs. typical posterior brain areas)
of AD based on the pattern of hypometabolism [36]. Recently, Levin et
al. proposed 3 data-driven FDG PET subtypes of AD (typical, limbic-
predominant, and cortical-predominant) [24]. Groot et al. proposed AD
subgroups based on the impairments across cognitive domains (memory,
executive function, language, visuospatial function, multiple domains,
and no domains) which showed subgroup-specific hypometabolism
patterns and trajectories [25]. However, the proposed number and
patterns of hypometabolism of AD subtypes on FDG PET across the
studies are not consistent. In addition, the hypometabolism patterns
identified in the studies on FDG PET cannot easily be combined with
subtypes in other modalities (postmortem, MRI, and tau PET). For this
reason, a biologic subtype of AD on FDG PET is not yet been clarified.
Above all, the concern of previous approaches in defining AD
subtypes on various modalities was difficulty in removing the effect of
disease progression. The clusters based on the traditional data-driven
method may have a risk of representing the dimension of disease severity

rather than the intrinsic biologic subtype of AD.
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1.4 Dimensionality reduction methods
For the extraction of key features and classification of the subtypes from
the high-dimensional data, we can use dimensionality reduction methods.
There are several different types of traditional methods for
dimensionality reduction depending on their purpose and strategy [37,
38]. One type of method only keeps the most important features without
transformation of the set of the features: backward elimination, forward
selection [39, 40], and Random forests [41]. The other type of method
applies appropriate transformation in the set of features and finds a
combination of new features. This method can be divided into linear
methods and non-linear methods, also known as manifold learning,
depending on which type of activation function is used. Linear method
uses linear activation function for dimensionality reduction: principal
component analysis (PCA) [42, 43], factor analysis (FA) [44, 45], linear
discriminant analysis (LDA) [46] and truncated singular value
decomposition (SVD) [47, 48]. Non-linear method uses non-linear
activation function to reduce dimension: kernel PCA [49], t-distributed
stochastic neighbor embedding (t-SNE) [50], multidimensional scaling
(MDS) [51], isometric mapping (Isomap) [52, 53], and autoencoder [54,
55].

Among these methods, PCA was the most commonly used

traditional method for dimensionality reduction for its fast and simple
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application. To compare PCA and autoencoder for dimensionality
reduction, the biggest difference is that the autoencoder can utilize a non-
linear activation function whereas the PCA is a linear transformation [38].
The use of the non-linear function for dimensionality reduction in the
autoencoder could make superior performance in learning patterns from
the high-dimensional image data and accurate image generation [56-58].
However, the autoencoder is prone to an overfitting problem. To avoid
overfitting, the variational autoencoder (VAE) has been introduced [59].
Instead of encoding an input as a single point, VAE encodes it as a
distribution over the latent space. Key features of dimension reduction

methods are summarized in Table 1.



Table 1. Key features of dimension reduction methods

Methods Key features

PCA Utilize linear activation function
Limitation with non-linear data

Autoencoder Utilize non-linear activation function
Superior performance in learning patterns from the high-
dimensional image data and accurate image generation
Prone to an overfitting problem

VAE Consist of encoder and decoder component
Single input
Reduce the dimension in a probabilistic manner
Avoid overfitting

cVAE Consist of encoder and decoder component

Conditioned variable as additional input
Latent features represent other data-specific features

different from conditions




1.5 Variational autoencoder for clustering

VAE is an unsupervised learning method that can generate images from
some representation [60]. This generative model has advantages in a
flexible application in image generation and a model transfer to different
disease domains [61, 62].

VAE consists of two components, encoder and decoder
(generator). The encoder can reduce the high-dimensional image (X) into
low-dimensional latent features (z) which are hidden representations of
X, and the decoder can generate an image from values of latent features.
Compared to a traditional simple autoencoder, VAE reduces the
dimension in a probabilistic manner. For the simple explanation of the
model, an input (x) is encoded into the latent distribution in a
probabilistic manner p(z|x) followed by sampling. Sampled latent
representation z~p(z[x) is then decoded for the input reconstruction d(z).

In practice, generator input was resampled by the encoded latent feature

z assuming normal distribution Zresampled = Zencoder + Zsd X €, Where €

represents a random variable. The probabilistic generator can be defined
by pe (x|z), where 0 represents the parameters of the generator. The
posterior distribution pe (z[x) can be obtained by prior distribution p(z),
pe(z|x) ~ p(z) pe(x|z). Variational Bayes learns both parameters, pe (x|z)

and an approximation gy (z|x) to the intractable true posterior peo (z|x).



The VAE model is trained to minimize the loss function,

L (9, 0) = —Ez~qo v(log po (x]2)) + KL(qo (z[x) Il pe (2))
The first term represents the reconstruction loss of the autoencoder. The
second term, Kullback-Leibler (KL) is a divergence between a learned
distribution and prior distribution. KL divergence act as a regularization
term to ensure our learned distribution q is similar to the true prior
distribution [60].

The conditional VAE (cVAE) is an extension of VAE. While
VAE uses single high-dimensional input data for the dimension reduction,
cVAE uses the conditioned variable as additional input labels. Whereas
VAE generates data from the latent variable directly, the cVAE model is
aimed to generate data from both conditioned and latent variables [63].
The probabilistic generator (decoder) and the encoder can be defined as

pe (x]y, z) and qo (z[X, y), respectively. The loss function is changed to,

L (9, 0) = ~Ez~q @ry)(log po (x]y, 2)) + KL(qo (z[x, y) Il pe (2))

where the first and second term represents reconstruction loss and KL
divergence respectively. By giving conditioned variables as additional
input information, the latent features are expected to reflect hidden
information other than given conditions. As shown in the experiment of
cVAE on Modified National Institute of Standards and Technology
(MNIST) dataset (large database of handwritten digits) with conditioned

9



input labels, cVAE learns handwriting styles for the latent feature which
is hidden information other than given condition [63].

In this study, we utilize cVAE on FDG PET of AD subjects with
the corresponding condition of AD severity score. To find AD subtypes
using brain images, clustering based on unsupervised learning could be
used to define specific clusters. Nonetheless, decreased FDG uptake
patterns in the cortex mostly depend on disease severity, there has been
a difficulty in defining subtypes removing the effect of disease
progression. As a ¢VAE model directly uses conditional variables to
generate images from latent features, latent features are expected to
represent other data-specific features different from conditions. We
aimed to reduce FDG PET image dimension into a lower-dimensional
feature for clustering, which is expected to have hidden representation of

images other than given condition (e.g. disease severity).

