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ABSTRACT 

 

Distinct subtypes of spatial brain 

metabolism patterns in Alzheimer’s 

disease identified by deep learning-

based FDG PET clusters 

 

Hyun Gee Ryoo 

Department of Molecular Medicine and Biopharmaceutical Science, 

The Graduate School of Convergence Science and Technology, 

Seoul National University 

 

 

Alzheimer’s disease (AD) presents a broad spectrum of 

clinicopathologic profiles, despite common pathologic features 

including amyloid and tau deposition. Here, we aimed to identify AD 

subtypes using deep learning-based clustering on FDG PET images to 

understand distinct spatial patterns of neurodegeneration. We also aimed 

to investigate clinicopathologic features of subtypes defined by spatial 

brain metabolism patterns. 

A total of 3620 FDG brain PET images with AD, mild cognitive 

impairment (MCI), and cognitively normal controls (CN) at baseline and 
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follow-up visits were obtained from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. In order to identify representations of brain 

metabolism patterns different from disease progression in AD, a 

conditional variational autoencoder (cVAE) was used, followed by 

clustering using the encoded representations. FDG brain PET images 

with AD (n=838) and Clinical Demetria Rating Scale Sum of Boxes 

(CDR-SB) scores were used as inputs of cVAE model and the k-means 

algorithm was applied for the clustering. The trained deep learning 

model was also transferred to FDG brain PET image with MCI (n=1761) 

to identify differential trajectories and prognosis of subtypes. Statistical 

parametric maps were generated to visualize spatial patterns of clusters, 

and clinical and biological characteristics were compared among the 

clusters. The conversion rate from MCI to AD was also compared among 

the subtypes. 

Four distinct subtypes were identified by deep learning-based 

FDG PET clusters: (i) S1 (angular), showing prominent hypometabolism 

in the angular gyrus with a diffuse cortical hypometabolism pattern; 

frequent in males; more amyloid; less tau; more hippocampal atrophy; 

cognitive decline in the earlier stage. (ii) S2 (occipital), showing 

prominent hypometabolism in the occipital cortex with a posterior-

predominant hypometabolism pattern; younger age; more tau; less 

hippocampal atrophy; lower executive and visuospatial scores; faster 
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conversion from MCI to AD. (iii) S3 (orbitofrontal), showing prominent 

hypometabolism in the orbitofrontal cortex with an anterior-predominant 

hypometabolism pattern; older age; less amyloid; more hippocampal 

atrophy; higher executive and visuospatial scores. (iv) S4 (minimal), 

showing minimal hypometabolism; frequent in females; less amyloid; 

more tau; less hippocampal atrophy; higher cognitive scores. 

In conclusion, we could identify distinct subtypes in AD with 

different brain pathologies and clinical profiles. Also, our deep learning 

model was successfully transferred to MCI to predict the prognosis of 

subtypes for conversion from MCI to AD. Our results suggest that 

distinct AD subtypes on FDG PET may have implications for the 

individual clinical outcomes and provide a clue to understanding a broad 

spectrum of AD in terms of pathophysiology. 

 

Keywords: Alzheimer’s disease, subtype, FDG PET, deep learning, 

conditional variational autoencoder 
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1. Introduction 

 

1.1 Heterogeneity of Alzheimer’s disease 

Alzheimer’s disease (AD) is a heterogeneous disease that presents a 

broad spectrum of clinicopathologic profiles, despite common 

pathologic features including amyloid and tau deposition [1]. AD is 

commonly regarded as an amnestic disorder, but it often has a non-

amnestic clinical presentation [2, 3]. Variability in age onset, clinical 

presentation, tau-related pathology, and brain atrophy has been reported 

[4-8]. Due to its heterogeneous biologic pathology, many studies have 

been reported to reveal biological subtypes of AD on structural magnetic 

resonance imaging (MRI) and tau positron emission tomography (PET) 

[9-11]. 

 

1.2 FDG PET as a biomarker of Alzheimer’s disease 

[18F]fluorodeoxyglucose (FDG) PET has been used to support the 

differential diagnosis of neurodegenerative disease including dementia 

and parkinsonism [12-14]. FDG PET is also used to predict the 

progression of cognitive dysfunction in neurodegenerative disease as 

well as mild cognitive impairment (MCI) as an imaging-derived 

biomarker [15-18]. Since regional glucose hypometabolism precedes 

macroscopic brain atrophy detectable on MRI, FDG PET may indicate 
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an earlier stage of neurodegeneration [19, 20]. Previous studies have 

found a relationship between spatial pattern of hypometabolism on FDG 

PET and clinical symptoms of AD [21-23], and in addition, recently a 

few attempts have been reported to differentiate spatial hypometabolic 

patterns of AD subtypes in a data-driven or hypothesis-driven manner 

[24, 25]. 

 

1.3 Biologic subtypes of Alzheimer’s disease 

Because of the variability of AD, various attempts have been made to 

explain heterogeneity within AD for several decades. In 1992, Ritchie 

and Touchon [26] proposed 3 descriptive hypotheses for the explanation 

of heterogeneity of AD: phase, compensation, and subtype models. The 

phase model refers to the stage of the disease that is associated with the 

severity of the symptom. The compensation model hypothesizes that the 

disease progression can be counter-balanced by a compensatory 

biological mechanism that is different for each patient. The sub-type 

model hypothesizes separate subtypes at functional, clinical, and 

biological levels. Ritchie and Touchon suggested that these 3 models 

together result in the heterogeneity of the AD population. 

 Over the last few years, many studies have been reported to 

determine the biological subtypes of AD in a hypothesis and a data-

driven manner. Most of the early studies were performed on post-mortem 
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data using data-driven clustering methods on pathologic measures of 

senile plaques, neurofibrillary tangles, and cerebral amyloid angiopathy 

[27-29]. Murray et al. classified 3 subtypes with distinct clinical 

characteristics from the distribution of neurofibrillary tangle: typical, 

hippocampal sparing, and limbic predominant subtypes [30]. 

Hippocampal sparing AD was younger and had a higher proportion of 

males, whereas limbic predominant AD was older and higher in females. 

Late studies focused on neuroimaging biomarkers, mainly tau pathology 

(tau PET) and neurodegeneration (MRI), for subtyping AD based on a 

hypothesis-driven or data-driven method. Whitwell et al. first proposed 

3 subtypes based on entorhinal and cortical uptake on tau PET [31]: low 

entorhinal and low cortical uptake (characterized with older age), high 

entorhinal and high cortical uptake (worst memory impairment), and low 

entorhinal and high cortical uptake (worst impairment in nonmemory 

domains). In addition to 3 subtypes identified on postmortem and tau 

PET analyses, various MRI studies have consistently identified the 

fourth subtype with minimal atrophy [11, 32, 33]. Combining various 

neuropathology and neuroimaging studies of AD subtypes, Ferreira et al. 

proposed 4 biological subtypes of AD (typical, hippocampal sparing, 

limbic predominant, and minimal atrophy) distinguished by 2 core 

dimensions (typicality and severity) [9]. 

 Few studies have been reported to identify subtypes based on the 
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pattern of hypometabolism on FDG PET. Bittner et al. proposed 2 AD 

groups (temporoparietal area vs. no hypometabolism) [34], and Collette 

et al. proposed 2 AD groups (frontal and posterior cortex vs. only in 

posterior cortex) [35] with a hypothesis-driven approach. Meyer et al. 

also proposed 2 groups (perisylvian areas vs. typical posterior brain areas) 

of AD based on the pattern of hypometabolism [36]. Recently, Levin et 

al. proposed 3 data-driven FDG PET subtypes of AD (typical, limbic-

predominant, and cortical-predominant) [24]. Groot et al. proposed AD 

subgroups based on the impairments across cognitive domains (memory, 

executive function, language, visuospatial function, multiple domains, 

and no domains) which showed subgroup-specific hypometabolism 

patterns and trajectories [25]. However, the proposed number and 

patterns of hypometabolism of AD subtypes on FDG PET across the 

studies are not consistent. In addition, the hypometabolism patterns 

identified in the studies on FDG PET cannot easily be combined with 

subtypes in other modalities (postmortem, MRI, and tau PET). For this 

reason, a biologic subtype of AD on FDG PET is not yet been clarified. 

Above all, the concern of previous approaches in defining AD 

subtypes on various modalities was difficulty in removing the effect of 

disease progression. The clusters based on the traditional data-driven 

method may have a risk of representing the dimension of disease severity 

rather than the intrinsic biologic subtype of AD. 
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1.4 Dimensionality reduction methods 

For the extraction of key features and classification of the subtypes from 

the high-dimensional data, we can use dimensionality reduction methods. 