1.6 Final goal of the study

We aimed to identify AD subtypes using the deep learning-based
clustering on FDG PET images to understand distinct spatial patterns of
neurodegeneration. We also aimed to investigate clinicopathologic

features of subtypes defined by spatial brain metabolism patterns.
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2. Methods

2.1 Subjects

We obtained 3620 FDG brain PET images from 1607 participants at
enrollment (baseline) and follow-up visits from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. We defined cohorts of
Alzheimer’s disease (AD), mild cognitive impairment (MCI), and
cognitive normal controls (CN) based on clinical diagnosis at each visit
for this study. Based on the criteria, we included data of 838 AD, 1761
MCI, and 1021 CN for the present study. The detailed inclusion criteria
for the different diagnostic categories are available on the ADNI website
(http://adni.loni.usc.edu/methods/documents/). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD, VA Medical Center and University of
California San Francisco. ADNI recruited subjects from over 50 sites
across the US and Canada. The primary purpose of ADNI has been to
test whether serial imaging and biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD. For up-to-date information, see
http://www.adni-info.org. Written informed consent to cognitive testing
and neuroimaging prior to participation was obtained, approved by the

institutional review boards of all participating institutions.
11



2.2 FDG PET data acquisition and preprocessing

FDG PET data were acquired in a pre-processed image file. 185 MBq of
FDG were intravenously injected and a dynamic 3D scan of six 5-min
frames was acquired for 30 minutes after 30-60 minutes of injection.
Each extracted frame was co-registered followed by averaging the six 5-
minute frames. Scans were reoriented into a standard 160 x 160 x 96
voxel image grid, having 1.5 mm cubic voxel. The intensity of each PET
image was normalized using a subject-specific mask so that the average
of voxels within the mask is exactly one. Each image set was filtered to
produce images of a uniform isotropic resolution of 8 mm full width at
half maximum [64, 65]. The detailed PET acquisition and preprocessing
protocols are available on the ADNI website
(http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/).
For the present deep learning study, FDG PET images were further
spatially normalized to a customized PET template and reshaped into 91
% 109 x 91 matrices using and smoothed with a Gaussian smoothing

kernel of 10 mm full-width at half maximum (FWHM).

2.3 Deep learning-based model for representations of FDG PET in
AD
To find hidden representations of FDG PET image patterns in AD, a

cVAE was used [63]. 838 FDG brain PET images with AD were used as
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input images. Clinical Demetria Rating Scale Sum of Boxes (CDR-SB)
score was used as the corresponding condition vector of each image.
CDR-SB is commonly used in clinical and research settings to stage
dementia severity [66]. Since removing the effect from the disease
severity dimension was the biggest concern for previous AD subtype
studies, we chose CDR-SB as an input condition to remove the effect of
disease severity of AD in latent features and find hidden representation.
CDR-SB score was rescaled to the range of 0 to 1, which was divided by
a maximum CDR-SB score of 18, and used as input. To encode 3-
dimensional PET volume, we used multiple 3D convolutional neural
network. Four sequential convolution layers and rectified linear units
were applied, and the features were fed into the fully connected layer.
The sizes of the convolutional filters were (5 x5 x 5), (5 x5 x5),(5 x5
x 5), and (3 x 3 x 3) in the sequence, and the stride size of 2, 3, and 3
voxels were applied for the first, second, and third convolution filters.
After multiple convolutional filters, 3D feature volumes were reduced to
a 1-dimensional feature with a size of 32 followed by a rectified linear
unit. These features were merged into CDR-SB information of each
subject followed by sampling layer and finally connected to the layer of
10 latent features. Conversely, the decoder consisted of convolutional
and upsampling layers with input variables of 10 latent features and

CDR-SB information to generate PET volume. We chose a latent
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dimension size of 10 that gives the best performance in dimension
reduction of FDG PET, as shown in the previous cVAE study [67]. The
detail of the cVAE architecture is summarized in Table 2 and Figure 1.
We trained the cVAE model using an optimization algorithm, Adam [68],
to minimize the loss function, and the learning rate was set to 0.0001. It
took 300 epochs with a batch size of 32 for the training. The cVAE was
implemented using a deep learning library, Keras with TensorFlow
backend (version 2.5.0). Ten percent of PET data were used for the
internal validation to determine hyperparameters and find out the best

model.
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Table 2. cVAE architecture of deep learning-based model for representations of
FDG PET in AD

Layer type Output size Kernel size Stride Activation
Encoder

Input 1 (x; image) (91 x 109 x91)

Cropping3D (90 x 108 x 90)

Conv3D (45 x 54 x 45), 16 5x5x%x5 2 RelLU
Conv3D (15x 18 x 15), 16 5x5x%x5 3 RelLU
Conv3D (5x6x5),64 5x5x5 3 RelLU
Conv3D (3x4x3),64 3x3x3 RelLU
Flatten 2304

Dense 32 RelLU

Input 2 (y; condition) 1

Concatenate 33
Dense 10
Dense 10
Lambda (Sampling) 10

Latent variables: z

Decoder

Concatenate (z and y) 11

Dense 32 RelLU
Dense 2304 RelLU
Reshape (3x4x3),64

Conv3D Transpose (5x6x5),64 3x3x3 RelLU
Conv3D Transpose (15x 18 x 15), 16 5x5x5 3 RelLU
Conv3D Transpose (45 x 54 x 45), 16 5x5x5 3 RelLU
Conv3D Transpose (90 x 108 x 90) 5x5x5 2 Sigmoid
Zero padding (91 x 109 x91)

15
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Figure 1. cVAE architecture of deep learning-based model for representations of FDG PET in AD
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2.4 Clustering method for AD subtypes on FDG PET

To identify AD subtypes from the hidden representations of FDG PET
image patterns, the k-means algorithm was applied to generate clusters
from the 10 latent features [69, 70]. The study design of our deep
learning-based FDG PET cluster model for AD subtypes is summarized
in Figure 2. The number of clusters was determined by using the elbow
method [71, 72]. The elbow method is a heuristic method to determine
the optimal number of clusters in a dataset by calculating the sum of
squared distance between each point and the centroid in a cluster. The t-
SNE algorithm was applied using random initialization and perplexity of
30 to visualize latent features on a 2-dimensional plot [50]. The Scikit-
learn library (version 0.24.2) was implemented for k-means and t-SNE

algorithms.

2.5 Transfer of deep learning-based FDG PET cluster model for MCI
subtypes

The trained deep learning-based FDG PET cluster model in AD was
transferred to the MCI cohort to predict their subtypes and to identify
differential trajectories and prognosis of subtypes in MCI. The study
design for the transfer of our deep learning-based FDG PET cluster
model for MCI subtypes is summarized in Figure 3. The cVAE model

and k-means clustering model used in the AD cohort were directly
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transferred to the MCI cohort. FDG PET images and CDR-SB scores
from the MCI subjects were used as input images and conditions of the
transferred cVAE model to extract latent features of FDG PET with MCI.
And then, the k-means clustering model was transferred to identify MCI

subtypes from the latent features.
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2.6 Visualization of subtype-specific spatial brain metabolism
pattern

To visualize spatial brain metabolism patterns of identified subtypes, a
voxel-wise two-sample t-test was performed on FDG PET images using
SPM12 software. Intensities of FDG PET images were normalized to the
cerebellum using the automated anatomical labeling (AAL) template for
the cerebellar normalization [73]. FDG PET images with global
normalization were also used for the additional analysis, and overall
grand mean scaling was applied for the global normalization. Statistical
parametric maps (SPM) were generated to visualize spatial patterns of
the cluster. The significance threshold was P = 0.01 with family-wised
error correction, and the extent threshold was 50 voxels. The statistical
analyses were performed comparing FDG PET of each subtype against

controls as well as one subtype against all other subtypes.

2.7 Clinical and biological characterization

We compared demographic, cognitive, and biomarker variables among
clusters for clinical and biologic characterization of subtypes. All of
these variables were downloaded from the LONI Image and Data
Archive (IDA). For the cognition scores, we used Alzheimer’s Disease
Sequencing Project (ADSP) Phenotype Harmonization Consortium
(PHC) - composite cognitive scores: harmonized composite memory
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score (PHC-MEM), executive function score (PHC-EXF), language
score (PHC-LAN), and visuospatial score (PHC-VSP) [74]. Individual’s
standardized uptake value ratio (SUVR) of ['®F]florbetapir (AV45) PET
was downloaded on LONI, and florbetapir mean of whole cerebellum
was used as reference regions. The regions were defined by Freesurfer
and details are available on the documents on LONI. The hippocampal
volume to intracranial volume ratio (HV/ICV) was also calculated as an

indicator of hippocampal atrophy.

2.8 Prognosis prediction of MCI subtypes

We defined MCI converters for those who converted from MCI to AD
within 2 years from the baseline visit, and non-converters for those who
did not convert to AD during a follow-up of at least 2 years from the
baseline visit. Time to conversion from MCI to AD was calculated for
the subjects who have a change of diagnosis from MCI to AD at any time
point. Kaplan-Meier survival curves were generated to evaluate the risk

of conversion from MCI to AD across the subtypes.

2.9 Generation of subtype-specific FDG PET images
Decoder layers of our cVAE model were used for the generation of
subtype-specific FDG PET images. The centroids of latent features of 4

subtypes and rescaled CDR-SB scores were used for the input of the
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decoder for image generation.

2.10 Statistical analysis

Values are expressed as percentages or mean with standard deviation
(SD). Group differences in demographic and clinical variables in
subtypes were evaluated using the one-way ANOVA with posthoc
analysis and chi-square test. Z-scores of demographic, cognitive, and
biomarker variables were calculated, and averaged Z-score of each
subtype were used for the heatmap generation to visualize clinical and
biological characteristics of each subtype. Kaplan-Meier survival
analysis was used to test for subtype differences in conversion from MCI
to AD, and curves were compared using the log-rank test. Statistical
analyses were performed using a JAMOVI statistical software version

1.6, and a P-value lower than 0.05 was considered statistically significant.
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3. Results

3.1 Deep learning-based FDG PET clusters

Of the 838 FDG brain PET images with AD, four distinct AD subtypes
were identified by deep-learning-based FDG PET clusters (Figure 4).
We set 4 as a subtype number since the inflection point appeared when

the number was 4 on the elbow method plot (Figure 5).
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3.2 Spatial brain metabolism pattern in AD subtypes

Spatial brain metabolism patterns on FDG PET with cerebellar
normalization of AD subtypes were compared with those of the CN, and
the regions showing significant differences were revealed using a
voxelwise t-test. All AD subtypes shared a common pattern of
hypometabolism involving frontal, parietal, temporal lobes, precuneus,
and posterior cingulate, which is typically observed in AD. In addition
to typical AD patterns shared across all subtypes, subtype-specific
regions of hypometabolism were observed in each subtype (Figure 6).
Subtype 1 (S1: angular) included 185 (22%) of AD and showed
prominent hypometabolism in the angular gyrus with a diffuse
hypometabolism pattern involving parietotemporal, frontal, limbic,
occipital, and cingulate cortices. Subtype 2 (S2: occipital) included 161
(19%) of AD and showed prominent hypometabolism in the occipital
cortex with a posterior-predominant hypometabolism pattern involving
occipital, posterior-parietal cortices, and precuneus. Subtype 3 (S3:
orbitofrontal) included 224 (27%) of AD and showed prominent
hypometabolism in the orbitofrontal cortex with an anterior-predominant
hypometabolism pattern involving frontal, limbic, and anterior cingulate
cortices. Subtype 4 (S4: minimal) included 268 (32%) of AD and showed

no additional hypometabolic region. Subtype-specific spatial
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metabolism patterns also corresponded to the regions observed in the
comparisons between one subtype and all other subtypes (Figure 7). In
the additional analysis using FDG PET with global normalization, the
subtype-specific hypometabolism patterns were consistent with those
observed in the analysis using FDG PET with cerebellar normalization
(Supplementary figure 1 and 2).

To exclude the effect of overlapping images from the same
subject at different visits, FDG PET from individuals with AD at baseline
visit were only used for the additional spatial metabolism pattern analysis.
For the FDG PET with AD at baseline visit, S1 (angular), S2 (occipital),
S3 (orbitofrontal), and S4 (minimal) included 58 (20%), 52 (18%), 83
(28%), and 99 (34%)), respectively. FDG PET images of AD subtypes at
baseline visit were compared with those of CN, and regions showing
significant differences were revealed using a voxelwise t-test. The
subtype-specific hypometabolism patterns observed in AD at baseline
visit resembled those observed in the analysis using whole AD subjects

but showed a lower degree of t-value (Figure 8).
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Figure 6. Spatial metabolism pattern on FDG PET with cerebellar normalization of AD subtypes showing the differences between subtypes and

controls
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S1 < Others S2 > Others S2 < Others

S1 > Others

S3 < Others S4 > Others S4 < Others

S3 > Others

Figure 7. Spatial metabolism pattern on FDG PET with cerebellar normalization of AD subtypes showing the differences between one subtype and

all other subtypes
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S1 > Controls S1 < Controls S2 > Controls S2 < Controls

Figure 8. Spatial metabolism pattern on FDG PET with cerebellar normalization of AD subtypes at baseline visit showing the differences between
subtypes and controls
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3.3 Clinical and biological characterization in AD subtypes

We compared demographic, cognitive, and biomarker variables between
the AD subtypes (Table 3-4 and Figure 9). Characteristics of subtypes
were compared both in groups with all AD subjects (n=838) and AD
subjects at baseline visit (n=292). CDR-SB scores did not show a
significant difference across AD subtypes (P = 0.609) as we used CDR-
SB as the input variable of our cVAE model.

Compared to other subtypes, S1 (angular) included the highest
frequency of male and more educated individuals. Individuals in S1 had
more amyloid burden (i.e. less cerebrospinal fluid (CSF) amyloid-beta
(Abeta) and higher AV45-PET SUVR) but less overall tau burden (i.e.
less CSF p-tau and t-tau level). S1 individuals tended to have lower
HV/ICV (i.e. more hippocampal atrophy). S2 (occipital) individuals
were younger and had more overall tau burden but less hippocampal
atrophy. S2 individuals tended to have better relative memory and
language, but worse relative executive and visuospatial scores. S3
(orbitofrontal) individuals were older and had less amyloid burden but
more hippocampal atrophy. S3 individuals tended to have better
executive and visuospatial scores. Finally, S4 (minimal) included the
highest frequency of female and less educated individuals. S4 individuals

had a more tau burden but less hippocampal atrophy. S4 individuals
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tended to have better executive, language, and visuospatial scores.
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Table 3. Clinical and biological characteristics of subtypes in AD