There are several different types of traditional methods for 

dimensionality reduction depending on their purpose and strategy [37, 

38]. One type of method only keeps the most important features without 

transformation of the set of the features: backward elimination, forward 

selection [39, 40], and Random forests [41]. The other type of method 

applies appropriate transformation in the set of features and finds a 

combination of new features. This method can be divided into linear 

methods and non-linear methods, also known as manifold learning, 

depending on which type of activation function is used. Linear method 

uses linear activation function for dimensionality reduction: principal 

component analysis (PCA) [42, 43], factor analysis (FA) [44, 45], linear 

discriminant analysis (LDA) [46] and truncated singular value 

decomposition (SVD) [47, 48]. Non-linear method uses non-linear 

activation function to reduce dimension: kernel PCA [49], t-distributed 

stochastic neighbor embedding (t-SNE) [50], multidimensional scaling 

(MDS) [51], isometric mapping (Isomap) [52, 53], and autoencoder [54, 

55]. 

 Among these methods, PCA was the most commonly used 

traditional method for dimensionality reduction for its fast and simple 
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application. To compare PCA and autoencoder for dimensionality 

reduction, the biggest difference is that the autoencoder can utilize a non-

linear activation function whereas the PCA is a linear transformation [38]. 

The use of the non-linear function for dimensionality reduction in the 

autoencoder could make superior performance in learning patterns from 

the high-dimensional image data and accurate image generation [56-58]. 

However, the autoencoder is prone to an overfitting problem. To avoid 

overfitting, the variational autoencoder (VAE) has been introduced [59]. 

Instead of encoding an input as a single point, VAE encodes it as a 

distribution over the latent space. Key features of dimension reduction 

methods are summarized in Table 1.  
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Table 1. Key features of dimension reduction methods 

Methods Key features 

PCA  Utilize linear activation function 

 Limitation with non-linear data 

Autoencoder  Utilize non-linear activation function 

 Superior performance in learning patterns from the high-

dimensional image data and accurate image generation 

 Prone to an overfitting problem 

VAE  Consist of encoder and decoder component 

 Single input 

 Reduce the dimension in a probabilistic manner 

 Avoid overfitting 

cVAE   Consist of encoder and decoder component 

 Conditioned variable as additional input 

 Latent features represent other data-specific features 

different from conditions 
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1.5 Variational autoencoder for clustering 

VAE is an unsupervised learning method that can generate images from 

some representation [60]. This generative model has advantages in a 

flexible application in image generation and a model transfer to different 

disease domains [61, 62]. 

 VAE consists of two components, encoder and decoder 

(generator). The encoder can reduce the high-dimensional image (X) into 

low-dimensional latent features (z) which are hidden representations of 

X, and the decoder can generate an image from values of latent features. 

Compared to a traditional simple autoencoder, VAE reduces the 

dimension in a probabilistic manner. For the simple explanation of the 

model, an input (x) is encoded into the latent distribution in a 

probabilistic manner p(z|x) followed by sampling. Sampled latent 

representation z~p(z|x) is then decoded for the input reconstruction d(z). 

In practice, generator input was resampled by the encoded latent feature 

z assuming normal distribution zresampled = zencoder + zsd × ε, where ε 

represents a random variable. The probabilistic generator can be defined 

by pθ (x|z), where θ represents the parameters of the generator. The 

posterior distribution pθ (z|x) can be obtained by prior distribution p(z), 

pθ (z|x) ∼ p(z) pθ (x|z). Variational Bayes learns both parameters, pθ (x|z) 

and an approximation qφ (z|x) to the intractable true posterior pθ (z|x). 
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The VAE model is trained to minimize the loss function, 

L (φ, θ) = −Ez∼qφ (z|x)(log pθ (x|z)) + KL(qφ (z|x)∥pθ (z)) 

The first term represents the reconstruction loss of the autoencoder. The 

second term, Kullback-Leibler (KL) is a divergence between a learned 

distribution and prior distribution. KL divergence act as a regularization 

term to ensure our learned distribution q is similar to the true prior 

distribution [60]. 

 The conditional VAE (cVAE) is an extension of VAE. While 

VAE uses single high-dimensional input data for the dimension reduction, 

cVAE uses the conditioned variable as additional input labels. Whereas 

VAE generates data from the latent variable directly, the cVAE model is 

aimed to generate data from both conditioned and latent variables [63]. 

The probabilistic generator (decoder) and the encoder can be defined as 

pθ (x|y, z) and qφ (z|x, y), respectively. The loss function is changed to, 

L (φ, θ) = −Ez∼qφ (z|x,y)(log pθ (x|y, z)) + KL(qφ (z|x, y)∥pθ (z)) 

where the first and second term represents reconstruction loss and KL 

divergence respectively. By giving conditioned variables as additional 

input information, the latent features are expected to reflect hidden 

information other than given conditions. As shown in the experiment of 

cVAE on Modified National Institute of Standards and Technology 

(MNIST) dataset (large database of handwritten digits) with conditioned 
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input labels, cVAE learns handwriting styles for the latent feature which 

is hidden information other than given condition [63].  

 In this study, we utilize cVAE on FDG PET of AD subjects with 

the corresponding condition of AD severity score. To find AD subtypes 

using brain images, clustering based on unsupervised learning could be 

used to define specific clusters. Nonetheless, decreased FDG uptake 

patterns in the cortex mostly depend on disease severity, there has been 

a difficulty in defining subtypes removing the effect of disease 

progression. As a cVAE model directly uses conditional variables to 

generate images from latent features, latent features are expected to 

represent other data-specific features different from conditions. We 

aimed to reduce FDG PET image dimension into a lower-dimensional 

feature for clustering, which is expected to have hidden representation of 

images other than given condition (e.g. disease severity). 

 

1.6 Final goal of the study 

We aimed to identify AD subtypes using the deep learning-based 

clustering on FDG PET images to understand distinct spatial patterns of 

neurodegeneration. We also aimed to investigate clinicopathologic 

features of subtypes defined by spatial brain metabolism patterns.  
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2. Methods 

 

2.1 Subjects 

We obtained 3620 FDG brain PET images from 1607 participants at 

enrollment (baseline) and follow-up visits from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database. We defined cohorts of 

Alzheimer’s disease (AD), mild cognitive impairment (MCI), and 

cognitive normal controls (CN) based on clinical diagnosis at each visit 

for this study. Based on the criteria, we included data of 838 AD, 1761 

MCI, and 1021 CN for the present study. The detailed inclusion criteria 

for the different diagnostic categories are available on the ADNI website 

(http://adni.loni.usc.edu/methods/documents/). The ADNI was launched 

in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD, VA Medical Center and University of 

California San Francisco. ADNI recruited subjects from over 50 sites 

across the US and Canada. The primary purpose of ADNI has been to 

test whether serial imaging and biological markers, and clinical and 

neuropsychological assessment can be combined to measure the 

progression of MCI and early AD. For up-to-date information, see 

http://www.adni-info.org. Written informed consent to cognitive testing 

and neuroimaging prior to participation was obtained, approved by the 

institutional review boards of all participating institutions. 
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2.2 FDG PET data acquisition and preprocessing 

FDG PET data were acquired in a pre-processed image file. 185 MBq of 

FDG were intravenously injected and a dynamic 3D scan of six 5-min 

frames was acquired for 30 minutes after 30-60 minutes of injection. 

Each extracted frame was co-registered followed by averaging the six 5-

minute frames. Scans were reoriented into a standard 160 × 160 × 96 

voxel image grid, having 1.5 mm cubic voxel. The intensity of each PET 

image was normalized using a subject-specific mask so that the average 

of voxels within the mask is exactly one. Each image set was filtered to 

produce images of a uniform isotropic resolution of 8 mm full width at 

half maximum [64, 65]. The detailed PET acquisition and preprocessing 

protocols are available on the ADNI website 

(http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/). 

For the present deep learning study, FDG PET images were further 

spatially normalized to a customized PET template and reshaped into 91 

× 109 × 91 matrices using and smoothed with a Gaussian smoothing 

kernel of 10 mm full-width at half maximum (FWHM). 

 

2.3 Deep learning-based model for representations of FDG PET in 

AD 

To find hidden representations of FDG PET image patterns in AD, a 

cVAE was used [63]. 838 FDG brain PET images with AD were used as 
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input images. Clinical Demetria Rating Scale Sum of Boxes (CDR-SB) 

score was used as the corresponding condition vector of each image. 

CDR-SB is commonly used in clinical and research settings to stage 

dementia severity [66]. Since removing the effect from the disease 

severity dimension was the biggest concern for previous AD subtype 

studies, we chose CDR-SB as an input condition to remove the effect of 

disease severity of AD in latent features and find hidden representation. 

CDR-SB score was rescaled to the range of 0 to 1, which was divided by 

a maximum CDR-SB score of 18, and used as input. To encode 3-

dimensional PET volume, we used multiple 3D convolutional neural 

network. Four sequential convolution layers and rectified linear units 

were applied, and the features were fed into the fully connected layer. 

The sizes of the convolutional filters were (5 × 5 × 5), (5 × 5 × 5), (5 × 5 

× 5), and (3 × 3 × 3) in the sequence, and the stride size of 2, 3, and 3 

voxels were applied for the first, second, and third convolution filters. 