AD (n=838) P-value,
CN S1 S2 S3 S4 global comparison
(S1, S1, S3, and S4)
Demographics
n (%) 1021 185 (22%) 161 (19%) 224 (27%) 268 (32%)
Age, years (n=838) 75.7 (6.2) 76.4(7.2) 75.0(7.5) 78.2 (6.5) 75.2(7.9) <0.001 ***
Sex, female (%) (n=838) 43% 5% 32% 41% 72% <0.001 ***
Education, years (n=838) 16.3 (2.8) 16.1 (3.3) 15.5(2.6) 15.3(2.7) 15.1 (2.9) 0.009 **
Cognition
CDR-SB (n=838) 0.1(0.4) 5.5(2.7) 5.2(2.7) 5.4 (2.6) 5.3(2.3) 0.609
MMSE (n=837) 29.0(1.2) 21.9 (4.0) 22.0 (4.4) 22.3(3.8) 22.2 (3.9) 0.699
MOCA (n=354) 25.8 (2.5) 16.7 (4.9) 16.0 (5.2) 17.1 (4.8) 16.8 (5.0) 0.645
PHC-MEM (n=833) 0.86 (0.51) -0.92 (0.49) -0.81 (0.53) -0.89 (0.46) -0.90 (0.45) 0.217
PHC-EXF (n=832) 0.74 (0.48) -0.55 (0.72) -0.71 (0.74) -0.36 (0.65) -0.45 (0.70) <0.001 ***
PHC-LAN (n=833) 0.80 (0.49) -0.29 (0.59) -0.24 (0.63) -0.27 (0.62) -0.22 (0.64) 0.63
PHC-VSP (n=659) 0.10 (0.31) -0.36 (0.61) -0.60 (0.74) -0.19 (0.52) -0.26 (0.62) <0.001 ***

Biomarker
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AVAS5 PET, SUVR (n=318) 1.12 (0.19) 1.40 (0.24) 1.37 (0.22) 1.35(0.25) 1.39(0.21) 0.585

APOE4 carrier (%) (n=817) 27% 68% 64% 68% 66% 0.249

CSF Abeta, pg/ml (n=321) 1211 (439) 580 (276) 677 (402) 681 (345) 664 (280) 0.159

CSF t-tau, pg/ml (n=321) 245 (91) 293 (108) 382 (158) 358 (124) 423 (173) <0.001 ***

CSF p-tau, pg/ml (n=321) 23 (10) 29 (12) 38 (17) 35 (14) 41 (19) <0.001 ***

HV/ICV, cm3/mm3 (n=547) 4.78 (0.68) 3.37(0.56) 3.80(0.59) 3.50(0.57) 3.85(0.73) <0.001 ***
The data are expressed as percentages or means with standard deviation in parentheses. Missing values are excluded.
*p<0.05, **p<0.01, *** p < 0.001
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(continued)

P-value, pair-wise comparisons

S1vs S2 S1vsS3 S1lvs S4 S2vs S3 S2 vs S4 S3vs S4

Demographics

Age, years 0.296 0.078 0.308 <0.001 *** 0.995 <0.001 ***

Education, years 0.294 0.023 * 0.002 ** 0.800 0.442 0.929
Cognition

CDR-SB 0.618 0.897 0.635 0.934 0.998 0.962

MMSE 0.994 0.684 0.892 0.854 0.977 0.967

MOCA 0.889 0.949 0.997 0.562 0.748 0.979

PHC-MEM 0.165 0.967 0.994 0.318 0.197 0.996

PHC-EXF 0.148 0.039 * 0.512 <0.001 *** 0.002 ** 0.461

PHC-LAN 0.901 0.993 0.632 0.967 0.979 0.770

PHC-VSP 0.009 ** 0.056 0.399 <0.001 *** <0.001 *** 0.667
Biomarker

AVAS5 PET, SUVR 0.944 0.632 1.000 0.933 0.949 0.571

CSF Abeta, pg/ml 0.328 0.249 0.357 1.000 0.994 0.984

CSF t-tau pg/ml 0.004 ** 0.045 * <0.001 *** 0.751 0.289 0.015 *

CSF p-tau, pg/ml 0.009 ** 0.066 <0.001 *** 0.818 0.508 0.067
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HV/ICV, cm3/mm?3 <0.001 ***

0.382

<0.001 ***

0.001 **

0.913

<0.001 ***

*p <0.05, ** p<0.01, *** p <0.001
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Table 4. Clinical and biological characteristics of subtypes in AD at baseline visit

AD at baseline (n=292)

P-value,

CN S1 S2 S3 S4 global comparison
(S1, S1, S3, and S4)
Demographics
n (%) 385 58 (20%) 52 (18%) 83 (28%) 99 (34%)
Age, years (n=292) 73.6 (5.9) 75.1(7.7) 72.1(8.5) 77.2(6.7) 73.7 (8.4) 0.001 **
Sex, female (%) (n=292) 51% 3% 31% 39% 69% <0.001 ***
Education, years (n=292) 16.4 (2.7) 16.4 (3.1) 15.4 (2.4) 15.3(2.8) 14.9 (2.9) 0.038 *
Cognition
CDR-SB (n=292) 0.05 (0.15) 4.6 (1.6) 4.2 (1.6) 4.6(1.8) 4.5(1.7) 0.557
MMSE (n=292) 29.0(1.2) 23.1(2.1) 23.4(2.3) 23.2 (2.3) 23.2 (2.2) 0.912
MOCA (n=188) 25.8 (2.4) 16.9 (4.7) 17.2 (3.9) 17.3 (4.7) 17.3 (4.7) 0.985
PHC-MEM (n=287) 0.81 (0.46) -0.75 (0.40) -0.72 (0.30) -0.80(0.32) -0.80 (0.35) 0.347
PHC-EXF (n=287) 0.69 (0.47) -0.49 (0.75) -0.55 (0.69) -0.33 (0.61) -0.42 (0.67) 0.247
PHC-LAN (n=287) 0.76 (0.46) -0.25(0.52) -0.11 (0.44) -0.26 (0.68) -0.16 (0.55) 0.292
PHC-VSP (n=230) 0.13 (0.27) -0.41 (0.56) -0.44 (0.71) -0.10(0.48) -0.28 (0.60) 0.007 **

Biomarker
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AV45 PET, SUVR (n=159) 1.12 (0.18)

APOE4 carrier (%) (n=271) 28%
CSF Abeta, pg/ml (n=177) 1228 (439)
CSF t-tau, pg/ml (n=177) 238 (91)
CSF p-tau, pg/ml (n=177) 22 (9)
HV/ICV, cm3/mm? (n=201) 4.96 (0.64)

1.44 (0.22)
68%
546 (241)
287 (104)
29 (11)
3.64 (0.46)

1.39 (0.22)
75%
698 (390)
398 (155)
40 (17)
3.98 (0.54)

1.29 (0.24)
61%
720 (370)
358 (126)
36 (14)
3.69 (0.53)

1.42 (0.19)
67%
686 (257)
415 (166)
41(18)
3.99 (0.70)

0.026 *
0.356
0.034 *
<0.001 ***
<0.001 ***
0.002 **

The data are expressed as percentages or means with standard deviation in parentheses. Missing values are excluded.

*p <0.05, ** p<0.01, *** p <0.001
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(continued)

P-value, pair-wise comparisons

S1vs S2 S1vsS3 S1lvs S4 S2vs S3 S2 vs S4 S3vs S4
Demographics
Age, years 0.194 0.392 0.741 0.002 ** 0.601 0.018 *
Education, years 0.286 0.122 0.010 * 0.996 0.723 0.783
Cognition
CDR-SB 0.688 0.999 0.988 0.534 0.797 0.947
MMSE 0.893 0.996 0.995 0.946 0.946 1.000
MOCA 0.993 0.987 0.981 1.000 1.000 1.000
PHC-MEM 0.951 0.820 0.819 0.491 0.479 1.000
PHC-EXF 0.969 0.488 0.929 0.246 0.694 0.775
PHC-LAN 0.550 0.999 0.787 0.411 0.940 0.640
PHC-VSP 0.996 0.038 * 0.610 0.020 * 0.458 0.290
Biomarker
AVAS5 PET, SUVR 0.771 0.029 * 0.984 0.242 0.871 0.016 *
CSF Abeta, pg/ml 0.222 0.080 0.185 0.989 0.998 0.938
CSF t-tau pg/ml 0.012 * 0.145 <.001 *** 0.592 0.948 0.156
CSF p-tau, pg/ml 0.033 * 0.222 0.002 ** 0.694 0.968 0.270
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HV/ICV, cm3/mm?3 0.067

0.969

0.013 *

0.122

0.999

0.024 *

*p <0.05, ** p<0.01, *** p <0.001
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Figure 9. Heatmap of clinical and biological characteristics of AD subtypes
Comparisons in groups with (A) all AD subjects and (B) AD subjects at baseline visit. Averaged Z-scores of demographic, cognitive, and biomarker variables
in each subtype are visualized in the heatmap.
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3.4 Subtype-specific spatial metabolism patterns resemble in MCI
We transferred our trained cVAE model to FDG PET of cohorts with
MCI (n=1761) and their subtypes (MCI-S) were predicted. Different
from the distribution of subtypes in AD, individuals were less distributed
in S1 and S2, but more distributed in S3 and S4 in the MCI cohort
(Figure 10): S1, S2, S3, and S4 were 252 (14%), 202 (11%), 596 (34%),
and 711 (40%), respectively.

Spatial brain metabolism patterns on FDG PET with cerebellar
normalization of MCI subtypes were compared with those of the CN
using a voxel-wise t-test (Figure 11). MCI-S1, MCI-S2, and MCI-S3
shared a typical AD pattern of hypometabolism involving frontal,
parietal, temporal lobes, precuneus, and posterior cingulate which were
similar to those observed in AD subtypes. Unlike S4 in AD, MCI-S4 did
not share a typical AD pattern but only showed a minimal region of
hypometabolism compared to CN. In addition to the shared pattern of
hypometabolism, subtype-specific regions of hypometabolism were
observed in MCI-S1, MCI-S2, and MCI-S3 which were similar to those
observed in AD. As shown in AD subtypes, MCI-S1 (angular) showed
prominent hypometabolism in the angular gyrus with a diffuse
hypometabolism pattern. MCI-S2 (occipital) showed prominent

hypometabolism in the occipital cortex with a posterior-predominant
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hypometabolism pattern, and MCI-S3 (orbitofrontal) showed prominent
hypometabolism in the orbitofrontal cortex with an anterior-predominant
hypometabolism pattern. MCI-S4 (minimal) did not show additional
subtype-specific regions of hypometabolism. Subtype-specific spatial
metabolism patterns in MCI also corresponded to the regions observed
in the comparisons between one subtype and all other subtypes (Figure
12).

To exclude the effect of overlapping individuals included in both
MCI and AD cohorts due to their conversion from MCI to AD in follow-
up visits, we also compared the spatial brain metabolism patterns of MCI
subtypes with the exclusion of overlapping individuals from the MCI
cohort. With exclusion of overlapping individuals, MCI-S1 (angular),
MCI-S2 (occipital), MCI-S3 (orbitofrontal), and MCI-S4 (minimal)
included 183 (13%), 140 (10%), 494 (36%), and 543 (40%), respectively.
The subtype-specific regions showing significant differences in MCI
compared to CN were revealed using a voxelwise t-test. Subtype-specific
hypometabolism patterns in MCI with the exclusion of overlapping
individuals were similar to those observed in the whole MCI cohort but
showed a slightly lower degree of t-value (Figure 13). In addition,
typical AD patterns (frontal, parietal, temporal lobes, precuneus, and

posterior cingulate) were less involved when the overlapping individuals
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were excluded for the comparison.

45



A AD B Mcl

Subtype 1

Subtype 1
Subtype 4

Subtype 4 Subtype 2

Subtype 2

Subtype 3

Subtype 3

Figure 10. Frequency of subtypes in AD and MCI
(A) AD, (B) MCI
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S1 < Controls S2 > Controls S2 < Controls

S1 > Controls

S3 < Controls S4 > Controls S4 < Controls

S3 > Controls

Figure 11. Spatial metabolism pattern on FDG PET with cerebellar normalization of MCI subtypes showing the differences between subtypes and

controls
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S1 < Others S2 > Others S2 < Others

S1 > Others

S3 < Others S4 > Others S4 < Others

83 > Others

Figure 12. Spatial metabolism pattern on FDG PET with cerebellar normalization of MCI subtypes showing the differences between one subtype

and all other subtypes
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S1 > Controls S1 < Controls S2 > Controls

Figure 13. Spatial metabolism pattern on FDG PET with cerebellar normalization of MCI subtypes with the exclusion of overlapping individuals
showing the differences between subtypes and controls
Overlapping MCI individuals, who were included in both MCI and AD cohorts due to their conversion from MCI to AD in follow-up visits, were excluded.
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3.5 Clinical and biological characterization in MCI subtypes

We compared demographic, cognitive, and biomarker variables between
the subtypes in MCI (Table 5 and Figure 14). CDR-SB scores were
significantly different across the MCI subtypes (P < 0.001); CDR-SB
score was highest in MCI-S1 but lowest in MCI-S3. MCI-S1 included
the highest frequency of males, and the individuals in MCI-S1 had more
amyloid burden, more hippocampal atrophy, but less overall tau burden,
which was a similar pattern observed in AD subtypes. In addition,
individuals in MCI-S1 tended to have lower memory, executive,
language, and visuospatial scores. Individuals in MCI-S2 were younger
and more educated. MCI-S2 tended to have more overall tau burden and
had better language, but worse executive and visuospatial scores, which
was similarly observed in S2 of AD. Individuals in MCI-S3 tended to
have a less amyloid burden and higher executive and visuospatial scores
like S3 in AD. Finally, MCI-S4 included the highest frequency of female
and less educated individuals as observed in S4 of AD. Individuals in
MCI-S4 had the most favorable clinical presentation: higher Montreal
Cognitive Assessment (MOCA), Mini-Mental State Examination
(MMSE), memory, executive, language, and visuospatial scores. MCI-
S4 had the lowest amyloid deposit and less hippocampal atrophy among

the subtypes but had more tau burden.
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Table 5. Clinical and biological characterizations of subtypes in MCI