After multiple convolutional filters, 3D feature volumes were reduced to 

a 1-dimensional feature with a size of 32 followed by a rectified linear 

unit. These features were merged into CDR-SB information of each 

subject followed by sampling layer and finally connected to the layer of 

10 latent features. Conversely, the decoder consisted of convolutional 

and upsampling layers with input variables of 10 latent features and 

CDR-SB information to generate PET volume. We chose a latent 
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dimension size of 10 that gives the best performance in dimension 

reduction of FDG PET, as shown in the previous cVAE study [67]. The 

detail of the cVAE architecture is summarized in Table 2 and Figure 1. 

We trained the cVAE model using an optimization algorithm, Adam [68], 

to minimize the loss function, and the learning rate was set to 0.0001. It 

took 300 epochs with a batch size of 32 for the training. The cVAE was 

implemented using a deep learning library, Keras with TensorFlow 

backend (version 2.5.0). Ten percent of PET data were used for the 

internal validation to determine hyperparameters and find out the best 

model.
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Table 2. cVAE architecture of deep learning-based model for representations of 

FDG PET in AD 

Layer type Output size Kernel size Stride Activation 

Encoder     

Input 1 (x; image) (91 × 109 × 91)    

Cropping3D (90 × 108 × 90)    

Conv3D (45 × 54 × 45), 16 5 × 5 × 5 2 ReLU 

Conv3D (15 × 18 × 15), 16 5 × 5 × 5 3 ReLU 

Conv3D (5 × 6 × 5), 64 5 × 5 × 5 3 ReLU 

Conv3D (3 × 4 × 3), 64 3 × 3 × 3  ReLU 

Flatten 2304    

Dense 32   ReLU 

Input 2 (y; condition) 1    

Concatenate 33    

Dense 10    

Dense 10    

Lambda (Sampling) 10    

Latent variables: z     

Decoder     

Concatenate (z and y) 11    

Dense 32   ReLU 

Dense 2304   ReLU 

Reshape (3 × 4 × 3), 64    

Conv3D Transpose (5 × 6 × 5), 64 3 × 3 × 3  ReLU 

Conv3D Transpose (15 × 18 × 15), 16 5 × 5 × 5 3 ReLU 

Conv3D Transpose (45 × 54 × 45), 16 5 × 5 × 5 3 ReLU 

Conv3D Transpose (90 × 108 × 90) 5 × 5 × 5 2 Sigmoid 

Zero padding (91 × 109 × 91)    
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Figure 1. cVAE architecture of deep learning-based model for representations of FDG PET in AD 
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2.4 Clustering method for AD subtypes on FDG PET 

To identify AD subtypes from the hidden representations of FDG PET 

image patterns, the k-means algorithm was applied to generate clusters 

from the 10 latent features [69, 70]. The study design of our deep 

learning-based FDG PET cluster model for AD subtypes is summarized 

in Figure 2. The number of clusters was determined by using the elbow 

method [71, 72]. The elbow method is a heuristic method to determine 

the optimal number of clusters in a dataset by calculating the sum of 

squared distance between each point and the centroid in a cluster. The t-

SNE algorithm was applied using random initialization and perplexity of 

30 to visualize latent features on a 2-dimensional plot [50]. The Scikit-

learn library (version 0.24.2) was implemented for k-means and t-SNE 

algorithms.  

 

2.5 Transfer of deep learning-based FDG PET cluster model for MCI 

subtypes 

The trained deep learning-based FDG PET cluster model in AD was 

transferred to the MCI cohort to predict their subtypes and to identify 

differential trajectories and prognosis of subtypes in MCI. The study 

design for the transfer of our deep learning-based FDG PET cluster 

model for MCI subtypes is summarized in Figure 3. The cVAE model 

and k-means clustering model used in the AD cohort were directly 
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transferred to the MCI cohort. FDG PET images and CDR-SB scores 

from the MCI subjects were used as input images and conditions of the 

transferred cVAE model to extract latent features of FDG PET with MCI. 

And then, the k-means clustering model was transferred to identify MCI 

subtypes from the latent features.
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Figure 2. Deep learning-based FDG PET cluster model for AD subtypes   
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Figure 3. Transfer of deep learning-based FDG PET cluster model for MCI subtypes
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2.6 Visualization of subtype-specific spatial brain metabolism 

pattern 

To visualize spatial brain metabolism patterns of identified subtypes, a 

voxel-wise two-sample t-test was performed on FDG PET images using 

SPM12 software. Intensities of FDG PET images were normalized to the 

cerebellum using the automated anatomical labeling (AAL) template for 

the cerebellar normalization [73]. FDG PET images with global 

normalization were also used for the additional analysis, and overall 

grand mean scaling was applied for the global normalization. Statistical 

parametric maps (SPM) were generated to visualize spatial patterns of 

the cluster. The significance threshold was P = 0.01 with family-wised 

error correction, and the extent threshold was 50 voxels. The statistical 

analyses were performed comparing FDG PET of each subtype against 

controls as well as one subtype against all other subtypes. 

 

2.7 Clinical and biological characterization 

We compared demographic, cognitive, and biomarker variables among 

clusters for clinical and biologic characterization of subtypes. All of 

these variables were downloaded from the LONI Image and Data 

Archive (IDA).  For the cognition scores, we used Alzheimer’s Disease 

Sequencing Project (ADSP) Phenotype Harmonization Consortium 

(PHC) - composite cognitive scores: harmonized composite memory 
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score (PHC-MEM), executive function score (PHC-EXF), language 

score (PHC-LAN), and visuospatial score (PHC-VSP) [74]. Individual’s 

standardized uptake value ratio (SUVR) of [18F]florbetapir (AV45) PET 

was downloaded on LONI, and florbetapir mean of whole cerebellum 

was used as reference regions. The regions were defined by Freesurfer 

and details are available on the documents on LONI. The hippocampal 

volume to intracranial volume ratio (HV/ICV) was also calculated as an 

indicator of hippocampal atrophy. 

 

2.8 Prognosis prediction of MCI subtypes 

We defined MCI converters for those who converted from MCI to AD 

within 2 years from the baseline visit, and non-converters for those who 

did not convert to AD during a follow-up of at least 2 years from the 

baseline visit. Time to conversion from MCI to AD was calculated for 

the subjects who have a change of diagnosis from MCI to AD at any time 

point. Kaplan-Meier survival curves were generated to evaluate the risk 

of conversion from MCI to AD across the subtypes. 

 

2.9 Generation of subtype-specific FDG PET images 

Decoder layers of our cVAE model were used for the generation of 

subtype-specific FDG PET images. The centroids of latent features of 4 

subtypes and rescaled CDR-SB scores were used for the input of the 
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decoder for image generation. 

 

2.10 Statistical analysis 

Values are expressed as percentages or mean with standard deviation 

(SD). Group differences in demographic and clinical variables in 

subtypes were evaluated using the one-way ANOVA with posthoc 

analysis and chi-square test. Z-scores of demographic, cognitive, and 

biomarker variables were calculated, and averaged Z-score of each 

subtype were used for the heatmap generation to visualize clinical and 

biological characteristics of each subtype. Kaplan-Meier survival 

analysis was used to test for subtype differences in conversion from MCI 

to AD, and curves were compared using the log-rank test. Statistical 

analyses were performed using a JAMOVI statistical software version 

1.6, and a P-value lower than 0.05 was considered statistically significant.  
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3. Results 

 

3.1 Deep learning-based FDG PET clusters 

Of the 838 FDG brain PET images with AD, four distinct AD subtypes 

were identified by deep-learning-based FDG PET clusters (Figure 4). 

We set 4 as a subtype number since the inflection point appeared when 

the number was 4 on the elbow method plot (Figure 5).
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Figure 4. t-SNE visualization of the latent feature of FDG PET in AD  
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Figure 5. Elbow method for choosing the number of clusters  
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3.2 Spatial brain metabolism pattern in AD subtypes 

Spatial brain metabolism patterns on FDG PET with cerebellar 

normalization of AD subtypes were compared with those of the CN, and 

the regions showing significant differences were revealed using a 

voxelwise t-test. All AD subtypes shared a common pattern of 

hypometabolism involving frontal, parietal, temporal lobes, precuneus, 

and posterior cingulate, which is typically observed in AD. In addition 

to typical AD patterns shared across all subtypes, subtype-specific 

regions of hypometabolism were observed in each subtype (Figure 6). 