MCI (n=1761) P-value,
CN S1 S2 S3 S4 global comparison
(S1, S1, S3, and S4)
Demographics
n (%) 1021 252 (14%) 202 (11%) 596 (34%) 711 (40%)
Age, years (n=1759) 75.7 (6.2) 76.7 (6.6) 73.7(7.7) 75.3(7.7) 73.7 (7.9) <0.001 ***
Sex, female (%) (n=1761) 43% 8% 18% 30% 63% <0.001 ***
Education, years (n=1761) 16.3 (2.8) 16.4 (2.8) 16.6 (2.7) 16.0(2.8) 15.7 (2.8) <0.001 ***
Cognition
CDR-SB (n=1761) 0.1(0.4) 1.8(1.1) 1.7 (1.2) 1.5(0.9) 1.6 (1.0) <0.001 ***
MMSE (n=1758) 29.0 (1.2) 27.4(2.2) 27.3(2.3) 27.6 (2.0) 27.7 (2.0) 0.037 *
MOCA (n=965) 25.8 (2.5) 23.3(2.7) 23.1(3.5) 23.4(3.1) 23.7 (3.5) 0.455
PHC-MEM (n=1741) 0.86 (0.51) 0.01 (0.48) 0.08 (0.64) 0.11 (0.52) 0.23 (0.63) <0.001 ***
PHC-EXF (n=1738) 0.74 (0.48) 0.23 (0.56) 0.21 (0.61) 0.35(0.54) 0.41 (0.55) <0.001 ***
PHC-LAN (n=1741) 0.80 (0.49) 0.33(0.50) 0.37(0.52) 0.36 (0.52) 0.44 (0.53) 0.009 **
PHC-VSP (n=1000) 0.10 (0.31) -0.02 (0.43) -0.10 (0.50) 0.04 (0.35) 0.02 (0.36) 0.032 *

Biomarker
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AV45 PET, SUVR (n=841) 1.12 (0.19)

APOE4 carrier (%) (n=1703) 27%
CSF Abeta, pg/ml (n=742) 1211 (439)
CSF t-tau, pg/ml (n=742) 245 (91)
CSF p-tau, pg/ml (n=742) 23 (10)
HV/ICV, cm3/mm3 (n=1228) 4.78 (0.68)

1.20 (0.23)
44%
763 (315)
245 (101)
24 (11)
3.85 (0.67)

1.23(0.23)
52%
886 (442)
291 (127)
29 (14)
4.22 (0.71)

1.20 (0.23)
44%
941 (441)
274 (106)
26 (12)
4.19(0.72)

1.19 (0.22)
48%
1052 (449)
312 (152)
30(17)
4.73 (0.87)

0.487
0.026 *
<0.001 ***
<0.001 ***
<0.001 ***
<0.001 ***

The data are expressed as percentages or means with standard deviation in parentheses. Missing values are excluded.

*p <0.05, ** p<0.01, *** p <0.001
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(continued)

P-value, pair-wise comparisons

S1vs S2 S1vsS3 S1lvs S4 S2vs S3 S2 vs S4 S3vs S4

Demographics

Age, years <0.001 *** 0.076 <0.001 *** 0.054 1.000 <0.001 ***

Education, years 0.814 0.160 0.002 ** 0.017 * <0.001 *** 0.204
Cognition

CDR-SB 0.532 <0.001 *** <0.001 *** 0.081 0.239 0.854

MMSE 1.000 0.254 0.076 0.277 0.097 0.905

MOCA 0.991 0.973 0.657 0.892 0.542 0.760

PHC-MEM 0.585 0.137 <0.001 *** 0.954 0.008 ** <0.001 ***

PHC-EXF 0.948 0.037 * <0.001 *** 0.010 * <0.001 *** 0.132

PHC-LAN 0.800 0.871 0.024 * 0.985 0.418 0.034 *

PHC-VSP 0.414 0.361 0.558 0.006 ** 0.015 * 0.970
Biomarker

AVAS5 PET, SUVR 0.853 1.000 0.904 0.748 0.441 0.865

CSF Abeta, pg/ml 0.244 0.003 ** <0.001 *** 0.771 0.017 * 0.012 *

CSF t-tau, pg/ml 0.103 0.235 <0.001 *** 0.761 0.587 0.003 **

CSF p-tau, pg/ml 0.102 0.347 <0.001 *** 0.634 0.840 0.009 **
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HV/ICV, cm3/mm?3 <0.001 ***

<0.001 ***

<0.001 ***

0.979

<0.001 ***

<0.001 ***

*p <0.05, ** p<0.01, *** p <0.001
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Figure 14. Heatmap of clinical and biological characteristics of MCI subtypes
Averaged Z-scores of demographic, cognitive, and biomarker variables in each subtype
are visualized in the heatmap.
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3.6 Prognosis prediction of subtypes for conversion from MCI to AD
Conversion rate and time to conversion from MCI to AD were analyzed
across the MCI subtypes. There was a significant difference in the
frequency of MCI to AD conversion within a 2-year follow-up across the
subtypes (P < 0.001). MCI to AD conversion was observed more
frequently in S1 (23.4%, 18/77) and S2 (35.7%, 25/70) compared to S3
(16.7%, 35/210) and S4 (12.7%, 31/245) (Figure 15). Individuals in S2
also had a significantly faster conversion from MCI to AD (S2 vs S3,
24.0 vs 35.3 months, P=0.047; S2 vs S4, 24.0 vs 34.0 months, P=0.037;
Table 6 and Figure 16). Kaplan-Meier survival curves were constructed
to compare the rate of conversion from MCI to AD across the subtypes
(Figure 17). There was a significant difference in the risk of conversion
across the subtypes (Log-rank P < 0.0001). S2 showed the highest risk

of conversion from MCI to AD, followed by S1.
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Figure 15. Frequency of MCI converter across subtypes
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Table 6. Time to conversion from MCI to AD

MCI at baseline P-value, P-value, pair-wise comparisons
S$1(n=39) S2(n=40) S3(n=78) S4(n=83) global S1vsS2 S1vsS3 S1vsS4 S2vsS3 S2vsS4 S3vsS4
Time to 34.2 24.0 353 34.0 0.019 0.213 0.997 1.000 0.047 * 0.037 * 0.991
conversion, (27.7) (16.9) (29.5) (22.9)
months

The data are expressed as percentages or means with standard deviation in parentheses.
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Figure 17. Kaplan-Meier survival curve for the conversion from MCI to AD
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3.7 Generating FDG PET images of AD subtypes

We applied decoder layers of our cVAE model to generate FDG PET
images and to compare subtype-specific metabolism patterns from the
latent features across AD subtypes. The representative FDG brain PET
images generated from the centroids of latent features of each subtype
showed subtype-specific hypometabolism patterns as identified in our
study (Figure 18): S1 (angular), S2 (occipital), S3 (orbitofrontal), and
S4 (minimal). The intensities of voxels in subtype-specific
hypometabolism regions decreased as the rescaled CDR-SB scores

increased.
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Figure 18. Generation of subtype-specific FDG brain PET images according to latent features with different CDR-SB scores by using a deep
learning-based model