Subtype 1 (S1: angular) included 185 (22%) of AD and showed 

prominent hypometabolism in the angular gyrus with a diffuse 

hypometabolism pattern involving parietotemporal, frontal, limbic, 

occipital, and cingulate cortices. Subtype 2 (S2: occipital) included 161 

(19%) of AD and showed prominent hypometabolism in the occipital 

cortex with a posterior-predominant hypometabolism pattern involving 

occipital, posterior-parietal cortices, and precuneus. Subtype 3 (S3: 

orbitofrontal) included 224 (27%) of AD and showed prominent 

hypometabolism in the orbitofrontal cortex with an anterior-predominant 

hypometabolism pattern involving frontal, limbic, and anterior cingulate 

cortices. Subtype 4 (S4: minimal) included 268 (32%) of AD and showed 

no additional hypometabolic region. Subtype-specific spatial 
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metabolism patterns also corresponded to the regions observed in the 

comparisons between one subtype and all other subtypes (Figure 7). In 

the additional analysis using FDG PET with global normalization, the 

subtype-specific hypometabolism patterns were consistent with those 

observed in the analysis using FDG PET with cerebellar normalization 

(Supplementary figure 1 and 2). 

 To exclude the effect of overlapping images from the same 

subject at different visits, FDG PET from individuals with AD at baseline 

visit were only used for the additional spatial metabolism pattern analysis. 

For the FDG PET with AD at baseline visit, S1 (angular), S2 (occipital), 

S3 (orbitofrontal), and S4 (minimal) included 58 (20%), 52 (18%), 83 

(28%), and 99 (34%), respectively. FDG PET images of AD subtypes at 

baseline visit were compared with those of CN, and regions showing 

significant differences were revealed using a voxelwise t-test. The 

subtype-specific hypometabolism patterns observed in AD at baseline 

visit resembled those observed in the analysis using whole AD subjects 

but showed a lower degree of t-value (Figure 8).  
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Figure 6. Spatial metabolism pattern on FDG PET with cerebellar normalization of AD subtypes showing the differences between subtypes and 

controls  



 

 

 

30 

 

Figure 7. Spatial metabolism pattern on FDG PET with cerebellar normalization of AD subtypes showing the differences between one subtype and 

all other subtypes   
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Figure 8. Spatial metabolism pattern on FDG PET with cerebellar normalization of AD subtypes at baseline visit showing the differences between 

subtypes and controls 
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3.3 Clinical and biological characterization in AD subtypes 

We compared demographic, cognitive, and biomarker variables between 

the AD subtypes (Table 3-4 and Figure 9). Characteristics of subtypes 

were compared both in groups with all AD subjects (n=838) and AD 

subjects at baseline visit (n=292). CDR-SB scores did not show a 

significant difference across AD subtypes (P = 0.609) as we used CDR-

SB as the input variable of our cVAE model. 

 Compared to other subtypes, S1 (angular) included the highest 

frequency of male and more educated individuals. Individuals in S1 had 

more amyloid burden (i.e. less cerebrospinal fluid (CSF) amyloid-beta 

(Abeta) and higher AV45-PET SUVR) but less overall tau burden (i.e. 

less CSF p-tau and t-tau level). S1 individuals tended to have lower 

HV/ICV (i.e. more hippocampal atrophy). S2 (occipital) individuals 

were younger and had more overall tau burden but less hippocampal 

atrophy. S2 individuals tended to have better relative memory and 

language, but worse relative executive and visuospatial scores. S3 

(orbitofrontal) individuals were older and had less amyloid burden but 

more hippocampal atrophy. S3 individuals tended to have better 

executive and visuospatial scores. Finally, S4 (minimal) included the 

highest frequency of female and less educated individuals. S4 individuals 

had a more tau burden but less hippocampal atrophy. S4 individuals 
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tended to have better executive, language, and visuospatial scores. 
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Table 3. Clinical and biological characteristics of subtypes in AD 

  AD (n=838) P-value,  

global comparison 

(S1, S1, S3, and S4) 

 CN S1 S2 S3 S4 

Demographics       

n (%) 1021 185 (22%) 161 (19%) 224 (27%) 268 (32%)  

Age, years (n=838) 75.7 (6.2) 76.4 (7.2) 75.0 (7.5) 78.2 (6.5) 75.2 (7.9) < 0.001 *** 

Sex, female (%) (n=838) 43% 5% 32% 41% 72% < 0.001 *** 

Education, years (n=838) 16.3 (2.8) 16.1 (3.3) 15.5 (2.6) 15.3 (2.7) 15.1 (2.9) 0.009 ** 

Cognition       

CDR-SB (n=838) 0.1 (0.4) 5.5 (2.7) 5.2 (2.7) 5.4 (2.6) 5.3 (2.3) 0.609 

MMSE (n=837) 29.0 (1.2) 21.9 (4.0) 22.0 (4.4) 22.3 (3.8) 22.2 (3.9) 0.699 

MOCA (n=354) 25.8 (2.5) 16.7 (4.9) 16.0 (5.2) 17.1 (4.8) 16.8 (5.0) 0.645 

PHC-MEM (n=833) 0.86 (0.51) -0.92 (0.49) -0.81 (0.53) -0.89 (0.46) -0.90 (0.45) 0.217 

PHC-EXF (n=832) 0.74 (0.48) -0.55 (0.72) -0.71 (0.74) -0.36 (0.65) -0.45 (0.70) < 0.001 *** 

PHC-LAN (n=833) 0.80 (0.49) -0.29 (0.59) -0.24 (0.63) -0.27 (0.62) -0.22 (0.64) 0.63 

PHC-VSP (n=659) 0.10 (0.31) -0.36 (0.61) -0.60 (0.74) -0.19 (0.52) -0.26 (0.62) < 0.001 *** 

Biomarker       
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AV45 PET, SUVR (n=318) 1.12 (0.19) 1.40 (0.24) 1.37 (0.22) 1.35 (0.25) 1.39 (0.21) 0.585 

APOE4 carrier (%) (n=817) 27% 68% 64% 68% 66% 0.249 

CSF Abeta, pg/ml (n=321) 1211 (439) 580 (276) 677 (402) 681 (345) 664 (280) 0.159 

CSF t-tau, pg/ml (n=321) 245 (91) 293 (108) 382 (158) 358 (124) 423 (173) < 0.001 *** 

CSF p-tau, pg/ml (n=321) 23 (10) 29 (12) 38 (17) 35 (14) 41 (19) < 0.001 *** 

HV/ICV, cm3/mm3 (n=547) 4.78 (0.68) 3.37 (0.56) 3.80 (0.59) 3.50 (0.57) 3.85 (0.73) < 0.001 *** 

The data are expressed as percentages or means with standard deviation in parentheses. Missing values are excluded. 
* p < 0.05, ** p < 0.01, *** p < 0.001  
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(continued) 

 P-value, pair-wise comparisons 

 S1 vs S2 S1 vs S3 S1 vs S4 S2 vs S3 S2 vs S4 S3 vs S4 

Demographics       

Age, years 0.296 0.078 0.308 < 0.001 *** 0.995 < 0.001 *** 

Education, years 0.294 0.023 * 0.002 ** 0.800 0.442 0.929 

Cognition       

CDR-SB 0.618 0.897 0.635 0.934 0.998 0.962 

MMSE 0.994 0.684 0.892 0.854 0.977 0.967 

MOCA 0.889 0.949 0.997 0.562 0.748 0.979 

PHC-MEM 0.165 0.967 0.994 0.318 0.197 0.996 

PHC-EXF 0.148  0.039 * 0.512 < 0.001 *** 0.002 ** 0.461 

PHC-LAN 0.901 0.993 0.632 0.967 0.979 0.770 

PHC-VSP 0.009 ** 0.056  0.399  < 0.001 *** < 0.001 *** 0.667 

Biomarker       

AV45 PET, SUVR 0.944 0.632  1.000 0.933 0.949 0.571 

CSF Abeta, pg/ml 0.328 0.249  0.357 1.000 0.994 0.984 

CSF t-tau pg/ml 0.004 ** 0.045 * < 0.001 *** 0.751 0.289 0.015 * 

CSF p-tau, pg/ml 0.009 ** 0.066 < 0.001 *** 0.818 0.508 0.067 
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HV/ICV, cm3/mm3 < 0.001 *** 0.382 < 0.001 *** 0.001 ** 0.913 < 0.001 *** 

* p < 0.05, ** p < 0.01, *** p < 0.001  
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Table 4. Clinical and biological characteristics of subtypes in AD at baseline visit 

  AD at baseline (n=292) P-value,  

global comparison 

(S1, S1, S3, and S4) 

 CN S1 S2 S3 S4 

Demographics       

n (%) 385 58 (20%) 52 (18%) 83 (28%) 99 (34%)  

Age, years (n=292) 73.6 (5.9) 75.1 (7.7) 72.1 (8.5) 77.2 (6.7) 73.7 (8.4) 0.001 ** 

Sex, female (%) (n=292) 51% 3% 31% 39% 69% < 0.001 *** 

Education, years (n=292) 16.4 (2.7) 16.4 (3.1) 15.4 (2.4) 15.3 (2.8) 14.9 (2.9) 0.038 * 