Representative generated images of (A) S1 (angular), (B) S2 (occipital), (C) S3 (orbitofrontal), and (D) S4 (minimal). Subtype-specific regions of
hypometabolism are annotated with white arrows in the first row of (A)-(C).
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4. Discussion

In this study, we identified distinct subtypes of spatial brain metabolism
patterns with different clinicopathologic features in AD using deep
learning-based FDG PET clusters (summarized in Figure 19). Our deep
learning model was also successfully transferred to predict the prognosis

of subtypes for conversion from MCI to AD.
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* Younger age
* Frequent in males gk
* More tau
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* Cognitive decline in the
earlier stage
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* Less amyloid ¢ Less amyloid
* More hippocampal atrophy ¢ More tau

* Less hippocampal atrophy
* Higher executive and
visuospatial scores * Higher cognitive scores

Figure 19. Theoretical model summarizing AD subtypes on FDG PET
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4.1 Limitations of previous subtyping approach

AD has been recognized as a heterogeneous disease with variable
clinicopathologic profiles, such as age onset, clinical presentation, tau-
related pathology, and brain atrophy [4-8]. For that reason, there were
many efforts to reveal biologic subtypes of AD. Previous studies using
multiple brain imaging, mostly brain MRI and tau PET, tried to identify
AD subtypes in a hypothesis-driven or data-driven manner [9-11, 75].
However, the hypothesis-driven study design was limited to the prior
definition of neuropathologic subtypes. As a result, the hypothesis-
driven approach on neuroimaging may not provide a comprehensive
description and cannot reflect heterogeneous clinicopathologic profiles
of AD. Data-driven subtyping in previous studies was also limited by the
confound of disease stage, demonstrating disease severity rather than a

heterogeneous biologic profile.

4.2 Interpretation of results

We defined 4 distinct subtypes of hypometabolism pattern in AD: S1
(angular), S2 (occipital), S3 (orbitofrontal), and S4 (minimal). Our
proposed AD subtypes on FDG PET show different patterns in regions
of involvement from the previously reported 4 biologic subtypes (typical,

hippocampal sparing, limbic predominant, and minimal atrophy AD)
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based on neurodegeneration and tau pathology. Spatial patterns in S1
(angular), S2 (occipital), and S3 (orbitofrontal) obviously differ from
previously described AD subtypes in other modalities, but only the S4
(minimal hypometabolism) showed similarity with minimal atrophy AD.
In addition, whereas the previously described MRI-defined subtypes
separate hippocampal sparing AD as an independent subgroup, both S2
(occipital) and S4 (minimal) showed less hippocampal atrophy than
other subtypes, which implies both subtypes share the characteristics of
hippocampal sparing. From this point of view, it can be considered that
our AD subtypes based on spatial metabolism patterns belongs to a
domain different from the previously-defined subtypes reported on other
modalities.

Subtype-specific spatial metabolism pattern in the current study
notably differs from previously reported FDG PET subtypes. In the study
of Levin et al. [24], hypometabolic regions of their 3 subtypes (typical,
limbic predominant, and cortical-predominant) overlapped in
parietotemporal areas and frontal lobe with different effect sizes, and the
“minimal” subtype was not included. They employed a hierarchical
clustering approach for voxel-wise FDG PET profile which has a
limitation in removing the effect of disease progression from clustering.

The clusters defined in the studies of Levin et al. may have rather
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represented a severity dimension, and their subtypes actually showed a
significant difference in MMSE scores across the subtypes. In contrast,
AD subtypes in the current study shared typical AD patterns but showed
distinct subtype-specific spatial metabolism patterns which have few
overlapping regions. Our deep learning-based approach is intended to
remove the severity dimension from clustering, and CDR-SB and
MMSE scores were not significantly different across the subtypes.

The considerable disagreement in subtypes between previous
reports and the current study is likely due to the presence or absence of
severity dimension along with the AD subtypes. In the recent subtype
study on tau PET, Vogel et al. [10] applied an algorithm by combining
clustering with disease progression modeling [76] to overcome the
limitation from the disease severity dimension, and their identified 4
subtypes (limbic, medial-temporal lobe-sparing, posterior, and lateral
temporal) showed a completely different spatial pattern of tau deposition
compared to the previously identified subtypes. From this point of view,
we can reasonably infer that our AD subtypes represent distinct spatial
metabolism patterns independent from the dimension of disease severity.

In the previous reports, female patients more frequently had
limbic-predominant AD, and male patients more frequently had

hippocampal-sparing AD [9]. In our study, S1 (angular) and S3
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(orbitofrontal) were more hypometabolic in the limbic area, and S2
(occipital) and S4 (minimal) had more hippocampal-sparing patterns
compared to other subtypes. In our result, male patients were more
frequent in S1 (95%), and female patients were more frequent in S4
(72%). The difference of dimension across the AD subtypes between our
result (hidden representation without severity dimension) and previous
studies (with severity dimension) may be a careful explanation for
disagreement of a demographic pattern between previous and current
studies.

For the S2 (occipital), we showed that posterior-predominant
hypometabolism and visuospatial impairment are prominent, which is in
line with the “posterior” tau deposition subtype characterized by
visuospatial impairment on recent tau PET study [10]. In addition, we
showed that the S2 has the faster conversion from MCI to AD, and this
result corresponds to a faster decline in metabolism in the AD subgroup
of visuospatial function impairment reported in a recent trajectory study
on FDG PET [25].

In our study, the orbitofrontal region was classified as an
independent group with distinct spatial metabolism patterns. The
orbitofrontal cortex is associated with apathy, non-memory-related

behavior, and agitation in AD patients [77-79]. Even though previous
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studies in AD subtypes did not focus on the orbitofrontal region, S3
(orbitofrontal) might be an independent biologic subtype with distinct
spatial metabolism patterns in AD.

Minimal subtype-specific hypometabolism was observed in S4
(minimal). S4 had the lowest level of hippocampal atrophy, but CSF p-
tau and t-tau levels were higher than in other subtypes. In addition, S4
had the lowest level of education and a frequent prevalence of females,
and the MCI-S4 had younger age than in other subtypes. This
clinicopathologic pattern (tau, education) is in line with the results
observed in minimal atrophy AD defined in the previous studies [9].
Based on these observations, we may propose a hypothesis that the
neurodegeneration at a molecular level (tau-related pathology) may be
sufficient to give dementia symptoms with minimal hypometabolism and
atrophy [80]. Co-existing risk factors such as female sex and lower level
of education may counteract with a compensatory biologic mechanism
of AD resulting lowest level of cognitive reserve in the “minimal”
subtype, which is related to the concepts of brain resilience and
resistance [26, 81, 82].

In our study, we used both FDG PET images with cerebellar
normalization and global normalization for the generation of SPM

images to visualize spatial metabolism patterns. Subtype-specific
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patterns were consistent in both analyses, but commonly shared regions
of hypometabolism across the subtypes, which is a typical AD pattern,
were extended in the analysis with cerebellar normalization. More
reduced regions of hypermetabolism were also observed in cerebellar
normalization. Cerebellar and global normalization are frequently used
methods for the detection and differentiation of dementia in FDG PET
studies. Earlier studies showed that the glucose metabolism in the
cerebellum is less affected in AD patient compared to global cerebral
glucose metabolism [83], which result in a difference in SPM images
between cerebellar and global normalization methods. While global
normalization is superior for differential diagnosis between types of
dementia, cerebellar normalization is known to be superior in identifying
dementia patients in comparison to control subjects and in early detection

of dementia [84].