Cognition       

CDR-SB (n=292) 0.05 (0.15) 4.6 (1.6) 4.2 (1.6) 4.6 (1.8) 4.5 (1.7) 0.557 

MMSE (n=292) 29.0 (1.2) 23.1 (2.1) 23.4 (2.3) 23.2 (2.3) 23.2 (2.2) 0.912 

MOCA (n=188) 25.8 (2.4) 16.9 (4.7) 17.2 (3.9) 17.3 (4.7) 17.3 (4.7) 0.985 

PHC-MEM (n=287) 0.81 (0.46) -0.75 (0.40) -0.72 (0.30) -0.80 (0.32) -0.80 (0.35) 0.347 

PHC-EXF (n=287) 0.69 (0.47) -0.49 (0.75) -0.55 (0.69) -0.33 (0.61) -0.42 (0.67) 0.247 

PHC-LAN (n=287) 0.76 (0.46) -0.25 (0.52) -0.11 (0.44) -0.26 (0.68) -0.16 (0.55) 0.292 

PHC-VSP (n=230) 0.13 (0.27) -0.41 (0.56) -0.44 (0.71) -0.10 (0.48) -0.28 (0.60) 0.007 ** 

Biomarker       
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AV45 PET, SUVR (n=159) 1.12 (0.18) 1.44 (0.22) 1.39 (0.22) 1.29 (0.24) 1.42 (0.19) 0.026 * 

APOE4 carrier (%) (n=271) 28% 68% 75% 61% 67% 0.356 

CSF Abeta, pg/ml (n=177) 1228 (439) 546 (241) 698 (390) 720 (370) 686 (257) 0.034 * 

CSF t-tau, pg/ml (n=177) 238 (91) 287 (104) 398 (155) 358 (126) 415 (166) < 0.001 *** 

CSF p-tau, pg/ml (n=177) 22 (9) 29 (11) 40 (17) 36 (14) 41 (18) < 0.001 *** 

HV/ICV, cm3/mm3 (n=201) 4.96 (0.64) 3.64 (0.46) 3.98 (0.54) 3.69 (0.53) 3.99 (0.70) 0.002 ** 

The data are expressed as percentages or means with standard deviation in parentheses. Missing values are excluded. 
* p < 0.05, ** p < 0.01, *** p < 0.001  
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(continued) 

 P-value, pair-wise comparisons 

 S1 vs S2 S1 vs S3 S1 vs S4 S2 vs S3 S2 vs S4 S3 vs S4 

Demographics       

Age, years 0.194 0.392 0.741 0.002 ** 0.601 0.018 * 

Education, years 0.286 0.122 0.010 * 0.996 0.723 0.783 

Cognition       

CDR-SB 0.688 0.999 0.988 0.534 0.797 0.947 

MMSE 0.893 0.996 0.995 0.946 0.946 1.000 

MOCA 0.993 0.987 0.981 1.000 1.000 1.000 

PHC-MEM 0.951 0.820 0.819 0.491 0.479 1.000 

PHC-EXF 0.969 0.488 0.929 0.246 0.694 0.775 

PHC-LAN 0.550 0.999 0.787 0.411 0.940 0.640 

PHC-VSP 0.996 0.038 * 0.610 0.020 * 0.458 0.290 

Biomarker       

AV45 PET, SUVR 0.771 0.029 * 0.984 0.242 0.871 0.016 * 

CSF Abeta, pg/ml 0.222 0.080 0.185 0.989 0.998 0.938 

CSF t-tau pg/ml 0.012 * 0.145 < .001 *** 0.592 0.948 0.156 

CSF p-tau, pg/ml 0.033 * 0.222 0.002 ** 0.694 0.968 0.270 
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HV/ICV, cm3/mm3 0.067 0.969 0.013 * 0.122 0.999 0.024 * 

* p < 0.05, ** p < 0.01, *** p < 0.001  
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Figure 9. Heatmap of clinical and biological characteristics of AD subtypes 

Comparisons in groups with (A) all AD subjects and (B) AD subjects at baseline visit. Averaged Z-scores of demographic, cognitive, and biomarker variables 

in each subtype are visualized in the heatmap.   
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3.4 Subtype-specific spatial metabolism patterns resemble in MCI 

We transferred our trained cVAE model to FDG PET of cohorts with 

MCI (n=1761) and their subtypes (MCI-S) were predicted. Different 

from the distribution of subtypes in AD, individuals were less distributed 

in S1 and S2, but more distributed in S3 and S4 in the MCI cohort 

(Figure 10): S1, S2, S3, and S4 were 252 (14%), 202 (11%), 596 (34%), 

and 711 (40%), respectively. 

 Spatial brain metabolism patterns on FDG PET with cerebellar 

normalization of MCI subtypes were compared with those of the CN 

using a voxel-wise t-test (Figure 11). MCI-S1, MCI-S2, and MCI-S3 

shared a typical AD pattern of hypometabolism involving frontal, 

parietal, temporal lobes, precuneus, and posterior cingulate which were 

similar to those observed in AD subtypes. Unlike S4 in AD, MCI-S4 did 

not share a typical AD pattern but only showed a minimal region of 

hypometabolism compared to CN. In addition to the shared pattern of 

hypometabolism, subtype-specific regions of hypometabolism were 

observed in MCI-S1, MCI-S2, and MCI-S3 which were similar to those 

observed in AD. As shown in AD subtypes, MCI-S1 (angular) showed 

prominent hypometabolism in the angular gyrus with a diffuse 

hypometabolism pattern. MCI-S2 (occipital) showed prominent 

hypometabolism in the occipital cortex with a posterior-predominant 
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hypometabolism pattern, and MCI-S3 (orbitofrontal) showed prominent 

hypometabolism in the orbitofrontal cortex with an anterior-predominant 

hypometabolism pattern. MCI-S4 (minimal) did not show additional 

subtype-specific regions of hypometabolism. Subtype-specific spatial 

metabolism patterns in MCI also corresponded to the regions observed 

in the comparisons between one subtype and all other subtypes (Figure 

12). 

 To exclude the effect of overlapping individuals included in both 

MCI and AD cohorts due to their conversion from MCI to AD in follow-

up visits, we also compared the spatial brain metabolism patterns of MCI 

subtypes with the exclusion of overlapping individuals from the MCI 

cohort. With exclusion of overlapping individuals, MCI-S1 (angular), 

MCI-S2 (occipital), MCI-S3 (orbitofrontal), and MCI-S4 (minimal) 

included 183 (13%), 140 (10%), 494 (36%), and 543 (40%), respectively. 

The subtype-specific regions showing significant differences in MCI 

compared to CN were revealed using a voxelwise t-test. Subtype-specific 

hypometabolism patterns in MCI with the exclusion of overlapping 

individuals were similar to those observed in the whole MCI cohort but 

showed a slightly lower degree of t-value (Figure 13). In addition, 

typical AD patterns (frontal, parietal, temporal lobes, precuneus, and 

posterior cingulate) were less involved when the overlapping individuals 
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were excluded for the comparison.  
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Figure 10. Frequency of subtypes in AD and MCI 

(A) AD, (B) MCI 
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Figure 11. Spatial metabolism pattern on FDG PET with cerebellar normalization of MCI subtypes showing the differences between subtypes and 

controls  
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Figure 12. Spatial metabolism pattern on FDG PET with cerebellar normalization of MCI subtypes showing the differences between one subtype 

and all other subtypes  
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Figure 13. Spatial metabolism pattern on FDG PET with cerebellar normalization of MCI subtypes with the exclusion of overlapping individuals 

showing the differences between subtypes and controls 

Overlapping MCI individuals, who were included in both MCI and AD cohorts due to their conversion from MCI to AD in follow-up visits, were excluded.  
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3.5 Clinical and biological characterization in MCI subtypes 

We compared demographic, cognitive, and biomarker variables between 

the subtypes in MCI (Table 5 and Figure 14). CDR-SB scores were 

significantly different across the MCI subtypes (P < 0.001); CDR-SB 

score was highest in MCI-S1 but lowest in MCI-S3. MCI-S1 included 

the highest frequency of males, and the individuals in MCI-S1 had more 

amyloid burden, more hippocampal atrophy, but less overall tau burden, 

which was a similar pattern observed in AD subtypes. In addition, 

individuals in MCI-S1 tended to have lower memory, executive, 

language, and visuospatial scores. Individuals in MCI-S2 were younger 

and more educated. MCI-S2 tended to have more overall tau burden and 

had better language, but worse executive and visuospatial scores, which 

was similarly observed in S2 of AD. Individuals in MCI-S3 tended to 

have a less amyloid burden and higher executive and visuospatial scores 

like S3 in AD. Finally, MCI-S4 included the highest frequency of female 

and less educated individuals as observed in S4 of AD. Individuals in 

MCI-S4 had the most favorable clinical presentation: higher Montreal 

Cognitive Assessment (MOCA), Mini-Mental State Examination 

(MMSE), memory, executive, language, and visuospatial scores. MCI-

S4 had the lowest amyloid deposit and less hippocampal atrophy among 

the subtypes but had more tau burden.
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Table 5. Clinical and biological characterizations of subtypes in MCI 