4.3 Strength of our deep learning-based clustering approach

To overcome the limitations of the previous subtyping approach, in this
study, we applied the deep learning-based clustering method to reveal
biologic subtypes of AD on FDG PET by using cVAE. VAE could
generate images in an unsupervised manner and reduce image dimension

into a lower-dimensional feature [60]. The unsupervised approach could
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help to make new discoveries of unappreciated subtypes and it is
expected to overcome the limitations of prior definition on hypothesis-
driven studies. Compared to early studies wusing traditional
dimensionality reduction methods such as PCA, autoencoder has its
advantage in the use of a non-linear function that makes superior
performance in learning patterns from high-dimensional image data such
as neuroimaging. Moreover, VAE could overcome the overfitting
problem from the traditional autoencoder.

The greatest strength of our study is the application of the cVAE
model which has a structure of additional input information for the
condition of each image [63, 85]. For instance, cVAE applied on MNIST
database with condition information of number label, the latent vector
contained the image feature of handwriting style, which could be applied
for the number image generation with different handwriting style. In
addition, cVAE was also successfully applied on FDG brain PET for
predicting aging of brain metabolic topography [67]. From this idea, we
hypothesized that when we give AD severity information (CDR-SB) as
an input condition of FDG PET images on the cVAE model, the latent
features could reflect hidden heterogeneity information of AD other than
disease severity. When VAE without an additional input condition was

applied for the subjects in our study, FDG PET images were clustered
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across the disease severity domain and showed spatial brain metabolism
patterns of disease progression (Figure 20). When cVAE with CDR-SB
condition was applied, there was no significant difference in CDR-SB
among the AD subtypes (P = 0.609), and the brain metabolism pattern
showed distinct features with different clinicopathologic profiles.

The deep learning-based model has the advantage of being easy
to transfer trained models to other cohorts, as shown in our study. Since
our deep learning network is a generative model, it can also be used to
generate a new image from the input image and information. This
approach is also expected to be readily applied to the other disease
domain with has heterogeneous clinicopathologic profiles.

Our deep learning-based approach has a unique novelty. First,
this 1s the first study to remove the effect of disease progression (severity
dimension) to reveal the hidden representations of FDG PET spatial
metabolism pattern in AD. Second, this is the first approach to apply
cVAE in AD subtype studies not only on FDG PET but also on other

modalities. Third, AD subtype study on FDG PET is very rare.
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Figure 20. Spatial metabolism of clusters using VAE without CDR-SB condition
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4.4 Strength of our deep learning-based AD subtypes

In our study, the deep learning model could predict the distinct subtype
of brain metabolism patterns in AD with different clinicopathologic
features. The model was also successfully transferred to MCI subjects.
The spatial metabolism pattern in MCI subtypes was almost similar to
those of AD. The demographic, cognitive, and biomarker profiles of MCI
subtypes were similar but with some differences from those of AD. These
findings imply that subtypes may have distinct trajectories of disease
progression and different features in earlier and late stages.

Until now there is no curative treatment for AD, but only to
postpone the disease progression. Therefore, a biomarker for the early
detection of MCI converter and the prediction of prognosis and disease
course is very important to allow patients to have early treatment before
the stage of AD. Predicting who will convert from MCI to AD has been
an important problem, and there were many previous studies for the
development of biomarkers and models to predict MCI to AD conversion
[86-90]. In the clinic, it is difficult to differentiate biologic subtypes in
AD patients and to predict the prognosis of individual patients since the
symptoms and clinical characteristics of AD patients are diverse and
complex. In our study, the deep learning model was transferred to FDG

PET of MCI patients, and the predicted MCI subtypes revealed
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significantly different prognoses of MCI to AD conversion. Our deep
learning-based models for the prediction of AD and MCI subtypes on
FDG PET have great novelty and strong clinical implications for the
early and individualized diagnosis and treatment that could be applied in
precision medicine. In addition, according to our preliminary result, most
AD and MCI patients maintained their subtypes from baseline to follow-
up, but some showed changes and fluctuation of their subtypes (Figure
21). The trajectory of spatial metabolism pattern across the subtypes in
MCI and AD and their relationship to patient prognosis should be
investigated in the future.

In clinical routine, differentiating subtype-specific metabolism
patterns on FDG PET only with visual interpretation is very difficult
which is subject to inter-observer variability and requires highly trained
experts. Because of diffuse overlapping regions of hypometabolism
(typical AD pattern) across the subtypes, it is difficult to distinguish
subtype-specific hypometabolic regions only with visual interpretation
as shown in our generated images and SPM images with cerebellar
normalization. Since our deep learning model could differentiate distinct
subtypes, we suggest that our model be used to help physicians’ visual
interpretation of FDG PET to make a precise and accurate diagnosis of

subtypes, which is a great advantage of the deep learning model.
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Figure 21. The trajectory of spatial brain metabolism pattern across the subtypes
Deep learning-based model predicted subtypes of individual subjects with AD and MCI
at baseline and follow-up visits are visualized in the heatmap. Subjects were (A) S1,
(B) S2, (C) S3, and (D) S4 on baseline FDG PET. Each subtype is marked with a
different color. Subjects are sorted in the order in which the subtypes changed or not
during the follow-up. n/a, not available PET
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4.5 Limitations and future directions

Some limitations should be noted. First, the deep learning model was
trained by using FDG PET with AD from the single database (ADNI). A
validation study using external AD datasets is mandatory. Second, the
deep learning model trained in the AD cohort was directly transferred to
the MCI cohort. However, MCI is a heterogeneous syndrome resulting
from AD as well as non-AD and non-neurodegenerative conditions [91-
97], which implies that some of the patients in our MCI cohort may be
originated from other disease populations different from AD. Therefore,
a validation study using external MCI datasets is also mandatory. Third,
a longitudinal study may be warranted to investigate the subtype-specific
trajectory of spatial metabolism changes and clinicopathologic profiles.
Finally, quantitative analysis of regions of interest of subtypes could give
more evidence to our results of spatial metabolism patterns. We are

planning the next step for the longitudinal study and quantitative analysis.
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5. Conclusion

We could identify distinct subtypes in AD with different brain
pathologies and clinical profiles. Also, our model was successfully
transferred to predict the prognosis of subtypes for conversion from MCI
to AD. Our results suggest that distinct AD subtypes on FDG PET may
have implications for the individual clinical outcomes and provide a clue

to understanding a broad spectrum of AD in terms of pathophysiology.
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Supplementary Figures

S1 > Controls S1 < Controls S2 > Controls S2 < Controls

Supplementary figure 1. Spatial metabolism pattern on FDG PET with global normalization of AD subtypes showing the differences between
subtypes and controls
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S1 > Others S1 < Others S2 > Others S2 < Others

S3 > Others

L ﬁ'“_/g

Supplementary figure 2. Spatial metabolism pattern on FDG PET with global normalization of AD subtypes showing the differences between one
subtype and all other subtypes
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