  MCI (n=1761) P-value, 

global comparison 

(S1, S1, S3, and S4) 

 CN S1 S2 S3 S4 

Demographics       

n (%) 1021 252 (14%) 202 (11%) 596 (34%) 711 (40%)  

Age, years (n=1759) 75.7 (6.2) 76.7 (6.6) 73.7 (7.7) 75.3 (7.7) 73.7 (7.9) < 0.001 *** 

Sex, female (%) (n=1761) 43% 8% 18% 30% 63% < 0.001 *** 

Education, years (n=1761) 16.3 (2.8) 16.4 (2.8) 16.6 (2.7) 16.0 (2.8) 15.7 (2.8) < 0.001 *** 

Cognition       

CDR-SB (n=1761) 0.1 (0.4) 1.8 (1.1) 1.7 (1.2) 1.5 (0.9) 1.6 (1.0) < 0.001 *** 

MMSE (n=1758) 29.0 (1.2) 27.4 (2.2) 27.3 (2.3) 27.6 (2.0) 27.7 (2.0) 0.037 * 

MOCA (n=965) 25.8 (2.5) 23.3 (2.7) 23.1 (3.5) 23.4 (3.1) 23.7 (3.5) 0.455 

PHC-MEM (n=1741) 0.86 (0.51) 0.01 (0.48) 0.08 (0.64) 0.11 (0.52) 0.23 (0.63) < 0.001 *** 

PHC-EXF (n=1738) 0.74 (0.48) 0.23 (0.56) 0.21 (0.61) 0.35 (0.54) 0.41 (0.55) < 0.001 *** 

PHC-LAN (n=1741) 0.80 (0.49) 0.33 (0.50) 0.37 (0.52) 0.36 (0.52) 0.44 (0.53) 0.009 ** 

PHC-VSP (n=1000) 0.10 (0.31) -0.02 (0.43) -0.10 (0.50) 0.04 (0.35) 0.02 (0.36) 0.032 * 

Biomarker       
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AV45 PET, SUVR (n=841) 1.12 (0.19) 1.20 (0.23) 1.23 (0.23) 1.20 (0.23) 1.19 (0.22) 0.487 

APOE4 carrier (%) (n=1703) 27% 44% 52% 44% 48% 0.026 * 

CSF Abeta, pg/ml (n=742) 1211 (439) 763 (315) 886 (442) 941 (441) 1052 (449) < 0.001 *** 

CSF t-tau, pg/ml (n=742) 245 (91) 245 (101) 291 (127) 274 (106) 312 (152) < 0.001 *** 

CSF p-tau, pg/ml (n=742) 23 (10) 24 (11) 29 (14) 26 (12) 30 (17) < 0.001 *** 

HV/ICV, cm3/mm3 (n=1228) 4.78 (0.68) 3.85 (0.67) 4.22 (0.71) 4.19 (0.72) 4.73 (0.87) < 0.001 *** 

The data are expressed as percentages or means with standard deviation in parentheses. Missing values are excluded. 
* p < 0.05, ** p < 0.01, *** p < 0.001   
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(continued) 

 P-value, pair-wise comparisons 

 S1 vs S2 S1 vs S3 S1 vs S4 S2 vs S3 S2 vs S4 S3 vs S4 

Demographics       

Age, years < 0.001 *** 0.076 < 0.001 *** 0.054 1.000 < 0.001 *** 

Education, years 0.814 0.160 0.002 ** 0.017 * < 0.001 *** 0.204 

Cognition       

CDR-SB 0.532 < 0.001 *** < 0.001 *** 0.081 0.239 0.854 

MMSE 1.000 0.254 0.076 0.277 0.097 0.905 

MOCA 0.991 0.973 0.657 0.892 0.542 0.760 

PHC-MEM 0.585 0.137 < 0.001 *** 0.954 0.008 ** < 0.001 *** 

PHC-EXF 0.948 0.037 * < 0.001 *** 0.010 * < 0.001 *** 0.132 

PHC-LAN 0.800 0.871 0.024 * 0.985 0.418 0.034 * 

PHC-VSP 0.414 0.361  0.558 0.006 ** 0.015 * 0.970 

Biomarker       

AV45 PET, SUVR 0.853 1.000 0.904 0.748 0.441 0.865 

CSF Abeta, pg/ml 0.244 0.003 ** < 0.001 *** 0.771 0.017 * 0.012 * 

CSF t-tau, pg/ml 0.103 0.235  < 0.001 *** 0.761 0.587 0.003 ** 

CSF p-tau, pg/ml 0.102 0.347 < 0.001 *** 0.634 0.840 0.009 ** 
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HV/ICV, cm3/mm3 < 0.001 *** < 0.001 *** < 0.001 *** 0.979 < 0.001 *** < 0.001 *** 

* p < 0.05, ** p < 0.01, *** p < 0.001   
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Figure 14. Heatmap of clinical and biological characteristics of MCI subtypes 

Averaged Z-scores of demographic, cognitive, and biomarker variables in each subtype 

are visualized in the heatmap.   



 

 

 

56 

3.6 Prognosis prediction of subtypes for conversion from MCI to AD  

Conversion rate and time to conversion from MCI to AD were analyzed 

across the MCI subtypes. There was a significant difference in the 

frequency of MCI to AD conversion within a 2-year follow-up across the 

subtypes (P < 0.001). MCI to AD conversion was observed more 

frequently in S1 (23.4%, 18/77) and S2 (35.7%, 25/70) compared to S3 

(16.7%, 35/210) and S4 (12.7%, 31/245) (Figure 15). Individuals in S2 

also had a significantly faster conversion from MCI to AD (S2 vs S3, 

24.0 vs 35.3 months, P = 0.047; S2 vs S4, 24.0 vs 34.0 months, P = 0.037; 

Table 6 and Figure 16). Kaplan-Meier survival curves were constructed 

to compare the rate of conversion from MCI to AD across the subtypes 

(Figure 17). There was a significant difference in the risk of conversion 

across the subtypes (Log-rank P < 0.0001). S2 showed the highest risk 

of conversion from MCI to AD, followed by S1.   
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Figure 15. Frequency of MCI converter across subtypes
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Table 6. Time to conversion from MCI to AD 

 MCI at baseline P-value, 

global 

P-value, pair-wise comparisons 

S1 (n=39) S2 (n=40) S3 (n=78) S4 (n=83) S1 vs S2 S1 vs S3 S1 vs S4 S2 vs S3 S2 vs S4 S3 vs S4 

Time to 

conversion, 

months 

34.2 

(27.7) 

24.0 

(16.9) 

35.3 

(29.5) 

34.0 

(22.9) 

0.019 0.213 0.997 1.000 0.047 * 0.037 * 0.991 

The data are expressed as percentages or means with standard deviation in parentheses. 



 

 

 

59 

 
Figure 16. Time to conversion from MCI to AD
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Figure 17. Kaplan-Meier survival curve for the conversion from MCI to AD  
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3.7 Generating FDG PET images of AD subtypes 

We applied decoder layers of our cVAE model to generate FDG PET 

images and to compare subtype-specific metabolism patterns from the 

latent features across AD subtypes. The representative FDG brain PET 

images generated from the centroids of latent features of each subtype 

showed subtype-specific hypometabolism patterns as identified in our 

study (Figure 18): S1 (angular), S2 (occipital), S3 (orbitofrontal), and 

S4 (minimal). The intensities of voxels in subtype-specific 

hypometabolism regions decreased as the rescaled CDR-SB scores 

increased.
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Figure 18. Generation of subtype-specific FDG brain PET images according to latent features with different CDR-SB scores by using a deep 

learning-based model 

Representative generated images of (A) S1 (angular), (B) S2 (occipital), (C) S3 (orbitofrontal), and (D) S4 (minimal). Subtype-specific regions of 

hypometabolism are annotated with white arrows in the first row of (A)-(C). 
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4. Discussion 

 

In this study, we identified distinct subtypes of spatial brain metabolism 

patterns with different clinicopathologic features in AD using deep 

learning-based FDG PET clusters (summarized in Figure 19). Our deep 

learning model was also successfully transferred to predict the prognosis 

of subtypes for conversion from MCI to AD.
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Figure 19. Theoretical model summarizing AD subtypes on FDG PET
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4.1 Limitations of previous subtyping approach 

AD has been recognized as a heterogeneous disease with variable 

clinicopathologic profiles, such as age onset, clinical presentation, tau-

related pathology, and brain atrophy [4-8]. For that reason, there were 

many efforts to reveal biologic subtypes of AD. Previous studies using 

multiple brain imaging, mostly brain MRI and tau PET, tried to identify 

AD subtypes in a hypothesis-driven or data-driven manner [9-11, 75]. 

However, the hypothesis-driven study design was limited to the prior 

definition of neuropathologic subtypes. As a result, the hypothesis-

driven approach on neuroimaging may not provide a comprehensive 

description and cannot reflect heterogeneous clinicopathologic profiles 

of AD. Data-driven subtyping in previous studies was also limited by the 

confound of disease stage, demonstrating disease severity rather than a 

heterogeneous biologic profile. 

 

4.2 Interpretation of results 

We defined 4 distinct subtypes of hypometabolism pattern in AD: S1 

(angular), S2 (occipital), S3 (orbitofrontal), and S4 (minimal). Our 

proposed AD subtypes on FDG PET show different patterns in regions 

of involvement from the previously reported 4 biologic subtypes (typical, 

hippocampal sparing, limbic predominant, and minimal atrophy AD) 
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based on neurodegeneration and tau pathology. Spatial patterns in S1 

(angular), S2 (occipital), and S3 (orbitofrontal) obviously differ from 

previously described AD subtypes in other modalities, but only the S4 

(minimal hypometabolism) showed similarity with minimal atrophy AD. 

In addition, whereas the previously described MRI-defined subtypes 

separate hippocampal sparing AD as an independent subgroup, both S2 

(occipital) and S4 (minimal) showed less hippocampal atrophy than 

other subtypes, which implies both subtypes share the characteristics of 

hippocampal sparing. From this point of view, it can be considered that 

our AD subtypes based on spatial metabolism patterns belongs to a 

domain different from the previously-defined subtypes reported on other 

modalities. 

Subtype-specific spatial metabolism pattern in the current study 

notably differs from previously reported FDG PET subtypes. In the study 

of Levin et al. [24], hypometabolic regions of their 3 subtypes (typical, 

limbic predominant, and cortical-predominant) overlapped in 

parietotemporal areas and frontal lobe with different effect sizes, and the 

“minimal” subtype was not included. They employed a hierarchical 

clustering approach for voxel-wise FDG PET profile which has a 

limitation in removing the effect of disease progression from clustering. 

The clusters defined in the studies of Levin et al. may have rather 
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represented a severity dimension, and their subtypes actually showed a 

significant difference in MMSE scores across the subtypes. In contrast, 

AD subtypes in the current study shared typical AD patterns but showed 

distinct subtype-specific spatial metabolism patterns which have few 

overlapping regions. Our deep learning-based approach is intended to 

remove the severity dimension from clustering, and CDR-SB and 

MMSE scores were not significantly different across the subtypes. 

 The considerable disagreement in subtypes between previous 

reports and the current study is likely due to the presence or absence of 

severity dimension along with the AD subtypes. In the recent subtype 

study on tau PET, Vogel et al. [10] applied an algorithm by combining 

clustering with disease progression modeling [76] to overcome the 

limitation from the disease severity dimension, and their identified 4 

subtypes (limbic, medial-temporal lobe-sparing, posterior, and lateral 

temporal) showed a completely different spatial pattern of tau deposition 

compared to the previously identified subtypes. From this point of view, 

we can reasonably infer that our AD subtypes represent distinct spatial 

metabolism patterns independent from the dimension of disease severity. 

  In the previous reports, female patients more frequently had 

limbic-predominant AD, and male patients more frequently had 

hippocampal-sparing AD [9]. In our study, S1 (angular) and S3 
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(orbitofrontal) were more hypometabolic in the limbic area, and S2 

(occipital) and S4 (minimal) had more hippocampal-sparing patterns 

compared to other subtypes. In our result, male patients were more 

frequent in S1 (95%), and female patients were more frequent in S4 

(72%). The difference of dimension across the AD subtypes between our 

result (hidden representation without severity dimension) and previous 

studies (with severity dimension) may be a careful explanation for 

disagreement of a demographic pattern between previous and current 

studies. 

 For the S2 (occipital), we showed that posterior-predominant 

hypometabolism and visuospatial impairment are prominent, which is in 

line with the “posterior” tau deposition subtype characterized by 

visuospatial impairment on recent tau PET study [10]. In addition, we 

showed that the S2 has the faster conversion from MCI to AD, and this 

result corresponds to a faster decline in metabolism in the AD subgroup 

of visuospatial function impairment reported in a recent trajectory study 

on FDG PET [25]. 

 In our study, the orbitofrontal region was classified as an 

independent group with distinct spatial metabolism patterns. The 

orbitofrontal cortex is associated with apathy, non-memory-related 

behavior, and agitation in AD patients [77-79]. Even though previous 
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studies in AD subtypes did not focus on the orbitofrontal region, S3 

(orbitofrontal) might be an independent biologic subtype with distinct 

spatial metabolism patterns in AD. 

Minimal subtype-specific hypometabolism was observed in S4 

(minimal). S4 had the lowest level of hippocampal atrophy, but CSF p-

tau and t-tau levels were higher than in other subtypes. In addition, S4 

had the lowest level of education and a frequent prevalence of females, 

and the MCI-S4 had younger age than in other subtypes. This 

clinicopathologic pattern (tau, education) is in line with the results 

observed in minimal atrophy AD defined in the previous studies [9]. 

Based on these observations, we may propose a hypothesis that the 

neurodegeneration at a molecular level (tau-related pathology) may be 

sufficient to give dementia symptoms with minimal hypometabolism and 

atrophy [80]. Co-existing risk factors such as female sex and lower level 

of education may counteract with a compensatory biologic mechanism 

of AD resulting lowest level of cognitive reserve in the “minimal” 

subtype, which is related to the concepts of brain resilience and 

resistance [26, 81, 82]. 

In our study, we used both FDG PET images with cerebellar 

normalization and global normalization for the generation of SPM 

images to visualize spatial metabolism patterns. Subtype-specific 
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patterns were consistent in both analyses, but commonly shared regions 

of hypometabolism across the subtypes, which is a typical AD pattern, 

were extended in the analysis with cerebellar normalization. More 

reduced regions of hypermetabolism were also observed in cerebellar 

normalization. Cerebellar and global normalization are frequently used 

methods for the detection and differentiation of dementia in FDG PET 

studies. Earlier studies showed that the glucose metabolism in the 

cerebellum is less affected in AD patient compared to global cerebral 

glucose metabolism [83], which result in a difference in SPM images 

between cerebellar and global normalization methods. While global 

normalization is superior for differential diagnosis between types of 

dementia, cerebellar normalization is known to be superior in identifying 

dementia patients in comparison to control subjects and in early detection 

of dementia [84]. 

 

4.3 Strength of our deep learning-based clustering approach 

To overcome the limitations of the previous subtyping approach, in this 

study, we applied the deep learning-based clustering method to reveal 

biologic subtypes of AD on FDG PET by using cVAE. VAE could 

generate images in an unsupervised manner and reduce image dimension 

into a lower-dimensional feature [60]. The unsupervised approach could 
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help to make new discoveries of unappreciated subtypes and it is 

expected to overcome the limitations of prior definition on hypothesis-

driven studies. Compared to early studies using traditional 

dimensionality reduction methods such as PCA, autoencoder has its 

advantage in the use of a non-linear function that makes superior 

performance in learning patterns from high-dimensional image data such 

as neuroimaging. Moreover, VAE could overcome the overfitting 

problem from the traditional autoencoder. 

The greatest strength of our study is the application of the cVAE 

model which has a structure of additional input information for the 

condition of each image [63, 85]. For instance, cVAE applied on MNIST 

database with condition information of number label, the latent vector 

contained the image feature of handwriting style, which could be applied 

for the number image generation with different handwriting style. In 

addition, cVAE was also successfully applied on FDG brain PET for 

predicting aging of brain metabolic topography [67]. From this idea, we 

hypothesized that when we give AD severity information (CDR-SB) as 

an input condition of FDG PET images on the cVAE model, the latent 

features could reflect hidden heterogeneity information of AD other than 

disease severity. When VAE without an additional input condition was 

applied for the subjects in our study, FDG PET images were clustered 
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across the disease severity domain and showed spatial brain metabolism 

patterns of disease progression (Figure 20). When cVAE with CDR-SB 

condition was applied, there was no significant difference in CDR-SB 

among the AD subtypes (P = 0.609), and the brain metabolism pattern 

showed distinct features with different clinicopathologic profiles. 

The deep learning-based model has the advantage of being easy 

to transfer trained models to other cohorts, as shown in our study. Since 

our deep learning network is a generative model, it can also be used to 

generate a new image from the input image and information. This 

approach is also expected to be readily applied to the other disease 

domain with has heterogeneous clinicopathologic profiles. 

Our deep learning-based approach has a unique novelty. First, 

this is the first study to remove the effect of disease progression (severity 

dimension) to reveal the hidden representations of FDG PET spatial 

metabolism pattern in AD. Second, this is the first approach to apply 

cVAE in AD subtype studies not only on FDG PET but also on other 

modalities. Third, AD subtype study on FDG PET is very rare. 
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Figure 20. Spatial metabolism of clusters using VAE without CDR-SB condition 
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4.4 Strength of our deep learning-based AD subtypes 

In our study, the deep learning model could predict the distinct subtype 

of brain metabolism patterns in AD with different clinicopathologic 

features. The model was also successfully transferred to MCI subjects. 

The spatial metabolism pattern in MCI subtypes was almost similar to 

those of AD. The demographic, cognitive, and biomarker profiles of MCI 

subtypes were similar but with some differences from those of AD. These 

findings imply that subtypes may have distinct trajectories of disease 

progression and different features in earlier and late stages. 

Until now there is no curative treatment for AD, but only to 

postpone the disease progression. Therefore, a biomarker for the early 

detection of MCI converter and the prediction of prognosis and disease 

course is very important to allow patients to have early treatment before 

the stage of AD. Predicting who will convert from MCI to AD has been 

an important problem, and there were many previous studies for the 

development of biomarkers and models to predict MCI to AD conversion 

[86-90]. In the clinic, it is difficult to differentiate biologic subtypes in 

AD patients and to predict the prognosis of individual patients since the 

symptoms and clinical characteristics of AD patients are diverse and 

complex. In our study, the deep learning model was transferred to FDG 

PET of MCI patients, and the predicted MCI subtypes revealed 
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significantly different prognoses of MCI to AD conversion. Our deep 

learning-based models for the prediction of AD and MCI subtypes on 

FDG PET have great novelty and strong clinical implications for the 

early and individualized diagnosis and treatment that could be applied in 

precision medicine. In addition, according to our preliminary result, most 

AD and MCI patients maintained their subtypes from baseline to follow-

up, but some showed changes and fluctuation of their subtypes (Figure 

21). The trajectory of spatial metabolism pattern across the subtypes in 

MCI and AD and their relationship to patient prognosis should be 

investigated in the future. 

In clinical routine, differentiating subtype-specific metabolism 

patterns on FDG PET only with visual interpretation is very difficult 

which is subject to inter-observer variability and requires highly trained 

experts. Because of diffuse overlapping regions of hypometabolism 

(typical AD pattern) across the subtypes, it is difficult to distinguish 

subtype-specific hypometabolic regions only with visual interpretation 

as shown in our generated images and SPM images with cerebellar 

normalization. Since our deep learning model could differentiate distinct 

subtypes, we suggest that our model be used to help physicians’ visual 

interpretation of FDG PET to make a precise and accurate diagnosis of 

subtypes, which is a great advantage of the deep learning model.  
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Figure 21. The trajectory of spatial brain metabolism pattern across the subtypes 

Deep learning-based model predicted subtypes of individual subjects with AD and MCI 

at baseline and follow-up visits are visualized in the heatmap. Subjects were (A) S1, 

(B) S2, (C) S3, and (D) S4 on baseline FDG PET. Each subtype is marked with a 

different color. Subjects are sorted in the order in which the subtypes changed or not 

during the follow-up. n/a, not available PET  
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4.5 Limitations and future directions 

Some limitations should be noted. First, the deep learning model was 

trained by using FDG PET with AD from the single database (ADNI). A 

validation study using external AD datasets is mandatory. Second, the 

deep learning model trained in the AD cohort was directly transferred to 

the MCI cohort. However, MCI is a heterogeneous syndrome resulting 

from AD as well as non-AD and non-neurodegenerative conditions [91-

97], which implies that some of the patients in our MCI cohort may be 

originated from other disease populations different from AD. Therefore, 

a validation study using external MCI datasets is also mandatory. Third, 

a longitudinal study may be warranted to investigate the subtype-specific 

trajectory of spatial metabolism changes and clinicopathologic profiles. 

Finally, quantitative analysis of regions of interest of subtypes could give 

more evidence to our results of spatial metabolism patterns. We are 

planning the next step for the longitudinal study and quantitative analysis.  
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5. Conclusion 

 

We could identify distinct subtypes in AD with different brain 

pathologies and clinical profiles. Also, our model was successfully 

transferred to predict the prognosis of subtypes for conversion from MCI 

to AD. Our results suggest that distinct AD subtypes on FDG PET may 

have implications for the individual clinical outcomes and provide a clue 

to understanding a broad spectrum of AD in terms of pathophysiology.  
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Supplementary Figures 

 
Supplementary figure 1. Spatial metabolism pattern on FDG PET with global normalization of AD subtypes showing the differences between 

subtypes and controls  
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Supplementary figure 2. Spatial metabolism pattern on FDG PET with global normalization of AD subtypes showing the differences between one 

subtype and all other subtypes 
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국문 초록 
 

딥러닝 기반 군집화 방법을 이용하여 FDG PET에

서 알츠하이머병의 공간적 뇌 대사 패턴의 특징적 

아형 분류 

 

유현지 

분자의학 및 바이오제약학과 

서울대학교 융합과학기술대학원 

 

 

알츠하이머병은 아밀로이드와 타우 침착과 같은 병리

학적 특징을 공유함에도 불구하고 광범위한 임상병리학적 특

성을 보인다. 본 연구에서는 딥러닝 기반 군집화 방법을 이용

하여 FDG PET 영상에서 알츠하이머병 특징적 아형을 분류하

여 신경 퇴행의 공간적 뇌 대사 패턴을 이해하고자 하였으며, 

공간적 뇌 대사 패턴에 의해 정의된 아형의 임상병리학적 특

징을 밝히고자 하였다. 

Alzheimer’s Disease Neuroimaging Initiative(ADNI) 

데이터베이스로부터 첫번째 방문 및 추적 방문을 포함한 알츠

하이머병, 경도인지장애, 인지 정상군의 총 3620개의 FDG 뇌 

양전자단층촬영(PET) 영상을 수집하였다. 알츠하이머병에서 
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질병의 진행 외의 뇌 대사 패턴을 나타내는 표현

(representation)을 찾기 위하여, 조건부 변이형 오토인코더

(conditional variational autoencoder)를 사용하였으며, 인코

딩된 표현으로부터 군집화(clustering)를 시행하였다. 알츠하

이머병의 뇌 FDG PET (n=838)과 CDR-SB(Clinical 

Demetria Rating Scale Sum of Boxes) 점수가 cVAE 모델의 

입력값으로 사용되었으며, 군집화에는 k-means 알고리즘이 

사용되었다. 훈련된 딥러닝 모델은 경도인지장애군 (n=1761)

의 뇌 FDG PET에 전이(transfer)되어 각 아형의 서로 다른 

궤적(trajectory)과 예후를 밝히고자 하였다. 통계적 파라미터 

지도작성법(Statistical Parametric Mapping, SPM)을 이용하

여 각 군집의 공간적 패턴을 시각화 하였으며, 각 군집의 임상

적 및 생물학적 특징을 비교하였다. 또한 아형 별 경도인지장

애로부터 알츠하이머병으로 전환되는 비율을 비교하였다. 

딥러닝 기반 군집화 방법으로 4개의 특징적 아형이 분

류되었다. (i) S1 (angular): 모이랑(angular gyrus)에서 현저

한 대사 저하를 보이며 분산된 피질의 대사 저하 패턴, 남성에

서 빈도 높음, 더 많은 아밀로이드 침착, 더 적은 타우 침착, 

더 심한 해마 위축, 초기 단계의 인지 저하의 특징을 보였다. 

(ii) S2 (occipital): 후두엽(occipital) 피질에서 현저한 대사 

저하를 보이며 후부 우세한 대사 저하 패턴, 더 적은 연령, 더 

많은 타우, 더 적은 해마 위축, 더 낮은 집행 및 시공간 점수, 

경도인지장애로부터 알츠하이머병으로의 빠른 전환의 특징을 

보였다. (iii) S3(orbitofrontal): 안와전두(orbitofrontal) 피질

에서 현저한 대사 저하를 보이며 전방 우세한 대사 저하 패턴, 
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더 높은 연령, 더 적은 아밀로이드 침착, 더 심한 해마 위축, 

더 높은 집행 및 시공간 점수의 특징을 보였다. (iv) 

S4(minimal): 최소의 대사 저하를 보임, 여성에서 빈도 높음, 

더 적은 아밀로이드 침착, 더 많은 타우 침착, 더 적은 해마 

위축, 더 높은 인지기능 점수의 특징을 보였다. 

결론적으로, 본 연구에서 우리는 서로 다른 뇌 병리 및 

임상 특성을 가진 알츠하이머병의 특징적 아형을 분류하였다. 

또한 우리 딥러닝 모델은 경도인지장애군에 성공적으로 전이

되어 아형 별 경도인지장애로부터 알츠하이머병으로 전환되는 

예후를 예측할 수 있었다. 본 결과는 FDG PET에서 알츠하이

머병의 특징적 아형은 개인의 임상 결과에 영향을 미칠 수 있

고, 병태생리학 측면에서 알츠하이머병의 광범위한 스펙트럼을 

이해하는데 단서를 제공할 수 있음을 시사한다. 

 

Keywords: 알츠하이머병, 아형, FDG 양전자단층촬영, 딥러닝, 
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